
GraphMAE2: A Decoding-Enhanced Masked Self-Supervised
Graph Learner

Zhenyu Hou
∗ Yufei He

Yukuo Cen
Tsinghua University, China Beijing Institute of Technology, China Tsinghua University, China

houzy21@mails.tsinghua.edu.cn yufei.he@bit.edu.cn cyk20@mails.tsinghua.edu.cn

Xiao Liu Yuxiao Dong
†

Evgeny Kharlamov
Tsinghua University, China Tsinghua University, China Bosch Center for Artifcial

liuxiao21@mails.tsinghua.edu.cn yuxiaod@tsinghua.edu.cn Intelligence
evgeny.kharlamov@de.bosch.com

Jie
† Tang

Tsinghua University, China
jietang@tsinghua.edu.cn

ABSTRACT
Graph self-supervised learning (SSL), including contrastive and
generative approaches, ofers great potential to address the funda-

mental challenge of label scarcity in real-world graph data. Among
both sets of graph SSL techniques, the masked graph autoencoders
(e.g., GraphMAE)—one type of generative methods—have recently
produced promising results. The idea behind this is to reconstruct
the node features (or structures)—that are randomly masked from
the input—with the autoencoder architecture. However, the per-

formance of masked feature reconstruction naturally relies on the
discriminability of the input features and is usually vulnerable to
disturbance in the features. In this paper, we present a masked
self-supervised learning framework

1
GraphMAE2 with the goal

of overcoming this issue. The idea is to impose regularization on
feature reconstruction for graph SSL. Specifcally, we design the
strategies of multi-view random re-mask decoding and latent rep-
resentation prediction to regularize the feature reconstruction. The
multi-view random re-mask decoding is to introduce randomness
into reconstruction in the feature space, while the latent represen-

tation prediction is to enforce the reconstruction in the embedding
space. Extensive experiments show that GraphMAE2 can consis-

tently generate top results on various public datasets, including at
least 2.45% improvements over state-of-the-art baselines on ogbn-

Papers100M with 111M nodes and 1.6B edges.

∗
This work was done when the author was visiting Tsinghua University.

†
Yuxiao Dong and Jie Tang are the corresponding authors.

1
The code is available at: https://github.com/THUDM/GraphMAE2.

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583379

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; • Information systems → Data mining.

KEYWORDS
Graph Neural Networks; Self-Supervised Learning; Graph Repre-

sentation Learning; Pre-Training

ACM Reference Format:
Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Khar-

lamov, and Jie Tang. 2023. GraphMAE2: A Decoding-Enhanced Masked
Self-Supervised Graph Learner. In Proceedings of the ACM Web Conference
2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3543507.3583379

1 INTRODUCTION
Graph neural networks (GNNs) have found widespread adoption in
learning representations for graph-structured data. The success of
GNNs has thus far mostly occurred in (semi-) supervised settings, in
which task-specifc labels are used as the supervision information,
such as GCN [25], GAT [41], and GraphSAGE [13]. However, it is
often arduously difcult to obtain sufcient labels in real-world
scenarios, especially for billion-scale graphs [21, 22].

One natural solution to this challenge is to perform self-supervised
learning (SSL) on graphs [30], where graph models (e.g., GNNs)
are supervised by labels that are automatically constructed from
the input graph data. Along this line, generative SSL models that
aim to generate one part of the input graph from another part have
received extensive exploration [9, 22, 24, 33, 43]. Among all alterna-

tives, the masked graph modeling technique has been demonstrated
as a powerful strategy of generative SSL on graphs [18, 21, 43].
Straightforwardly, it frst corrupts the input graph by masking node
features or edges and then learns to recover the original input.

Under the masked prediction framework, a very recent work
introduces a masked graph autoencoder GraphMAE [18] for gen-

erative SSL on graphs, which yields outperformance over various
baselines on 21 datasets for diferent tasks. Generally, an autoen-

coder is made up of an encoder, code/embeddings, and a decoder.
The encoder maps the input to embeddings, and the decoder aims to

737

https://github.com/THUDM/GraphMAE2
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543507.3583379
https://doi.org/10.1145/3543507.3583379
mailto:evgeny.kharlamov@de.bosch.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583379&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Hou, et al.

Random-Init BGRL GraphMAE GraphMAE2

73

76

79

82

ogbn-Products

A
C

C
U

R
A

C
Y +2.70

59

61

63

65

ogbn-Papers100M

A
C

C
U

R
A

C
Y +2.45

Figure 1: Linear probing results on ogbn-Products and ogbn-
Papers100M. GraphMAE2 achieves a signifcant advantage over
previous graph SSL methods on benchmarks with millions of nodes.

reconstruct the input based on the embeddings under a reconstruc-

tion criterion. The main idea of GraphMAE is to reconstruct the
input node features that are randomly masked before encoding by
using an autoencoding architecture. Its technical contribution lies in
the design of 1) masked feature reconstruction and 2) fxed re-mask
decoding, wherein the encoded embeddings of previously-masked
nodes are masked again before feeding into the decoder.

Despite GraphMAE’s promising performance, the reconstruc-

tion of masked features fundamentally relies on the discriminabil-

ity [8, 45] of the input node features, i.e., the extent to which the
node features are distinguishable. In practice, the features of nodes
in a graph are usually generated from data that is associated with
each node, such as the embeddings of content posted by users
in a social network, making them an approximate description of
nodes and thus less discriminative. Note that in vision or language
studies, the reconstruction targets are usually a natural descrip-
tion of the data, i.e., pixels of an image and words of a document.
Table 1 further shows that the performance of GraphMAE drops
more signifcantly than the supervised counterpart when using
less discriminative node features (w/ PCA). In other words, Graph-

MAE, as a generative SSL framework with feature reconstruction,
is relatively more vulnerable to the disturbance of features.

In this work, we present GraphMAE2 with the goal of improving
feature reconstruction for graph SSL. The idea is to impose regular-

ization on target reconstruction. To achieve this, we introduce two
decoding strategies: multi-view random re-mask decoding for reduc-

ing the overftting to the input features, and latent representation
prediction for having more informative targets.

First, instead of fxed re-mask decoding used in GraphMAE—re-

masking the encoded embeddings of masked nodes, we propose to
introduce randomness into input feature reconstruction with multi-
view random re-mask decoding. That is, the encoded embeddings
are randomly re-masked multiple times, and their decoding results
are all enforced to recover input features. Second, we propose latent
representation prediction, which attempts to reconstruct masked
features in the embedding space rather than the reconstruction in
the input feature space. The predicted embeddings of masked nodes
are constrained to match their representations that are directly
generated from the input graph. Both designs naturally work as
the regularization on target construction in generative graph SSL.

Inherited from GraphMAE, GraphMAE2 is a simple yet more
efective generative self-supervised framework for graphs that can
be directly coupled with existing GNN architectures. We perform
extensive experiments on public graph datasets representative of
diferent scales and types, including three open graph benchmark

Table 1: Results with the original node features (raw) or PCA-
processed node features (w/ PCA). w/ PCA represents that the
input features are reduced to 50-dimensional continuous vectors
using PCA, relatively less discriminative. GraphMAE can be more
sensitive to the discriminability of input features than the super-

vised one. GAT is used as the backbone for all cases.

Cora PubMed
raw → w/ PCA raw → w/ PCA

Supervised 83.0 → 82.3 (↓ 0.7) 78.0 → 77.0 (↓ 1.0)
GraphMAE 84.2 → 82.6 (↓ 1.6) 81.1 → 78.9 (↓ 2.2)

GraphMAE2 84.5 → 83.5 (↓ 1.0) 81.4 → 80.1 (↓ 1.3)

datasets. The results demonstrate that GraphMAE2 can consistently
ofer signifcant outperformance over state-of-the-art graph SSL
baselines under diferent settings. Furthermore, we show that both
decoding strategies contribute to the performance improvements
compared to GraphMAE. Excitingly, GraphMAE2 as an SSL method
ofers performance advantages over classic supervised GNNs across
all datasets, giving rise to the premise of self-supervised graph
representation learning and pre-training.

In addition, we extend GraphMAE2 to large-scale graphs with
hundreds of millions of nodes, which have been previously less
explored for graph SSL. We leverage local clustering strategies
that can produce local and dense subgraphs to beneft GraphMAE2
(and GraphMAE) with masked feature prediction. Experiments on
ogbn-Papers100M of 111M nodes and 1.6B edges suggest the sim-

ple GraphMAE2 framework can generate signifcant performance
improvements over existing methods (Cf. Figure 1).

2 METHOD
In this section, we frst revisit masked autoencoding for graph SSL
and identify its defciency in which the efectiveness of masked
feature reconstruction can be vulnerable to the distinguishability of
input node features. Then we present our GraphMAE2 to overcome
the problem by imposing regularization on the feature decoding.

2.1 Masked Autoencoding on Graphs
Notations. Let G = (V, �, �), where V is the node set, � = |V|
represents the number of nodes, � ∈ {0, 1}� ×�

is the adjacency
matrix with each element �(�, �) = 1 indicating that there exists
an edge between �� and � � . � ∈ R� ×���

is the input node feature
matrix. In graph autoencoders, we use �� to represent the GNN
encoder such as GAT [41] and GCN [25]. And �� represents the
decoder which can be a multi-layer perceptron (MLP) or GNN.
Denoting the hidden embedding � ∈ R� ×�

, the general goal of
graph autoencoders is to learn representation � or a well-initialized
�� through reconstructing input node features or structure: e� = �� (�, �), G = �� (�, �) (1)

where Ge denotes the reconstructed graph characteristics, which
can be structure, node features or both.

Overview of masked feature reconstruction. The idea of masked
autoencoder has seen successful practice in graph SSL [18]. As a

738

GraphMAE2: A Decoding-Enhanced Masked Self-Supervised Graph Learner WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Latent target

Input feature

Multi-view random re-mask

Local
cluster

[DMASK]

Mask

0

1

4

5

2
6

3

Fixed re-mask [0,2,4,6]

<latexit sha1_base64="TZTwn7bdooejEx0oXXLX8K80R3s=">AAAC8HicjVHLSsQwFD3W1/gedemmOAiKMrQi6tLHQpcjODrgiKSZqMX0QZoKwzAf4c6duPUH3OpXiH+gf+FNrOAD0ZQ25557z2lubpDKMNOe99zj9Pb1DwyWhoZHRsfGJ8qTUwdZkisu6jyRiWoELBMyjEVdh1qKRqoEiwIpDoOLbZM/vBQqC5N4X7dTcRyxszg8DTnTRJ2UF5sR0+ecyc5Od74ZJLKVtSPaOpvdJfdz3OgunJQrXtWzy/0J/AJUUKxaUn5CEy0k4MgRQSCGJizBkNFzBB8eUuKO0SFOEQptXqCLYdLmVCWoghF7Qd8zio4KNqbYeGZWzekvkl5FShdzpEmoThE2f3NtPrfOhv3Nu2M9zdnatAeFV0Ssxjmxf+k+Kv+rM71onGLd9hBST6llTHe8cMntrZiTu5+60uSQEmdwi/KKMLfKj3t2rSazvZu7ZTb/YisNa2Je1OZ4NaekAfvfx/kTHCxX/dWqv7dS2dgqRl3CDGYxT/NcwwZ2UUOdvK9wjwc8Osq5dm6c2/dSp6fQTOPLcu7eAEyFoaE=</latexit>G(A, X)

 GNN encoder

<latexit sha1_base64="+mXLA0ByWb+qrU8stTG9cVPLocY=">AAAC2XicjVHLSsNAFD2Nr1pf8bFzEyxC3ZRERF0W3bisYB9Ya0nSaQ3Ni2Qi1NCFO3HrD7jVHxL/QP/CO2MKahGdkJkz595zZu5cK3SdmOv6a06Zmp6ZncvPFxYWl5ZX1NW1ehwkkc1qduAGUdMyY+Y6Pqtxh7usGUbM9CyXNazBsYg3rlkUO4F/xocha3tm33d6jm1yojrqxoUVuN146NGSno8u05KxM+qoRb2sy6FNAiMDRWSjGqgvuEAXAWwk8MDggxN2YSKmrwUDOkLi2kiJiwg5Ms4wQoG0CWUxyjCJHdDcp10rY33aC89Yqm06xaU/IqWGbdIElBcRFqdpMp5IZ8H+5p1KT3G3Ia1W5uURy3FF7F+6ceZ/daIWjh4OZQ0O1RRKRlRnZy6JfBVxc+1LVZwcQuIE7lI8ImxL5fidNamJZe3ibU0Zf5OZghV7O8tN8C5uSQ02frZzEtR3y8Z+2TjdK1aOslbnsYktlKifB6jgBFXUyPsGj3jCs9JSbpU75f4zVcllmnV8G8rDB2FQl7c=</latexit>

Z(1)

<latexit sha1_base64="QTPSO5Z43qk7Jgcd220gtDiUk84=">AAAC2XicjVHLSsNAFD2Nr1pf8bFzEyxC3ZRERF0W3bisYB9Ya0nSaQ3Ni2Qi1NCFO3HrD7jVHxL/QP/CO2MKahGdkJkz595zZu5cK3SdmOv6a06Zmp6ZncvPFxYWl5ZX1NW1ehwkkc1qduAGUdMyY+Y6Pqtxh7usGUbM9CyXNazBsYg3rlkUO4F/xocha3tm33d6jm1yojrqxoUVuN146NGSno8u05K+M+qoRb2sy6FNAiMDRWSjGqgvuEAXAWwk8MDggxN2YSKmrwUDOkLi2kiJiwg5Ms4wQoG0CWUxyjCJHdDcp10rY33aC89Yqm06xaU/IqWGbdIElBcRFqdpMp5IZ8H+5p1KT3G3Ia1W5uURy3FF7F+6ceZ/daIWjh4OZQ0O1RRKRlRnZy6JfBVxc+1LVZwcQuIE7lI8ImxL5fidNamJZe3ibU0Zf5OZghV7O8tN8C5uSQ02frZzEtR3y8Z+2TjdK1aOslbnsYktlKifB6jgBFXUyPsGj3jCs9JSbpU75f4zVcllmnV8G8rDB17ul7Y=</latexit>

Z(0)

<latexit sha1_base64="K97Nqt5sDs4JiAGEH50b0A+i4D0=">AAAC2XicjVHLSsNAFD2Nr1pf8bFzEyyCq5KIqMuiG5cV7APbUpJ0WkPzYjIRaunCnbj1B9zqD4l/oH/hnTEFtYhOyMyZc+85M3euE/teIkzzNafNzM7NL+QXC0vLK6tr+vpGLYlS7rKqG/kRbzh2wnwvZFXhCZ81Ys7swPFZ3Rmcynj9mvHEi8ILMYxZO7D7odfzXFsQ1dG3Wo7NRy0n8rvJMKBldDked/SiWTLVMKaBlYEislGJ9Be00EUEFykCMIQQhH3YSOhrwoKJmLg2RsRxQp6KM4xRIG1KWYwybGIHNPdp18zYkPbSM1Fql07x6eekNLBLmojyOGF5mqHiqXKW7G/eI+Up7zak1cm8AmIFroj9SzfJ/K9O1iLQw7GqwaOaYsXI6tzMJVWvIm9ufKlKkENMnMRdinPCrlJO3tlQmkTVLt/WVvE3lSlZuXez3BTv8pbUYOtnO6dBbb9kHZas84Ni+SRrdR7b2MEe9fMIZZyhgip53+ART3jWmtqtdqfdf6ZquUyziW9De/gABg6YaA==</latexit>

Z̄

GNN decoderGraphMAE

[MASK]

[MASK]

Shared
GNN decoder

 Target generator MLP Projector <latexit sha1_base64="leoSD2mfixzyDeRpqtaKUS0Z0Ng=">AAAC5HicjVHLSsNAFD2Nr1pfUZcuDBahgpRERF1W3bisYB/QlpKk0xqaF8lEKKVLd+7ErT/gVr9F/AP9C++MKVSL6IRkzj33npO5c63QdWKu628ZZWZ2bn4hu5hbWl5ZXVPXN6pxkEQ2q9iBG0R1y4yZ6/iswh3usnoYMdOzXFaz+uciX7thUewE/hUfhKzlmT3f6Tq2yYlqq9uFphW4nXjg0TY8He1PhvXRXlvN60VdLm0aGCnII13lQH1FEx0EsJHAA4MPTtiFiZieBgzoCIlrYUhcRMiReYYRcqRNqIpRhUlsn749ihop61MsPGOptukvLr0RKTXskiaguoiw+Jsm84l0Fuxv3kPpKc42oN1KvTxiOa6J/Us3rvyvTvTC0cWJ7MGhnkLJiO7s1CWRtyJOrk10xckhJE7gDuUjwrZUju9Zk5pY9i7u1pT5d1kpWBHbaW2CD3FKGrDxc5zToHpQNI6KxuVhvnSWjjqLLeygQPM8RgkXKKNC3rd4wjNelK5yp9wrD1+lSibVbOLbUh4/AfNmnJQ=</latexit>
(A, X)

<latexit sha1_base64="xJ4eDmJ0LKQDZFGzAPpu0SafWYM=">AAAC9XicjVHLattAFD1R08ZJH3HbZTaipuBCMbJxEntn2k0XWSRQJ6a2MaPx2BkyeiCNWozQb3TXXci2P9Bt8wshf5D8Re5MZEgpph0hzbnn3nM0d64fK5lqz7tecx6tP36yUdncevrs+Yvt6stXx2mUJVz0eaSiZOCzVCgZir6WWolBnAgW+Eqc+GcfTf7kq0hSGYWf9SIW44DNQzmTnGmiJlVvFDB9ypnKD4pJLsOiPvIjNU0XAW35l+K9+zAeFO8m1ZrX2O122q2u+zdoNjy7aijXYVS9wghTRODIEEAghCaswJDSM0QTHmLixsiJSwhJmxcosEXajKoEVTBiz+g7p2hYsiHFxjO1ak5/UfQmpHTxljQR1SWEzd9cm8+ss2FXeefW05xtQbtfegXEapwS+y/dsvJ/daYXjRk6tgdJPcWWMd3x0iWzt2JO7j7oSpNDTJzBU8onhLlVLu/ZtZrU9m7ultn8ja00rIl5WZvh1pySBrycorsaHLcazb1G86hd630oR13BDt6gTvPcRw+fcIg+eX/HL/zGpfPN+eGcOxf3pc5aqXmNP5bz8w7jSKSO</latexit>Lin(Z, X)

<latexit sha1_base64="afiVwGbYXEJM+cjNpQXwclIx5t8=">AAADBXicjVHLTtwwFD0EWgZK2ylddhMxqjRI1ShBFXQ5KpsuuqASAyPIaOR4DEQ4DzkO0ijKun/Cjh3qlh9g21b9A/gLro2RWkZV6yj28bn3HPv6xoVMSh0Ev+a8+YUnTxdbS8vPVp6/eNl+tbpX5pXiYsBzmathzEohk0wMdKKlGBZKsDSWYj8+3Tbx/TOhyiTPdvW0EKOUHWfJUcKZJmrc7kcp0yecyfpzM64l0yLTTTeKczkppyktdRQzVR80zTt/hh02zfq43Ql6gR3+LAgd6MCNnbz9ExEmyMFRIYVABk1YgqGk7xAhAhTEjVATpwglNi7QYJm0FWUJymDEntJ8TLtDx2a0N56lVXM6RdKvSOnjLWlyylOEzWm+jVfW2bB/866tp7nblNbYeaXEapwQ+y/dQ+b/6kwtGkf4YGtIqKbCMqY67lwq+yrm5v5vVWlyKIgzeEJxRZhb5cM7+1ZT2trN2zIbv7GZhjV77nIr3JpbUoPDx+2cBXsbvXCzF3553+l/dK1u4Q3W0KV+bqGPT9jBgLzPcY3v+OF99S68S+/bfao35zSv8cfwru4AxVqrgg==</latexit>

Llatent(Z̄, X̄)

<latexit sha1_base64="sqUk54bgT7VaKURlFKeofxC7r/8=">AAADBnicjVHLTtwwFD0EKK/SDrBkE3WENEholKAKWPLYsOiCSgyMytCR4zFgjfNQ7CCNouz5E3bsqm77A90W9Q/av+DaDRIUIXCU+Nxz7znx9Y0yJbUJgt9j3vjE5Jup6ZnZubfz7943FhaPdFrkXHR4qtK8GzEtlExEx0ijRDfLBYsjJY6j4Z7NH1+KXMs0OTSjTJzG7DyRZ5IzQ1S/sdPTRdwvZeX3YmYuOFPlp4riJCtM1epFqRroUUxb+aX6WrbkarX2kOxWq/1GM2gHbvlPQViDJup1kDZu0cMAKTgKxBBIYAgrMGh6ThAiQEbcKUrickLS5QUqzJK2oCpBFYzYIX3PKTqp2YRi66mdmtNfFL05KX2skCalupyw/Zvv8oVztuxz3qXztGcb0R7VXjGxBhfEvqS7r3ytzvZicIYt14OknjLH2O547VK4W7En9x90ZcghI87iAeVzwtwp7+/Zdxrterd3y1z+j6u0rI15XVvgrz0lDTj8f5xPwdF6O9xoh58/Nrd361FPYxkf0KJ5bmIb+zhAh7yv8RO/cOtdeTfeN+/7v1JvrNYs4dHyftwBNtarow==</latexit>X

i

Linput(Z
(i), X)

<latexit sha1_base64="9tL6lT/Rk1R5Koat08r3Hm9Jz7c=">AAAC0XicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl047KifUBbJZlOa2heTCZCKAVx6w+41Z8S/0D/wjtjBLWITsjMmXPvOTN3rhv7XiIt66VgzMzOzS8UF0tLyyura+X1jWYSpYLxBov8SLRdJ+G+F/KG9KTP27HgTuD6vOWOTlS8dcNF4kXhhcxi3gucYegNPOZIoi67buT3kyygZdyeXJUrVtXSw5wGdg4qyEc9Kj+jiz4iMKQIwBFCEvbhIKGvAxsWYuJ6GBMnCHk6zjFBibQpZXHKcIgd0TykXSdnQ9orz0SrGZ3i0y9IaWKHNBHlCcLqNFPHU+2s2N+8x9pT3S2j1c29AmIlron9S/eZ+V+dqkVigCNdg0c1xZpR1bHcJdWvom5ufqlKkkNMnMJ9igvCTCs/39nUmkTXrt7W0fFXnalYtWd5boo3dUtqsP2zndOguVe1D6r22X6ldpy3uogtbGOX+nmIGk5RR4O8BR7wiCfj3MiMW+PuI9Uo5JpNfBvG/Ttc45Vw</latexit>

X

<latexit sha1_base64="ua+9hKfURG0zmgZ1ZCtvu++6eCM=">AAAC2XicjVHLSsNAFD2Nr1pf8bFzEyyCq5KIqMuiG5cV7APaUpJ0WoN5MZkINXThTtz6A271h8Q/0L/wzpiCWkQnZObMufecmTvXiX0vEab5WtBmZufmF4qLpaXlldU1fX2jkUQpd1ndjfyItxw7Yb4XsrrwhM9aMWd24Pis6VydynjzmvHEi8ILMYpZN7CHoTfwXFsQ1dO3Ok7k95NRQEvWcWyetcbjnl42K6YaxjSwclBGPmqR/oIO+ojgIkUAhhCCsA8bCX1tWDARE9dFRhwn5Kk4wxgl0qaUxSjDJvaK5iHt2jkb0l56Jkrt0ik+/ZyUBnZJE1EeJyxPM1Q8Vc6S/c07U57ybiNandwrIFbgkti/dJPM/+pkLQIDHKsaPKopVoyszs1dUvUq8ubGl6oEOcTESdynOCfsKuXknQ2lSVTt8m1tFX9TmZKVezfPTfEub0kNtn62cxo09ivWYcU6PyhXT/JWF7GNHexRP49QxRlqqJP3DR7xhGetrd1qd9r9Z6pWyDWb+Da0hw8CAJhm</latexit>

X̄

[DMASK]

code

Figure 2: Overview of GraphMAE2 framework. For large-scale graphs, we frst run local clustering to produce local clusters for each
node as the preprocessing step. During the pre-training, GraphMAE2 corrupts the graph by masking input node features with a mask token
[MASK] and then feeds the result to a GNN encoder to generate the code. The decoding involves two objectives: 1) we generate multiple
corrupted codes by randomly re-masking the code several times, and they are all forced to reconstruct input features after GNN decoding. 2)
we use an MLP as the decoder to predict latent target representations, which are produced by a target generator with the unmasked graph.
As a comparison, GraphMAE is trained through input feature reconstruction only with a fxed re-mask decoding strategy.

form of more general denoising autoencoders, it removes a portion
of data in the graph, e.g., node features or links, with the masking
operation and learns to predict the masked content. And it has
been demonstrated that reconstructing masked node features as
the only pretext task could generate promising performance. In this
work, we follow the paradigm of masked feature reconstruction
and aim to further boost the performance by resolving the potential
concerns in existing works.

Formally, we uniformly sample a subset of nodes Ve ⊂ V without
replacement and replace their feature with a mask token [MASK],
i.e. a learnable vector � [�] ∈ R���

. And sampling with a relatively
large mask ratio (e.g., 50%) helps eliminate redundancy in graphs
and beneft performance. The features e�� for node �� ∈ V in the
corrupted feature matrix �e can be represented as:(e e =

� [�] �� ∈ V
��

�� �� ∉ Ve eThen the corrupted graph (�, �) is fed into the encoder �� to gen-

erate representations � . And the decoder �� decodes the predicted
masked features � from � . The training objective is to match the
predicted � with the original features � with a designated criterion,
such as (scaled) cosine error.

Problems in masked feature reconstruction. Despite the excel-
lent performance, there exists potential concern for masked node
feature reconstruction due to the inaccurate semantics of node
features. A recent study [8] shows that the performance of GNNs
on downstream tasks can be signifcantly afected by the distin-

guishability of node features. In masked feature reconstruction,
less discriminative reconstruction targets might cause misleading
and harm the learning. To verify this assumption, we conduct pilot
experiments by comparing the results using original features with
less discriminative features. To induce information loss on features,
we compress the features by mapping the original features to low
dimensional space, i.e., 50 dimensions, using PCA. Table 1 shows the
results. We observe that the performance of GraphMAE degrades

more signifcantly than the supervised counterpart when using the
compressed features. The results indicate that the performance of
learning through input feature reconstruction tends to be more
vulnerable to the discriminability of the features.

In CV and NLP, where the philosophy of masked prediction
has groundbreaking practices, their inputs are exact descriptions
of data without loss of semantic information, e.g., pixels for im-

ages and words for texts. However, the input � of graphs could
inevitably and intrinsically contain unexpected noises since they
processed products from various raw data, e.g., texts or hand-crafted
features. The input � is and generated by various feature extrac-
tors. For example, the node features of Cora [49] are bag-of-words
vectors, ogbn-Arxiv [20] averages word embeddings of word2vec,
and MAG240M [19] are from pretrained language model. Their
discriminability is constrained to the expressiveness of the feature
generator and could inherit the substantial noise in the generator.
In masked feature reconstruction, the objective of recovering less
discriminative node features can guide the model to ft inaccurate
targets and unexpected noises, bringing potential negative efects.

2.2 The GraphMAE2 Framework
We present GraphMAE2 to overcome the aforementioned issue. It
follows the masked prediction paradigm and further incorporates
regularization to the decoding stage to improve efectiveness.

To improve feature reconstruction, we propose to randomly re-
mask the encoded representations multiple times and force the
decoder to reconstruct input features from the corrupted repre-
sentations. Then to minimize the direct efects of input features,
we also enforce the model to predict representations of masked
nodes in the embedding space beyond the input feature space. Both
strategies serve as regularization to avoid the model over-ftting
to the input features. Moreover, we extend GraphMAE2 to large
graphs and propose to sample densely-connected subgraphs to
accommodate with GraphMAE2’s training, The overall framework
of GraphMAE2 is illustrated in Figure 2.

739

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Multi-view random re-mask decoding. From the perspective of
input feature reconstruction, we introduce randomness in the de-
coding and require the decoder to restore the input � from diferent
and partially observed embeddings.

The decoder maps the latent code � to the input feature space to
reconstruct � for optimization. GraphMAE [18] shows that using a
GNN as the decoder achieves better performance than using MLP,
and the GNN decoder helps the encoder learn high-level latent
code when recovering the high-dimension and low-semantic fea-
tures. The main diference is that GNN involves propagation and
recovers the input relying on neighborhood information. Based on
this characteristic of the GNN decoder, instead of the fxed re-mask
decoding used in GraphMAE, we propose a multi-view random
re-mask decoding strategy. It randomly re-masks the encoded repre-
sentation before they are fed into the decoder, which resembles the
random propagation in semi-supervised learning [10]. Formally,
we resample a subset of nodes V ⊂ V following a uniform distri-
bution. V is diferent from the input masked nodes V and nodes e

are equally selected for re-masking regardless of whether they are
masked before. Then corrupted representation matrix �e is built
from � by replacing the �� of node �� ∈ V with another shared
mask token [DMASK], i.e., a learnable vector � [�] ∈ R�

: (
� [�] �� ∈ Ve�� =
�� �� ∉ V

Then the decoder would reconstruct the input � from the corrupted e� . The procedure is repeated several times to generate � diferent
(�)

re-masked nodes sets {V }1,...,� and corresponding corrupted
representations {�e (�)}1,...,� . Each view contains diferent informa-

tion after re-masking, and they are all enforced to reconstruct input
node features. The randomness of decoding serves as regularization
preventing the network from memorizing unexpected patterns in
the input � , and thus the training would be less sensitive to the
disturbance in the input feature. Finally, we employ the scaled co-
sine error [18] to measure the reconstruction error and sum over
the errors of the � views for training: ∑ (�)� ∑ �⊤�

L����� =
|V|
1 e

(1 − � �
(�) ∥

)�
(2)

�=1 ∥�� ∥ · ∥� �� ∈Vf �

(�)
where �� is the �-th row of � , � is the �-th row of predicted

� efeature � (�) = �� (�, � (�)), and � >= 1 is the scaled coefcient. In
this work, the decoder �� for feature reconstruction consists of a
light single-layer GAT. Therefore, this strategy is very efcient and
only incurs negligible computational costs.

Latent representation prediction. In line with the mask-then-

predict, the focus of this part is on constructing an additional infor-

mative prediction target that is minimally infuenced by the direct
efects of input features. To achieve this, we propose to perform
the prediction in representation space beyond input feature space.

Considering that the neural networks can essentially serve as
denoising encoders [32] and encode high-level semantics [5, 56],
we propose to employ a network as the target generator to produce
latent prediction targets from the unmasked graph. Formally, we
denote the GNN encoder as �� (·; �) = �� . We also defne a projector

Hou, et al.

�(·; �), corresponding to the decoder �� in input feature recon-

struction, to map the code � to representation space for prediction.
� denotes their learnable weights. The target generator network
shares the same architecture as the encoder and projector but uses a
diferent set of weights, i.e., � ′ (·; �) and � ′ (·; �). During the pretrain-

�
ing, the unmasked graph is frst passed through the target generator
to produce target representation �̄ . Then the encoding results � of
the masked graph G(�, �) are projected to representation space, e

resulting in � ¯ for latent prediction:

¯ ¯� = �(� ; �), � = � ′ (� ′ (�, � ; �); �) (3)�

The encoder and projector network are trained to match the output
of the target generator on masked nodes. Of particular interest,
encouraging the correspondence of unmasked nodes would bring
slight benefts to our framework. This may attribute to the masking
operation implicitly serving as a special type of augmentation. We
learn the parameters � of the encoder and projector by minimizing
the following scaled cosine error with gradient descent.

�
1 ∑ �̄⊤�̄ � L������ = (1 − �)�

(4)

� ∥�̄∥ · ∥�̄ ∥
�

And the parameters of target generator � are updated via an
exponential moving average of � [28] using weight decay � :

� ← �� + (1 − �)� (5)

The target generator shares similarities with the teacher network
in self-knowledge distillation [5, 56] or contrastive methods [12].
But there exist diferences in both the motivation and implemen-

tation: GraphMAE2 aims to direct the prediction of masked nodes
with output from the unmasked graph as the target. In contrast,
knowledge-distillation and contrastive methods target maximizing
the consistency of two augmented views. The characteristic is that
our method does not rely on any elaborate data augmentations and
thus has no worry about whether the augmentations would alter
the semantics in particular graphs.

Training and inference. The overall training fow of GraphMAE2
is summarized in Figure 2. Given a graph, the original graph is
passed through the target generator to generate the latent target
�̄ . Then we randomly mask the features of a certain portion of
nodes and feed the masked graph with partially observed features
into the encoder �� (�, � ; �) to generate the code � . Next, the ˜

decoding consists of two streams. On the one hand, we apply the
multi-view random re-masking to replace re-masked nodes in �
with [DMASK] token, and the results are fed into the decoder ��
to reconstruct the input � . On the other hand, another decoder � is
adapted to predict the latent target �̄ . We combine the two losses
with a mixing coefcient � during training:

L = L����� + �L������ (6)

Note that the time and space complexity of GraphMAE2 is linear
with the number of nodes � , and thus it can scale to extremely
large graphs. When applying to downstream tasks, the decoder and
target generator are discarded, and only the GNN encoder is used
to generating embeddings or fnetuned for downstream tasks.

Extending to large-scale graph Extending self-supervised learn-

ing to large-scale graphs is of great practical signifcance, yet few
eforts have been devoted to this scenario. Existing graph SSL works

740

300

WWW ’23, April 30–May 04, 2023, Austin, TX, USA GraphMAE2: A Decoding-Enhanced Masked Self-Supervised Graph Learner

focus more on small graphs, and current works [13, 39] concern-

ing large graphs simply conduct experiments based on existing
graph sampling developed under the supervised setting, e.g., neigh-

borhood sampling [13] or ClusterGCN [7]. Though it is a feasible
implementation, there exist several challenges that may afect the
performance under the self-supervised setting:

(1) Self-supervised learning generally benefts from relatively larger
model capacity, i.e., wider and deeper networks, whereas GNNs
sufer from the notorious problem of over-smoothing and over-
squashing when stacking more layers [1, 27]. One feasible way
to circumvent the problems is to decouple the receptive feld
and depth of GNN by extracting a local subgraph [52].

(2) In the context of masked feature prediction, GraphMAE2 has a
preference for a well-connected local structure since each node
would rely on aggregating messages of its neighboring nodes
to generate embedding and reconstruct features.

Most popular sampling methods tend to generate highly sparse
yet wide subgraphs as regularization in supervised setting [53, 60],
or only bear shallow GNNs in inference [7, 13]. In light of these
defects, we imitate the idea from [52] and are motivated to con-

struct densely connected subgraphs for GraphMAE2 to tackle the
scalability on large-scale graphs. Thus, we utilize local cluster-

ing [2, 36] algorithms to seek local and dense subgraphs. Local
clustering aims to fnd a small cluster near a given seed in the large
graph. And it has been proven to be very useful for identifying
structures at small-scale or meso-scale [23, 26]. Though many lo-
cal clustering algorithms have been developed, we leverage the
popular spectral-based PPR-Nibble [2] for efcient implementa-

tion. PPR-Nibble adopts the personalized PageRank (PPR) vector
�� , which refects the signifcance of all nodes V in the graph for
the node �� , to generate a local cluster for a given node �� . Previous
works [50, 59] provide a theoretical guarantee for the quality of the
generated local cluster of PPR-Nibble. The theorem in [50, 59] (de-
scribed in Appendix A.1) indicates that the algorithm can generate
local clusters of a relatively small conductance, which meets our
expectations for densely connected local subgraphs. In our work,
we select the �-largest elements in �� to form a local cluster for
node �� for computational efciency.

The PPR-Nibble can be implemented efciently through fast
approximation, and the computational complexity is linear with
the number of nodes. One by-product is that this strategy decreases
the discrepancy between training and inference since they are both
conducted on the extracted subgraphs. In GraphMAE2, the self-
supervised learning is conducted upon all nodes within a cluster.
In downstream fnetuning or inference, we generate the prediction
or embedding for node �� using the local cluster induced by �� .

3 EXPERIMENTS
In this section, we compare our proposed self-supervised frame-

work with state-of-the-art methods in the setting of unsupervised
representation learning and semi-supervised node classifcation. In
this work, we focus on the node classifcation task, which aims to
predict unlabeled nodes. Note that GraphMAE2 is a general SSL
method and can be applied to various graph learning tasks.

Table 2: Statistics of datasets.

Datasets

Cora
Citeseer
Pubmed

ogbn-Arxiv
ogbn-Products
MAG-Scholar-F
ogbn-Papers100M

#Nodes #Edges #Features

2,485 5,069 1,433
2,110 3,668 3,703

19,717 44,324

169,343 1,166,243 128
2,449,029 61,859,140 100

12,403,930 358,010,024 128
111,059,956 1,615,685,872 128

Table 3: Linear probing results on large-scale datasets with
mini-batch training. We report accuracy(%) for all datasets.
Random-Init represents a random-initialized model without any
self-supervised pretraining.

MLP
SGC

Random-Init

CCA-SSG
GRACE
BGRL
GGD

1

GraphMAE

GraphMAE2

Arxiv Products MAG Papers100M

55.50±0.23 61.06±0.08 39.11±0.21 47.24±0.31

66.92±0.08 74.87±0.25 54.68±0.23 63.29±0.19

68.14±0.02 74.04±0.06 56.57±0.03 61.55±0.12

68.57±0.02 75.27±0.05 51.55±0.03 55.67±0.15

69.34±0.01 79.47±0.59 57.39±0.02 61.21±0.12

70.51±0.03 78.59±0.02 57.57±0.01 62.18±0.15

- 75.70±0.40 - 63.50±0.50

71.03±0.02 78.89±0.01 58.75±0.03 62.54±0.09

71.89±0.03 81.59±0.02 59.24±0.01 64.89±0.04

1
The source code of GGD is not released and its results on Arxiv and MAG-Scholar-F

are not reported in the paper.

3.1 Evaluating on Large-scale Datasets
Datasets. The experiments are conducted on four public datasets
of diferent scales, varying from hundreds of thousands of nodes
to hundreds of millions. The statistics are listed in Table 2. In
the experiments, we follow the ofcial splits in [20] for ogbn-

Arxiv/Products/Papers100M. As for MAG-Scholar-F, we randomly
select 5%/5%/40% nodes for training/validation/test, respectively.

For ogbn-Products [20] and MAG-Scholar-F [3], their node fea-
tures are generated by frst extracting bag-of-words vectors from the
product descriptions or paper abstracts and then conducting Prin-

cipal Component Analysis (PCA) to reduce the dimension. ogbn-

Arxiv and ogbn-Papers100M [20] are both citation networks, and
they leverage word2vec model to obtain node features by averaging
the embeddings of words in the paper’s title and abstract.

Baselines. We compare GraphMAE2 with state-of-the-art self-
supervised graph learning methods, including contrastive meth-

ods, GRACE [57], BGRL [39], CCA-SSG [54], and GGD [55] as
well as a generative method GraphMAE [18]. Other methods are
not compared because they are not scalable to large graphs, e.g.,
MVGRL [14], or the source code has not been released, e.g., In-

foGCL [48]. As stated in [40], random models can have a strong
inductive bias on graphs and are non-trivial baselines. Therefore,
we also report the results of the randomly-initialized GNN model
and Simplifed Graph Convolution (SGC) [46], which simply stacks

741

https://64.89�0.04
https://59.24�0.01
https://81.59�0.02
https://71.89�0.03
https://62.54�0.09
https://58.75�0.03
https://78.89�0.01
https://71.03�0.02
https://63.50�0.50
https://75.70�0.40
https://62.18�0.15
https://57.57�0.01
https://78.59�0.02
https://70.51�0.03
https://61.21�0.12
https://57.39�0.02
https://79.47�0.59
https://69.34�0.01
https://55.67�0.15
https://51.55�0.03
https://75.27�0.05
https://68.57�0.02

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Hou, et al.

Table 4: Results of fne-tuning the pretrained GNN with 1% and 5% labeled training data on large-scale datasets. We report
accuracy(%) for all datasets. Random-Init represents a random-initialized model without any self-supervised pretraining.

Arxiv Products MAG Papers100M

Label ratio 1% 5% 1% 5% 1% 5% 1% 5%

Random-Init��� �� 63.45±0.32 67.67±0.42 72.23±0.44 75.21±0.35 43.55±0.15 51.03±0.13 56.47±0.23 60.63±0.22

CCA-SSG 64.14±0.21 68.32±0.32 75.89±0.43 78.47±0.42 42.62±0.15 51.32±0.11 55.68±0.24 59.78±0.08

GRACE 64.53±0.47 69.21±0.45 77.13±0.64 79.67±0.54 43.59±0.13 51.35±0.12 55.45±0.23 59.38±0.15

BGRL 65.05±1.17 69.01±0.34 76.32±0.54 79.46±0.43 43.92±0.11 51.69±0.15 55.12±0.23 60.40±0.54

Random-Init��
GraphMAE
GraphMAE2

64.79±0.45

65.78±0.69

66.86±0.53

67.89±0.27

69.78±0.26

70.16±0.28

71.87±0.34

75.87±0.43

76.98±0.36

74.42±0.43

79.21±0.33

80.52±0.23

43.66±0.14

48.33±0.18

49.01±0.15

50.86±0.12

53.12±0.12

53.58±0.11

57.48±0.23

58.29±0.15

58.69±0.38

61.41±0.25

62.00±0.12

62.87±0.64

Table 5: Experimental results on small-scale datasets. We
report accuracy(%) for all datasets.

Cora CiteSeer PubMed

GCN
GAT

81.5
83.0±0.7

70.3
72.5±0.7

79.0
79.0±0.3

GAE
DGI

MVGRL
GRACE
BGRL

InfoGCL
CCA-SSG

GGD
GraphMAE

71.5±0.4

82.3±0.6

83.5±0.4

81.9±0.4

82.7±0.6

83.5±0.3

84.0±0.4

83.9±0.4

84.2±0.4

65.8±0.4

71.8±0.7

73.3±0.5

71.2±0.5

71.1±0.8

73.5±0.4

73.1±0.3

73.0±0.6

73.4±0.4

72.1±0.5

76.8±0.6

80.1±0.7

80.6±0.4

79.6±0.5

79.1±0.2

81.0±0.4

81.3±0.8

81.1±0.4

GraphMAE2 84.5±0.6 73.4±0.3 81.4±0.5

the propagated features of diferent orders, to examine whether the
SSL learns a more efective propagation paradigm. Comparing with
them can refect the contributions of self-supervised learning. To
extend to large graphs for baselines, we adopt GraphSAINT [53]
sampling strategy, which is proved to perform better than widely-

adopted Neighborhood Sampling [13] in many cases. GraphMAE
and GraphMAE2 are trained based on the presented local clustering
algorithm. For all baselines, we employ Graph Attention Network
(GAT) [41] as the backbone of the encoder �� and the decoder for
input feature reconstruction �� .

Evaluation. We evaluate our approach with two setups: (i) linear
probing and (ii) fne-tuning. For linear probing, we frst generate
node embeddings with the pretrained encoder. Then we discard the
encoder and train a linear classifer using the embeddings under
the supervised setting. For fne-tuning, we add a linear classifer
on top of node representations and fne-tune all parameters under
the semi-supervised setting. We randomly sample 1% and 5% labels
from the training set to fnetune the pretrained model, aiming to
test the ability to transfer knowledge learned from unlabeled data
to facilitate the downstream performance with a few labels. For
both cases, we run the experiments for 10 trials with random seeds
and report the average accuracy and standard variance.

Results. The results of linear probing are illustrated in Table 3. And
we interpret the result from 3 aspects. First, GraphMAE2 achieves
better results than all self-supervised baselines across all datasets.
This manifests that the proposed method can learn more discrim-

inative representations under the unsupervised setting. Notably,
GraphMAE2 improves upon GraphMAE by a margin of 1.91% and
2.35% (absolute diference) on MAG-Scholar-F and Papers100M.
These results demonstrate the signifcance of the proposed im-

provement. Second, our approach, together with most baselines,
outperforms the randomly initialized, untrained model by a large
margin. This demonstrates that the designed self-supervised pretext
task guides the model to better capture the semantic and structural
information than the untrained model. As a comparison, improper
self-supervised signals can lead the model to perform even worse,
yet this phenomenon is ignored in most previous studies. Third,
GraphMAE2 consistently generates better performance than SGC.
Despite the fact that methods based on decoupled propagation have
achieved promising results in the full-supervised setting with the
assistance of self-training, we demonstrate that graph neural net-

works, like GAT, could still be more powerful at generating node
representations in the unsupervised setting.

Table 4 shows the results of fnetuning the pretrained model in
the semi-supervised setting. On the one hand, it is observed that
self-supervised pretraining of GraphMAE2 benefts downstream
supervised training with signifcant performance gains. In ogbn-

Products, with the pre-trained model, the performance achieves
improvement by above 5.1%. And fnetuning with only 5% of data
generates comparative performance (80.52%) to many supervised
learning methods in OGB leaderboard2

with all 100% of training
data, e.g., GraphSAINT: 80.27, Cluster-GAT: 79.23%. On the other
hand, our approach remarkably achieves state-of-the-art perfor-

mance for all benchmarks. The only exception is on the Products
dataset with 1% training data, where GraphMAE2 slightly underper-

forms GRACE yet still achieves the second-best result. It should be
noted that in ogbn-Papers100M, only GraphMAE2 and GraphMAE
generate better performance than the random-initialized model,
while all contrastive baselines fail to bring improvement with pre-
training. One possible reason is that the data augmentation tech-

niques used in baselines fail in this dataset.

2
https://ogb.stanford.edu/docs/leader_nodeprop/

742

https://ogb.stanford.edu/docs/leader_nodeprop/

GraphMAE2: A Decoding-Enhanced Masked Self-Supervised Graph Learner

Table 6: Ablation studies of GraphMAE2 key components.

Products MAG Papers100M

GraphMAE2
w/o random remask
w/o latent rep pred.
w/o input recon.

GraphMAE

81.59±0.02

81.04±0.03

80.01±0.02

76.88±0.02

78.89±0.01

59.24±0.01

59.01±0.02

58.87±0.02

55.20±0.02

58.75±0.03

64.89±0.04

64.16±0.02

62.98±0.01

59.20±0.00

62.54±0.09

Table 7: Ablation study on sampling strategy. “SAINT” refers
to GraphSAINT, “Cluster” refers to Cluster-GCN, and “LC” refers
the presented local clustering algorithm.

Strategy Products MAG Papers100M

GRACE
BGRL

SAINT
SAINT

79.47±0.59

78.59±0.02

57.39±0.02

57.57±0.01

61.21±0.12

62.18±0.15

GraphMAE2
GraphMAE2
GraphMAE2

SAINT
Cluster
LC

80.96±0.03

79.35±0.05

81.59±0.02

58.75±0.03

58.05±0.02

59.24±0.01

64.21±0.11

63.77±0.11

64.89±0.12

3.2 Evaluating on Small-scale Datasets
Experimental setup. We also report results on small yet widely
adopted datasets, i.e., Cora, Citeseer, and PubMed [49], to show the
generality of our method. We follow the public data splits as [14, 42].

We compare GraphMAE2 with state-of-the-art self-supervised
graph learning methods, including contrastive methods, DGI [42],
MVGRL [14], GRACE [57], BGRL [39], InfoGCL [48], CCA-SSG [54],
and GGD [55] as well as generative methods GAE [24], Graph-

MAE [18]. For the evaluation, we employ the linear probing men-

tioned above and report the average performance of accuracy on
the test nodes based on 20 random initialization. The GNN encoder
and decoder both use standard GAT as the backbone, and an MLP
is employed as the representation projector �.

Results. From Table 5, we can observe that our approach gen-

erally outperforms all baselines in all datasets, suggesting that
GraphMAE2 serves as a general and efective framework for graph
self-supervised learning on graphs of varied scales. We observe that
the improvement over GraphMAE is not as signifcant as that in the
experiments of large graphs. We guess that the reason lies in the
construction of input node features. Bag-of-word vectors behave
more like discrete features as words in text and pixels image and,
thus are less noisy as reconstruction targets. And this may partially
support our assumption that GraphMAE2 is more advantageous
than GraphMAE when there is more noise in the data.

3.3 Ablation Studies
We further conduct ablation studies to verify the contributions of
the designs in GraphMAE2. We choose linear probing for evalua-

tion.

Ablation on the learning framework. We study the infuence of
the proposed two strategies—latent representation prediction and
multi-view random re-masking. The results are shown in Table 6

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

, where the “w/o random re-mask” represents that we adopt the
fxed re-masking strategy as GraphMAE. It is observed that the
two strategies both contribute to performance improvement. This
demonstrates the efectiveness and further supports our motivation
for the efects of input feature quality. Latent representation pre-
diction brings more benefts as the accuracy drops more when the
component is removed, e.g., -1.58% in ogbn-Products and -1.91% in
ogbn-Papers100M, than the multi-view random re-masking, e.g.,
-0.45% and -0.73%. The target generator network provides valuable
guidance and constraints on the encoded representation.

We also conduct an experiment by totally removing the input
feature reconstruction, and the training only involves latent repre-
sentation prediction. In such cases, the learning degrades to self-
knowledge distillation without heavy data augmentation and causes
a signifcant drop in performance. The network may fall into a triv-
ial solution and may learn collapsed representation as the results are
worse than GraphMAE or even worse than the random-initialized
model in MAG-Scholar-F and ogbn-Papers100M. This indicates that
feature reconstruction substantially supports SSL, and the proposed
two strategies serve as auxiliaries to help overcome the defciency.
Overall speaking, the results confrm that the superior performance
of GraphMAE2 comes from the design rather than any individual
contribution.

Ablation on sampling strategies. Table 7 shows the infuence of
diferent sampling strategies. We compare local clustering against
two popular subgraph sampling algorithms–ClusterGCN [7] and
GraphSAINT [53]. Neighborhood sampling is not included since
it is not friendly to masked feature reconstruction, especially with
GNN decoder. The local clustering is conducive to the excellent
performance of GraphMAE2, as our algorithm shows an advan-

tage over GraphSAINT and Cluster-GCN with 0.57% and 1.49%
improvement on average. Recall that GraphSAINT tends to sample
nodes globally, and thus the subgraph is more sparse. Although
ClusterGCN generates large and connected partitions, it sufers
from high information loss as edges between clusters are aban-

doned. And the results indicate that the densely-connected local
subgraph produced can generate better representations. In addition,
we compare our approach with the strongest baselines using the
same sampling strategy. And GraphMAE2 still generates a 1.49%
advantage in ogbn-Products, demonstrating its efectiveness.

Ablation on model capacity. The efects of model capacity have
attracted signifcant attention in other felds like CV [15] and
NLP [4] as it is demonstrated that SSL can largely beneft from
increasing model parameters. We take an interest in whether the
scaling law of model capacity also applies to GNNs. Specifcally, we
employ a GAT as the encoder and explore the infuence of depth
and width. And experiments are conducted on ogbn-Products of
around 2 million nodes. The results are shown in Figure 3. Increas-

ing the hidden size drives the model to achieve better performance.
Doubling the hidden size leads to a performance improvement of
nearly 2% in accuracy when the hidden size does not exceed 1024.
But further enlarging the width only brings very marginal gain.

Another way to increase the capacity is to stack more network
layers. Figure 3 shows that increasing the depth can slightly boost
the performance as the accuracy increases by 0.65% when the num-

ber of network layers is increased from 2 to 4. And the benefts

743

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Hou, et al.

128 256 512 1024 2048
hidden size

75

78

81

75.88
77.01

79.21

81.59 81.66
Products

2 3 4 6 8
num_layer

81.0

81.3

81.6

80.94

81.4
81.59

81.45 81.47Products

Figure 3: Ablation study on hidden size and the number of
GNN layers. The efects of width are more signifcant than depth.

would diminish when stacking more layers. One possible reason
is that deeper GNNs are harder to optimize, while current down-

stream tasks or semantics of homogeneous structured data beneft
little from more complex network architecture. It is observed that
the infuence of the depth is less remarkable than the width of GNN.

4 RELATED WORK
In this section, we introduce related works about graph self-supervised
learning and scalable graph neural networks.

4.1 Graph Self-Supervised Learning
Graph self-supervised learning (SSL) can be roughly categorized
into two genres, including graph contrastive learning and graph
generative learning, based on the learning paradigm.

Contrastive methods. Contrastive learning is an important way to
learn representations in a self-supervised manner and has achieved
successful practices in graph learning [14, 29, 35, 37, 42, 51, 55].
DGI [42] and InfoGraph [37] adopt the local-global mutual infor-

mation maximization to learn node-level and graph-level repre-
sentations. MVGRL [14] leverages graph difusion to generate an
additional view of the graph and contrasts node-graph representa-

tions of distinct views. GCC [35] utilizes subgraph-based instance
discrimination and adopts InfoNCE as the pre-training objective
with MoCo-style dictionary [16]. GRACE [57], GraphCL [51], and
GCA [58] learn the node or graph representation by maximizing
agreement between diferent augmentations. GGD [55] analyzes
the defect of existing contrastive methods (i.e., improper usage of
Sigmoid function) and proposes a group discrimination paradigm.

To avoid the expensive computation of negative samples, some
researchers propose graph SSL methods that do not require negative
samples. BGRL [39] uses an online encoder and a target encoder to
contrast two augmented versions without negative samples. CCA-

SSG [54] leverages a feature-level objective for graph SSL, inspired
by Canonical Correlation Analysis methods.

Most graph contrastive learning methods rely on complex graph
augmentation operators to generate two diferent views, which
are used to be contrasted or correlated. However, the theoretical
understanding of augmentation techniques on the graph SSL has
not been well-studied. The choice of graph augmentation operators

mostly depends on the empirical analysis of researchers. Although
some works [44, 47] have made attempts to alleviate this reliance,
it still remains further exploration.

Generative methods. Graph autoencoders (GAE) and VGAE [24]
follow the spirit of autoencoder [17] to learn node representations.
Following VGAE, most GAEs focus on reconstructing the struc-

tural information (e.g., ARVGA [33]) or adopt the reconstruction
objective of both structural information and node attributes (e.g.,
MGAE [43], GALA [34]). NWR-GAE [38] designs a graph decoder to
reconstruct the entire neighborhood information of graph structure.
kgTransformer [31] applies the masked GAE to knowledge graph
reasoning. However, these previous GAE models do not perform
well on node-level and graph-level classifcation tasks. To mitigate
the performance gap, GraphMAE [18] leverages masked feature
reconstruction as the objective with auxiliary designs and obtains
comparable or better performance than contrastive methods. In
addition to graph autoencoders, inspired by the success of autore-

gressive models in natural language processing, GPT-GNN [22]
designs an attributed graph generation task, including attribute and
edge generation, for pre-training GNN models. Generative methods
can alleviate the defciency of contrastive rivals since the objective
of generative ones is to directly reconstruct the input graph data.

4.2 Scalable Graph Neural Networks
There are two genres of methods for scalable GNNs. One is based
on sampling that trains GNN models on sampled mini-batch data.
GraphSAGE [13] adopts the neighbor sampling method to con-

duct the mini-batch training. FastGCN [6] performs layer-wise
sampling and leverages importance sampling to reduce variance.
GraphSAINT [53] and ClusterGCN [7] both produce a subgraph
from the original graph for mini-batch training by graph parti-
tion or random walks. Another paradigm for scalable GNNs is
to decouple the message propagation and feature transformation.
SGC [46] removes the nonlinear functions and is equivalent to a
pre-processing K-step propagation and a logistic regression on the
propagated features. SIGN [11] extends SGC to stack the propa-
gated results of diferent hops and graph flters, and then only trains
MLPs for applications. These decoupled methods achieve excellent
performance in the supervised setting but have no advantage in
generating high-quality embeddings.

5 CONCLUSION
In this work, we explore graph self-supervised learning with masked
feature prediction. We frst examine its potential concern that
the discriminability of input features hinders current attempts to
achieve promising performance. Then we present a framework
GraphMAE2 to address this issue by imposing regularization on
the prediction. We focus on the decoding stage and introduce latent
representation target and randomness to input reconstruction. The
novel decoding strategy signifcantly boosts the performance in
realistic large-scale benchmarks. Our work further supports that
node-level signals could provide abundant supervision for masked
graph self-supervised learning and deserves further exploration.

Acknowledgements. This research was supported by Natural Sci-
ence Foundation of China(NSFC) 61825602 and 62276148, Tsinghua-

Bosch Joint ML Center, and Zhipu.AI.

744

https://Zhipu.AI

GraphMAE2: A Decoding-Enhanced Masked Self-Supervised Graph Learner WWW ’23, April 30–May 04, 2023, Austin, TX, USA

REFERENCES
[1] Uri Alon and Eran Yahav. 2020. On the bottleneck of graph neural networks and

its practical implications. arXiv preprint arXiv:2006.05205 (2020).
[2] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning using

pagerank vectors. In FOCS. IEEE, 475–486.
[3] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin

Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.
Scaling graph neural networks with approximate pagerank. In KDD. 2464–2473.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. In NeurIPS, Vol. 33.

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. 2021. Emerging properties in self-supervised
vision transformers. In ICCV. 9650–9660.

[6] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with graph
convolutional networks via importance sampling. In ICLR.

[7] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efcient algorithm for training deep and large graph
convolutional networks. In KDD. 257–266.

[8] Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Ol-

gica Milenkovic, and Inderjit S Dhillon. 2022. Node Feature Extraction by Self-
Supervised Multi-scale Neighborhood Prediction. In ICLR.

[9] Ganqu Cui, Jie Zhou, Cheng Yang, and Zhiyuan Liu. 2020. Adaptive graph encoder
for attributed graph embedding. In KDD. 976–985.

[10] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang
Yang, Evgeny Kharlamov, and Jie Tang. 2020. Graph random neural networks
for semi-supervised learning on graphs. In NeurIPS.

[11] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael
Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural
networks. arXiv preprint arXiv:2004.11198 (2020).

[12] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-

han Daniel Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own
latent: A new approach to self-supervised learning. In NeurIPS.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS.

[14] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view
representation learning on graphs. In ICML.

[15] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
2022. Masked autoencoders are scalable vision learners. In CVPR.

[16] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-

mentum contrast for unsupervised visual representation learning. In CVPR.
[17] Geofrey E Hinton and Richard Zemel. 1993. Autoencoders, Minimum Descrip-

tion Length and Helmholtz Free Energy. In NeurIPS, J. Cowan, G. Tesauro, and
J. Alspector (Eds.), Vol. 6. Morgan-Kaufmann.

[18] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang,
and Jie Tang. 2022. GraphMAE: Self-Supervised Masked Graph Autoencoders. In
KDD.

[19] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure
Leskovec. 2021. Ogb-lsc: A large-scale challenge for machine learning on graphs.
arXiv preprint arXiv:2103.09430 (2021).

[20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. In NeurIPS.

[21] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2019. Strategies for pre-training graph neural networks. In
ICLR.

[22] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
Gpt-gnn: Generative pre-training of graph neural networks. In KDD.

[23] Lucas GS Jeub, Prakash Balachandran, Mason A Porter, Peter J Mucha, and
Michael W Mahoney. 2015. Think locally, act locally: Detection of small, medium-

sized, and large communities in large networks. Physical Review E 91, 1 (2015).
[24] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv

preprint arXiv:1611.07308 (2016).
[25] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classifcation with

Graph Convolutional Networks. In ICLR.
[26] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.

Community structure in large networks: Natural cluster sizes and the absence of
large well-defned clusters. Internet Mathematics 6, 1 (2009), 29–123.

[27] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. Deepgcns:
Can gcns go as deep as cnns?. In ICCV. 9267–9276.

[28] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[29] Xiao Liu, Haoyun Hong, Xinghao Wang, Zeyi Chen, Evgeny Kharlamov, Yuxiao
Dong, and Jie Tang. 2022. Selfkg: self-supervised entity alignment in knowledge
graphs. In WWW. 860–870.

[30] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and
Jie Tang. 2021. Self-supervised learning: Generative or contrastive. TKDE (2021).

[31] Xiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang, Wei Wu,
Yuxiao Dong, and Jie Tang. 2022. Mask and Reason: Pre-Training Knowledge
Graph Transformers for Complex Logical Queries. In KDD. 1120–1130.

[32] Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. 2021. A
unifed view on graph neural networks as graph signal denoising. In CIKM.

[33] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.
2018. Adversarially regularized graph autoencoder for graph embedding. In
IJCAI.

[34] Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young
Choi. 2019. Symmetric graph convolutional autoencoder for unsupervised graph
representation learning. In ICCV. 6519–6528.

[35] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph
neural network pre-training. In SIGKDD.

[36] Daniel A Spielman and Shang-Hua Teng. 2013. A local clustering algorithm for
massive graphs and its application to nearly linear time graph partitioning. SIAM
Journal on computing 42, 1 (2013), 1–26.

[37] Fan-Yun Sun, Jordan Hofmann, Vikas Verma, and Jian Tang. 2020. Infograph: Un-

supervised and semi-supervised graph-level representation learning via mutual
information maximization. In ICLR’20.

[38] Mingyue Tang, Carl Yang, and Pan Li. 2022. Graph Auto-Encoder via Neighbor-

hood Wasserstein Reconstruction. arXiv preprint arXiv:2202.09025 (2022).
[39] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos,

Petar Veličković, and Michal Valko. 2022. Large-Scale Representation Learning
on Graphs via Bootstrapping. In ICLR.

[40] Puja Trivedi, Ekdeep Singh Lubana, Yujun Yan, Yaoqing Yang, and Danai Koutra.
2022. Augmentations in graph contrastive learning: Current methodological
faws & towards better practices. In WWW. 1538–1549.

[41] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[42] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2018. Deep Graph Infomax. In ICLR.

[43] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. 2017.
Mgae: Marginalized graph autoencoder for graph clustering. In CIKM. 889–898.

[44] Haonan Wang, Jieyu Zhang, Qi Zhu, and Wei Huang. 2022. Augmentation-Free
Graph Contrastive Learning. In AAAI.

[45] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph
Feichtenhofer. 2022. Masked feature prediction for self-supervised visual pre-
training. In CVPR. 14668–14678.

[46] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In ICML. PMLR.

[47] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. 2022. SimGRACE: A
Simple Framework for Graph Contrastive Learning without Data Augmentation.
In WWW. 1070–1079.

[48] Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang.
2021. Infogcl: Information-aware graph contrastive learning. NeurIPS 34 (2021).

[49] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In ICML. PMLR, 40–48.
[50] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. 2017. Local

higher-order graph clustering. In KDD. 555–564.
[51] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. 2020. Graph contrastive learning with augmentations. In NeurIPS.
[52] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich,

Rajgopal Kannan, Viktor Prasanna, Long Jin, and Ren Chen. 2021. Decoupling
the depth and scope of graph neural networks. In NeurIPS.

[53] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2020. Graphsaint: Graph sampling based inductive learning method.
In ICLR.

[54] Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. 2021.
From canonical correlation analysis to self-supervised graph neural networks. In
NeurIPS.

[55] Yizhen Zheng, Shirui Pan, Vincent Cs Lee, Yu Zheng, and Philip S Yu. 2022.
Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efcient
Approach with Group Discrimination. In NeurIPS.

[56] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and
Tao Kong. 2022. ibot: Image bert pre-training with online tokenizer. In ICLR.

[57] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

[58] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.
Graph contrastive learning with adaptive augmentation. In WWW. 2069–2080.

[59] Zeyuan Allen Zhu, Silvio Lattanzi, and Vahab Mirrokni. 2013. A local algorithm
for fnding well-connected clusters. In ICML. PMLR, 396–404.

[60] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
2019. Layer-dependent importance sampling for training deep and large graph
convolutional networks. In NeurIPS.

745

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

A APPENDIX

A.1 Theorem for Local Clustering.
Theorem A.1 (Theorem 1 in [59]; Theorem 4.3 in [50]). Let

� ⊂ � be some unknown targeted cluster that we are trying to retrieve
from an unweighted graph. Let � be the inverse mixing time of the
random walk on the subgraph induced by � . Then there exists �� ⊆ �
with vol (��) ≥ vol (�)/2, such that for any seed � ∈ �� , PPR-Nibble h i

1 1with � = Θ(�) and � ∈ outputs a set � with
10 vol (�) , 5 vol (�)� n√ o� √

Φ(�) ≤ �e min Φ(�), Φ(�)/ � .

Here, vol (�) ≜
Í
�� ∈S ������ (��) is the graph volume, and Φ(�) ≜Í Í

�� ∈V−S �(�, �)�� ∈S
defnes the conductance of a non-empty

min(vol (S),vol (V−S))
node set S ⊂ V .

A.2 Finetuning Results for Supervised Learning

Table 8: Fine-tuning results of mini-batch training with full
labels. We report accuracy(%) for all datasets.

Arxiv Products MAG. Papers100M

MLP 55.50 61.06 39.11 47.24
SGC 66.92 74.87 54.68 63.29

Random-Init��� �� 71.88 81.15 57.11 66.36
Random-Init�� 71.47 81.59 56.84 66.47

CCA-SSG 72.24 80.61 56.54 66.11
GRACE 72.54 82.45 57.23 66.45
BGRL 72.48 82.37 57.34 66.57

GraphMAE 72.38 81.89 59.77 66.64

GraphMAE2 72.69 83.65 60.01 66.66

Table 8 shows the results of fnetuning the pretrained encoder
with all labels in the training set. It is observed that self-supervised
learning can still lead to improvements in the supervised setting.
GraphMAE2 can bring 1.22%-3.17% improvement compared to the
randomly initialized model on three datasets, i.e., ogbn-Arxiv, Prod-

ucts, and MAG-Scholar-F. The only exception is ogbn-Papers100M,
in which the improvement is only 0.2% in accuray. The reason
could be that the splitting strategy of this dataset (train:val:test =
78%:8%:14%) resulted in an overly well-labeled training set. It is
worth mentioning that on ogbn-Products, our method achieves bet-
ter results than the current best single model in OGB leaderboard3

,
i.e., GAMLP: 83.54%.

A.3 Linear Probing Results on ogbn-Arxiv with
Full-graph Training.

As ogbn-Arxiv dataset is relatively small, we can conduct full batch
training and inference. Table 9 shows the results of GraphMAE2
as well as baselines under full batch training. Compared to Graph-

MAE, GraphMAE2 has a 0.2% improvement. It is worth noting that
GraphMAE results are better when trained with full-batch than

3
https://ogb.stanford.edu/docs/leader_nodeprop/

Hou, et al.

Table 9: Linear probing results on ogbn-Arxiv with full-graph
training. We report accuracy(%).

Arxiv

GCN 71.74±0.29

GAT 72.10±0.13

DGI 70.34±0.16

GRACE 71.51±0.11

BGRL 71.64±0.12

CCA-SSG 71.24±0.20

GraphMAE 71.75±0.17

GraphMAE2 71.95±0.08

with mini-batch, while the mini-batch training results of Graph-

MAE2 are comparable to the full-batch results.

A.4 Implementation Notes
Running Environment. Our proposed framework is implemented
via PyTorch. For our methods, the experiments are conducted on a
Linux machine with 1007G RAM, and 8 NVIDIA A100 with 80GB
GPU memory. As for software versions, we use Python 3.9, PyTorch
1.12.0, OGB 1.3.3, and CUDA 11.3.

Model Confguration. For our model and all baselines, we pretrain
the model using AdamW Optimizer with cosine learning rate decay
without warmup. More details about pre-training hyper-parameters
are in Table 10.

Table 10: Hyper-parameters on large-scale datasets.

Arxiv Products MAG Papers100M

masking rate 0.5 0.5 0.5 0.5
re-masking rate 0.5 0.5 0.5 0.5
num_re-masking 3 3 3 3

coefcient � 10.0 5.0 0.1 10.0
hidden_size 1024 1024 1024 1024
num_layer 4 4 4 4

lr 0.0025 0.002 0.001 0.001
weight_decay 0.06 0.06 0.04 0.05
max epoch 60 20 10 10

A.5 Baselines
For large datasets, we choose four baselines GRACE [57], BGRL [39],
CCA-SSG [54] and GraphMAE [18]. To have a fair comparison, we
download the public source code and use the GAT backbone. We
adapted their code to integrate with sampling algorithms to run on
large-scale graphs. For GGD [55], we can only report the results
available in the original paper since the authors have not released
the code. The sources of the codes used are as follows:

• BRGL: https://github.com/Namkyeong/BGRL_Pytorch
• GRACE: https://github.com/CRIPAC-DIG/GRACE
• CCA-SSG: https://github.com/hengruizhang98/CCA-SSG/
• GraphMAE:https://github.com/THUDM/GraphMAE

746

https://ogb.stanford.edu/docs/leader_nodeprop/
https://github.com/Namkyeong/BGRL_Pytorch
https://github.com/CRIPAC-DIG/GRACE
https://github.com/hengruizhang98/CCA-SSG/
https://github.com/THUDM/GraphMAE
https://71.95�0.08
https://71.75�0.17
https://71.24�0.20
https://71.64�0.12
https://71.51�0.11
https://70.34�0.16
https://72.10�0.13
https://71.74�0.29
https://1.22%-3.17

	Abstract
	1 Introduction
	2 Method
	2.1 Masked Autoencoding on Graphs
	2.2 The GraphMAE2 Framework

	3 Experiments
	3.1 Evaluating on Large-scale Datasets
	3.2 Evaluating on Small-scale Datasets
	3.3 Ablation Studies

	4 Related Work
	4.1 Graph Self-Supervised Learning
	4.2 Scalable Graph Neural Networks

	5 Conclusion
	References
	A Appendix
	A.1 Theorem for Local Clustering.
	A.2 Finetuning Results for Supervised Learning
	A.3 Linear Probing Results on ogbn-Arxiv with Full-graph Training.
	A.4 Implementation Notes
	A.5 Baselines

