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ABSTRACT 
Graph self-supervised learning (SSL), including contrastive and 
generative approaches, ofers great potential to address the funda-

mental challenge of label scarcity in real-world graph data. Among 
both sets of graph SSL techniques, the masked graph autoencoders 
(e.g., GraphMAE)—one type of generative methods—have recently 
produced promising results. The idea behind this is to reconstruct 
the node features (or structures)—that are randomly masked from 
the input—with the autoencoder architecture. However, the per-

formance of masked feature reconstruction naturally relies on the 
discriminability of the input features and is usually vulnerable to 
disturbance in the features. In this paper, we present a masked 
self-supervised learning framework

1 
GraphMAE2 with the goal 

of overcoming this issue. The idea is to impose regularization on 
feature reconstruction for graph SSL. Specifcally, we design the 
strategies of multi-view random re-mask decoding and latent rep-
resentation prediction to regularize the feature reconstruction. The 
multi-view random re-mask decoding is to introduce randomness 
into reconstruction in the feature space, while the latent represen-

tation prediction is to enforce the reconstruction in the embedding 
space. Extensive experiments show that GraphMAE2 can consis-

tently generate top results on various public datasets, including at 
least 2.45% improvements over state-of-the-art baselines on ogbn-

Papers100M with 111M nodes and 1.6B edges. 
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The code is available at: https://github.com/THUDM/GraphMAE2. 
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1 INTRODUCTION 
Graph neural networks (GNNs) have found widespread adoption in 
learning representations for graph-structured data. The success of 
GNNs has thus far mostly occurred in (semi-) supervised settings, in 
which task-specifc labels are used as the supervision information, 
such as GCN [25], GAT [41], and GraphSAGE [13]. However, it is 
often arduously difcult to obtain sufcient labels in real-world 
scenarios, especially for billion-scale graphs [21, 22]. 

One natural solution to this challenge is to perform self-supervised 
learning (SSL) on graphs [30], where graph models (e.g., GNNs) 
are supervised by labels that are automatically constructed from 
the input graph data. Along this line, generative SSL models that 
aim to generate one part of the input graph from another part have 
received extensive exploration [9, 22, 24, 33, 43]. Among all alterna-

tives, the masked graph modeling technique has been demonstrated 
as a powerful strategy of generative SSL on graphs [18, 21, 43]. 
Straightforwardly, it frst corrupts the input graph by masking node 
features or edges and then learns to recover the original input. 

Under the masked prediction framework, a very recent work 
introduces a masked graph autoencoder GraphMAE [18] for gen-

erative SSL on graphs, which yields outperformance over various 
baselines on 21 datasets for diferent tasks. Generally, an autoen-

coder is made up of an encoder, code/embeddings, and a decoder. 
The encoder maps the input to embeddings, and the decoder aims to 
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Figure 1: Linear probing results on ogbn-Products and ogbn-
Papers100M. GraphMAE2 achieves a signifcant advantage over 
previous graph SSL methods on benchmarks with millions of nodes. 

reconstruct the input based on the embeddings under a reconstruc-

tion criterion. The main idea of GraphMAE is to reconstruct the 
input node features that are randomly masked before encoding by 
using an autoencoding architecture. Its technical contribution lies in 
the design of 1) masked feature reconstruction and 2) fxed re-mask 
decoding, wherein the encoded embeddings of previously-masked 
nodes are masked again before feeding into the decoder. 

Despite GraphMAE’s promising performance, the reconstruc-

tion of masked features fundamentally relies on the discriminabil-

ity [8, 45] of the input node features, i.e., the extent to which the 
node features are distinguishable. In practice, the features of nodes 
in a graph are usually generated from data that is associated with 
each node, such as the embeddings of content posted by users 
in a social network, making them an approximate description of 
nodes and thus less discriminative. Note that in vision or language 
studies, the reconstruction targets are usually a natural descrip-
tion of the data, i.e., pixels of an image and words of a document. 
Table 1 further shows that the performance of GraphMAE drops 
more signifcantly than the supervised counterpart when using 
less discriminative node features (w/ PCA). In other words, Graph-

MAE, as a generative SSL framework with feature reconstruction, 
is relatively more vulnerable to the disturbance of features. 

In this work, we present GraphMAE2 with the goal of improving 
feature reconstruction for graph SSL. The idea is to impose regular-

ization on target reconstruction. To achieve this, we introduce two 
decoding strategies: multi-view random re-mask decoding for reduc-

ing the overftting to the input features, and latent representation 
prediction for having more informative targets. 

First, instead of fxed re-mask decoding used in GraphMAE—re-

masking the encoded embeddings of masked nodes, we propose to 
introduce randomness into input feature reconstruction with multi-
view random re-mask decoding. That is, the encoded embeddings 
are randomly re-masked multiple times, and their decoding results 
are all enforced to recover input features. Second, we propose latent 
representation prediction, which attempts to reconstruct masked 
features in the embedding space rather than the reconstruction in 
the input feature space. The predicted embeddings of masked nodes 
are constrained to match their representations that are directly 
generated from the input graph. Both designs naturally work as 
the regularization on target construction in generative graph SSL. 

Inherited from GraphMAE, GraphMAE2 is a simple yet more 
efective generative self-supervised framework for graphs that can 
be directly coupled with existing GNN architectures. We perform 
extensive experiments on public graph datasets representative of 
diferent scales and types, including three open graph benchmark 

Table 1: Results with the original node features (raw) or PCA-
processed node features (w/ PCA). w/ PCA represents that the 
input features are reduced to 50-dimensional continuous vectors 
using PCA, relatively less discriminative. GraphMAE can be more 
sensitive to the discriminability of input features than the super-

vised one. GAT is used as the backbone for all cases. 

Cora PubMed 
raw → w/ PCA raw → w/ PCA 

Supervised 83.0 → 82.3 (↓ 0.7) 78.0 → 77.0 (↓ 1.0) 
GraphMAE 84.2 → 82.6 (↓ 1.6) 81.1 → 78.9 (↓ 2.2) 

GraphMAE2 84.5 → 83.5 (↓ 1.0) 81.4 → 80.1 (↓ 1.3) 

datasets. The results demonstrate that GraphMAE2 can consistently 
ofer signifcant outperformance over state-of-the-art graph SSL 
baselines under diferent settings. Furthermore, we show that both 
decoding strategies contribute to the performance improvements 
compared to GraphMAE. Excitingly, GraphMAE2 as an SSL method 
ofers performance advantages over classic supervised GNNs across 
all datasets, giving rise to the premise of self-supervised graph 
representation learning and pre-training. 

In addition, we extend GraphMAE2 to large-scale graphs with 
hundreds of millions of nodes, which have been previously less 
explored for graph SSL. We leverage local clustering strategies 
that can produce local and dense subgraphs to beneft GraphMAE2 
(and GraphMAE) with masked feature prediction. Experiments on 
ogbn-Papers100M of 111M nodes and 1.6B edges suggest the sim-

ple GraphMAE2 framework can generate signifcant performance 
improvements over existing methods (Cf. Figure 1). 

2 METHOD 
In this section, we frst revisit masked autoencoding for graph SSL 
and identify its defciency in which the efectiveness of masked 
feature reconstruction can be vulnerable to the distinguishability of 
input node features. Then we present our GraphMAE2 to overcome 
the problem by imposing regularization on the feature decoding. 

2.1 Masked Autoencoding on Graphs 
Notations. Let G = (V, �, � ), where V is the node set, � = |V| 
represents the number of nodes, � ∈ {0, 1}� ×� 

is the adjacency 
matrix with each element �(�, �) = 1 indicating that there exists 
an edge between �� and � � . � ∈ R� ×��� 

is the input node feature 
matrix. In graph autoencoders, we use �� to represent the GNN 
encoder such as GAT [41] and GCN [25]. And �� represents the 
decoder which can be a multi-layer perceptron (MLP) or GNN. 
Denoting the hidden embedding � ∈ R� ×� 

, the general goal of 
graph autoencoders is to learn representation � or a well-initialized 
�� through reconstructing input node features or structure: e� = �� (�, � ), G = �� (�, � ) (1) 

where Ge denotes the reconstructed graph characteristics, which 
can be structure, node features or both. 

Overview of masked feature reconstruction. The idea of masked 
autoencoder has seen successful practice in graph SSL [18]. As a 
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Figure 2: Overview of GraphMAE2 framework. For large-scale graphs, we frst run local clustering to produce local clusters for each 
node as the preprocessing step. During the pre-training, GraphMAE2 corrupts the graph by masking input node features with a mask token 
[MASK] and then feeds the result to a GNN encoder to generate the code. The decoding involves two objectives: 1) we generate multiple 
corrupted codes by randomly re-masking the code several times, and they are all forced to reconstruct input features after GNN decoding. 2) 
we use an MLP as the decoder to predict latent target representations, which are produced by a target generator with the unmasked graph. 
As a comparison, GraphMAE is trained through input feature reconstruction only with a fxed re-mask decoding strategy. 

form of more general denoising autoencoders, it removes a portion 
of data in the graph, e.g., node features or links, with the masking 
operation and learns to predict the masked content. And it has 
been demonstrated that reconstructing masked node features as 
the only pretext task could generate promising performance. In this 
work, we follow the paradigm of masked feature reconstruction 
and aim to further boost the performance by resolving the potential 
concerns in existing works. 

Formally, we uniformly sample a subset of nodes Ve ⊂ V without 
replacement and replace their feature with a mask token [MASK], 
i.e. a learnable vector � [� ] ∈ R��� 

. And sampling with a relatively 
large mask ratio (e.g., 50%) helps eliminate redundancy in graphs 
and beneft performance. The features e�� for node �� ∈ V in the 
corrupted feature matrix �e can be represented as:( e e = 

� [� ] �� ∈ V
�� 

�� �� ∉ Ve eThen the corrupted graph (�, � ) is fed into the encoder �� to gen-

erate representations � . And the decoder �� decodes the predicted 
masked features � from � . The training objective is to match the 
predicted � with the original features � with a designated criterion, 
such as (scaled) cosine error. 

Problems in masked feature reconstruction. Despite the excel-
lent performance, there exists potential concern for masked node 
feature reconstruction due to the inaccurate semantics of node 
features. A recent study [8] shows that the performance of GNNs 
on downstream tasks can be signifcantly afected by the distin-

guishability of node features. In masked feature reconstruction, 
less discriminative reconstruction targets might cause misleading 
and harm the learning. To verify this assumption, we conduct pilot 
experiments by comparing the results using original features with 
less discriminative features. To induce information loss on features, 
we compress the features by mapping the original features to low 
dimensional space, i.e., 50 dimensions, using PCA. Table 1 shows the 
results. We observe that the performance of GraphMAE degrades 

more signifcantly than the supervised counterpart when using the 
compressed features. The results indicate that the performance of 
learning through input feature reconstruction tends to be more 
vulnerable to the discriminability of the features. 

In CV and NLP, where the philosophy of masked prediction 
has groundbreaking practices, their inputs are exact descriptions 
of data without loss of semantic information, e.g., pixels for im-

ages and words for texts. However, the input � of graphs could 
inevitably and intrinsically contain unexpected noises since they 
processed products from various raw data, e.g., texts or hand-crafted 
features. The input � is and generated by various feature extrac-
tors. For example, the node features of Cora [49] are bag-of-words 
vectors, ogbn-Arxiv [20] averages word embeddings of word2vec, 
and MAG240M [19] are from pretrained language model. Their 
discriminability is constrained to the expressiveness of the feature 
generator and could inherit the substantial noise in the generator. 
In masked feature reconstruction, the objective of recovering less 
discriminative node features can guide the model to ft inaccurate 
targets and unexpected noises, bringing potential negative efects. 

2.2 The GraphMAE2 Framework 
We present GraphMAE2 to overcome the aforementioned issue. It 
follows the masked prediction paradigm and further incorporates 
regularization to the decoding stage to improve efectiveness. 

To improve feature reconstruction, we propose to randomly re-
mask the encoded representations multiple times and force the 
decoder to reconstruct input features from the corrupted repre-
sentations. Then to minimize the direct efects of input features, 
we also enforce the model to predict representations of masked 
nodes in the embedding space beyond the input feature space. Both 
strategies serve as regularization to avoid the model over-ftting 
to the input features. Moreover, we extend GraphMAE2 to large 
graphs and propose to sample densely-connected subgraphs to 
accommodate with GraphMAE2’s training, The overall framework 
of GraphMAE2 is illustrated in Figure 2. 
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Multi-view random re-mask decoding. From the perspective of 
input feature reconstruction, we introduce randomness in the de-
coding and require the decoder to restore the input � from diferent 
and partially observed embeddings. 

The decoder maps the latent code � to the input feature space to 
reconstruct � for optimization. GraphMAE [18] shows that using a 
GNN as the decoder achieves better performance than using MLP, 
and the GNN decoder helps the encoder learn high-level latent 
code when recovering the high-dimension and low-semantic fea-
tures. The main diference is that GNN involves propagation and 
recovers the input relying on neighborhood information. Based on 
this characteristic of the GNN decoder, instead of the fxed re-mask 
decoding used in GraphMAE, we propose a multi-view random 
re-mask decoding strategy. It randomly re-masks the encoded repre-
sentation before they are fed into the decoder, which resembles the 
random propagation in semi-supervised learning [10]. Formally, 
we resample a subset of nodes V ⊂ V following a uniform distri-
bution. V is diferent from the input masked nodes V and nodes e 

are equally selected for re-masking regardless of whether they are 
masked before. Then corrupted representation matrix �e is built 
from � by replacing the �� of node �� ∈ V with another shared 
mask token [DMASK], i.e., a learnable vector � [� ] ∈ R� 

: ( 
� [� ] �� ∈ Ve�� = 
�� �� ∉ V 

Then the decoder would reconstruct the input � from the corrupted e� . The procedure is repeated several times to generate � diferent 
( � )

re-masked nodes sets {V }1,...,� and corresponding corrupted 
representations {�e ( � )}1,...,� . Each view contains diferent informa-

tion after re-masking, and they are all enforced to reconstruct input 
node features. The randomness of decoding serves as regularization 
preventing the network from memorizing unexpected patterns in 
the input � , and thus the training would be less sensitive to the 
disturbance in the input feature. Finally, we employ the scaled co-
sine error [18] to measure the reconstruction error and sum over 
the errors of the � views for training: ∑ ( � )� ∑ �⊤� 

L����� = 
|V| 
1 e 

(1 − � � 
( � ) ∥

)� 
(2) 

�=1 ∥�� ∥ · ∥� �� ∈Vf � 

( � )
where �� is the �-th row of � , � is the �-th row of predicted 

� efeature � ( � ) = �� (�, � ( � ) ), and � >= 1 is the scaled coefcient. In 
this work, the decoder �� for feature reconstruction consists of a 
light single-layer GAT. Therefore, this strategy is very efcient and 
only incurs negligible computational costs. 

Latent representation prediction. In line with the mask-then-

predict, the focus of this part is on constructing an additional infor-

mative prediction target that is minimally infuenced by the direct 
efects of input features. To achieve this, we propose to perform 
the prediction in representation space beyond input feature space. 

Considering that the neural networks can essentially serve as 
denoising encoders [32] and encode high-level semantics [5, 56], 
we propose to employ a network as the target generator to produce 
latent prediction targets from the unmasked graph. Formally, we 
denote the GNN encoder as �� (·; � ) = �� . We also defne a projector 

Hou, et al. 

�(·; � ), corresponding to the decoder �� in input feature recon-

struction, to map the code � to representation space for prediction. 
� denotes their learnable weights. The target generator network 
shares the same architecture as the encoder and projector but uses a 
diferent set of weights, i.e., � ′ (·; �) and � ′ (·; �). During the pretrain-

�
ing, the unmasked graph is frst passed through the target generator 
to produce target representation �̄ . Then the encoding results � of 
the masked graph G(�, � ) are projected to representation space, e 

resulting in � ¯ for latent prediction: 

¯ ¯� = �(� ; � ), � = � ′ (� ′ (�, � ; �); �) (3)� 

The encoder and projector network are trained to match the output 
of the target generator on masked nodes. Of particular interest, 
encouraging the correspondence of unmasked nodes would bring 
slight benefts to our framework. This may attribute to the masking 
operation implicitly serving as a special type of augmentation. We 
learn the parameters � of the encoder and projector by minimizing 
the following scaled cosine error with gradient descent. 

� 
1 ∑ �̄⊤�̄ � L������ = (1 − � )� 

(4)

� ∥�̄∥ · ∥�̄ ∥
� 

And the parameters of target generator � are updated via an 
exponential moving average of � [28] using weight decay � : 

� ← �� + (1 − �)� (5) 

The target generator shares similarities with the teacher network 
in self-knowledge distillation [5, 56] or contrastive methods [12]. 
But there exist diferences in both the motivation and implemen-

tation: GraphMAE2 aims to direct the prediction of masked nodes 
with output from the unmasked graph as the target. In contrast, 
knowledge-distillation and contrastive methods target maximizing 
the consistency of two augmented views. The characteristic is that 
our method does not rely on any elaborate data augmentations and 
thus has no worry about whether the augmentations would alter 
the semantics in particular graphs. 

Training and inference. The overall training fow of GraphMAE2 
is summarized in Figure 2. Given a graph, the original graph is 
passed through the target generator to generate the latent target
�̄ . Then we randomly mask the features of a certain portion of 
nodes and feed the masked graph with partially observed features 
into the encoder �� (�, � ; � ) to generate the code � . Next, the ˜ 

decoding consists of two streams. On the one hand, we apply the 
multi-view random re-masking to replace re-masked nodes in � 
with [DMASK] token, and the results are fed into the decoder �� 
to reconstruct the input � . On the other hand, another decoder � is 
adapted to predict the latent target �̄ . We combine the two losses 
with a mixing coefcient � during training: 

L = L����� + �L������ (6) 

Note that the time and space complexity of GraphMAE2 is linear 
with the number of nodes � , and thus it can scale to extremely 
large graphs. When applying to downstream tasks, the decoder and 
target generator are discarded, and only the GNN encoder is used 
to generating embeddings or fnetuned for downstream tasks. 

Extending to large-scale graph Extending self-supervised learn-

ing to large-scale graphs is of great practical signifcance, yet few 
eforts have been devoted to this scenario. Existing graph SSL works 
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focus more on small graphs, and current works [13, 39] concern-

ing large graphs simply conduct experiments based on existing 
graph sampling developed under the supervised setting, e.g., neigh-

borhood sampling [13] or ClusterGCN [7]. Though it is a feasible 
implementation, there exist several challenges that may afect the 
performance under the self-supervised setting: 

(1) Self-supervised learning generally benefts from relatively larger 
model capacity, i.e., wider and deeper networks, whereas GNNs 
sufer from the notorious problem of over-smoothing and over-
squashing when stacking more layers [1, 27]. One feasible way 
to circumvent the problems is to decouple the receptive feld 
and depth of GNN by extracting a local subgraph [52]. 

(2) In the context of masked feature prediction, GraphMAE2 has a 
preference for a well-connected local structure since each node 
would rely on aggregating messages of its neighboring nodes 
to generate embedding and reconstruct features. 

Most popular sampling methods tend to generate highly sparse 
yet wide subgraphs as regularization in supervised setting [53, 60], 
or only bear shallow GNNs in inference [7, 13]. In light of these 
defects, we imitate the idea from [52] and are motivated to con-

struct densely connected subgraphs for GraphMAE2 to tackle the 
scalability on large-scale graphs. Thus, we utilize local cluster-

ing [2, 36] algorithms to seek local and dense subgraphs. Local 
clustering aims to fnd a small cluster near a given seed in the large 
graph. And it has been proven to be very useful for identifying 
structures at small-scale or meso-scale [23, 26]. Though many lo-
cal clustering algorithms have been developed, we leverage the 
popular spectral-based PPR-Nibble [2] for efcient implementa-

tion. PPR-Nibble adopts the personalized PageRank (PPR) vector 
�� , which refects the signifcance of all nodes V in the graph for 
the node �� , to generate a local cluster for a given node �� . Previous 
works [50, 59] provide a theoretical guarantee for the quality of the 
generated local cluster of PPR-Nibble. The theorem in [50, 59] (de-
scribed in Appendix A.1) indicates that the algorithm can generate 
local clusters of a relatively small conductance, which meets our 
expectations for densely connected local subgraphs. In our work, 
we select the �-largest elements in �� to form a local cluster for 
node �� for computational efciency. 

The PPR-Nibble can be implemented efciently through fast 
approximation, and the computational complexity is linear with 
the number of nodes. One by-product is that this strategy decreases 
the discrepancy between training and inference since they are both 
conducted on the extracted subgraphs. In GraphMAE2, the self-
supervised learning is conducted upon all nodes within a cluster. 
In downstream fnetuning or inference, we generate the prediction 
or embedding for node �� using the local cluster induced by �� . 

3 EXPERIMENTS 
In this section, we compare our proposed self-supervised frame-

work with state-of-the-art methods in the setting of unsupervised 
representation learning and semi-supervised node classifcation. In 
this work, we focus on the node classifcation task, which aims to 
predict unlabeled nodes. Note that GraphMAE2 is a general SSL 
method and can be applied to various graph learning tasks. 

Table 2: Statistics of datasets. 

Datasets 

Cora 
Citeseer 
Pubmed 

ogbn-Arxiv 
ogbn-Products 
MAG-Scholar-F 
ogbn-Papers100M 

#Nodes #Edges #Features 

2,485 5,069 1,433 
2,110 3,668 3,703 

19,717 44,324 

169,343 1,166,243 128 
2,449,029 61,859,140 100 

12,403,930 358,010,024 128 
111,059,956 1,615,685,872 128 

Table 3: Linear probing results on large-scale datasets with 
mini-batch training. We report accuracy(%) for all datasets. 
Random-Init represents a random-initialized model without any 
self-supervised pretraining. 

MLP 
SGC 

Random-Init 

CCA-SSG 
GRACE 
BGRL 
GGD

1 

GraphMAE 

GraphMAE2 

Arxiv Products MAG Papers100M 

55.50±0.23 61.06±0.08 39.11±0.21 47.24±0.31 

66.92±0.08 74.87±0.25 54.68±0.23 63.29±0.19 

68.14±0.02 74.04±0.06 56.57±0.03 61.55±0.12 

68.57±0.02 75.27±0.05 51.55±0.03 55.67±0.15 

69.34±0.01 79.47±0.59 57.39±0.02 61.21±0.12 

70.51±0.03 78.59±0.02 57.57±0.01 62.18±0.15 

- 75.70±0.40 - 63.50±0.50 

71.03±0.02 78.89±0.01 58.75±0.03 62.54±0.09 

71.89±0.03 81.59±0.02 59.24±0.01 64.89±0.04 

1 
The source code of GGD is not released and its results on Arxiv and MAG-Scholar-F 

are not reported in the paper. 

3.1 Evaluating on Large-scale Datasets 
Datasets. The experiments are conducted on four public datasets 
of diferent scales, varying from hundreds of thousands of nodes 
to hundreds of millions. The statistics are listed in Table 2. In 
the experiments, we follow the ofcial splits in [20] for ogbn-

Arxiv/Products/Papers100M. As for MAG-Scholar-F, we randomly 
select 5%/5%/40% nodes for training/validation/test, respectively. 

For ogbn-Products [20] and MAG-Scholar-F [3], their node fea-
tures are generated by frst extracting bag-of-words vectors from the 
product descriptions or paper abstracts and then conducting Prin-

cipal Component Analysis (PCA) to reduce the dimension. ogbn-

Arxiv and ogbn-Papers100M [20] are both citation networks, and 
they leverage word2vec model to obtain node features by averaging 
the embeddings of words in the paper’s title and abstract. 

Baselines. We compare GraphMAE2 with state-of-the-art self-
supervised graph learning methods, including contrastive meth-

ods, GRACE [57], BGRL [39], CCA-SSG [54], and GGD [55] as 
well as a generative method GraphMAE [18]. Other methods are 
not compared because they are not scalable to large graphs, e.g., 
MVGRL [14], or the source code has not been released, e.g., In-

foGCL [48]. As stated in [40], random models can have a strong 
inductive bias on graphs and are non-trivial baselines. Therefore, 
we also report the results of the randomly-initialized GNN model 
and Simplifed Graph Convolution (SGC) [46], which simply stacks 
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Table 4: Results of fne-tuning the pretrained GNN with 1% and 5% labeled training data on large-scale datasets. We report 
accuracy(%) for all datasets. Random-Init represents a random-initialized model without any self-supervised pretraining. 

Arxiv Products MAG Papers100M 

Label ratio 1% 5% 1% 5% 1% 5% 1% 5% 

Random-Init��� �� 63.45±0.32 67.67±0.42 72.23±0.44 75.21±0.35 43.55±0.15 51.03±0.13 56.47±0.23 60.63±0.22 

CCA-SSG 64.14±0.21 68.32±0.32 75.89±0.43 78.47±0.42 42.62±0.15 51.32±0.11 55.68±0.24 59.78±0.08 

GRACE 64.53±0.47 69.21±0.45 77.13±0.64 79.67±0.54 43.59±0.13 51.35±0.12 55.45±0.23 59.38±0.15 

BGRL 65.05±1.17 69.01±0.34 76.32±0.54 79.46±0.43 43.92±0.11 51.69±0.15 55.12±0.23 60.40±0.54 

Random-Init�� 
GraphMAE 
GraphMAE2 

64.79±0.45 

65.78±0.69 

66.86±0.53 

67.89±0.27 

69.78±0.26 

70.16±0.28 

71.87±0.34 

75.87±0.43 

76.98±0.36 

74.42±0.43 

79.21±0.33 

80.52±0.23 

43.66±0.14 

48.33±0.18 

49.01±0.15 

50.86±0.12 

53.12±0.12 

53.58±0.11 

57.48±0.23 

58.29±0.15 

58.69±0.38 

61.41±0.25 

62.00±0.12 

62.87±0.64 

Table 5: Experimental results on small-scale datasets. We 
report accuracy(%) for all datasets. 

Cora CiteSeer PubMed 

GCN 
GAT 

81.5 
83.0±0.7 

70.3 
72.5±0.7 

79.0 
79.0±0.3 

GAE 
DGI 

MVGRL 
GRACE 
BGRL 

InfoGCL 
CCA-SSG 

GGD 
GraphMAE 

71.5±0.4 

82.3±0.6 

83.5±0.4 

81.9±0.4 

82.7±0.6 

83.5±0.3 

84.0±0.4 

83.9±0.4 

84.2±0.4 

65.8±0.4 

71.8±0.7 

73.3±0.5 

71.2±0.5 

71.1±0.8 

73.5±0.4 

73.1±0.3 

73.0±0.6 

73.4±0.4 

72.1±0.5 

76.8±0.6 

80.1±0.7 

80.6±0.4 

79.6±0.5 

79.1±0.2 

81.0±0.4 

81.3±0.8 

81.1±0.4 

GraphMAE2 84.5±0.6 73.4±0.3 81.4±0.5 

the propagated features of diferent orders, to examine whether the 
SSL learns a more efective propagation paradigm. Comparing with 
them can refect the contributions of self-supervised learning. To 
extend to large graphs for baselines, we adopt GraphSAINT [53] 
sampling strategy, which is proved to perform better than widely-

adopted Neighborhood Sampling [13] in many cases. GraphMAE 
and GraphMAE2 are trained based on the presented local clustering 
algorithm. For all baselines, we employ Graph Attention Network 
(GAT) [41] as the backbone of the encoder �� and the decoder for 
input feature reconstruction �� . 

Evaluation. We evaluate our approach with two setups: (i) linear 
probing and (ii) fne-tuning. For linear probing, we frst generate 
node embeddings with the pretrained encoder. Then we discard the 
encoder and train a linear classifer using the embeddings under 
the supervised setting. For fne-tuning, we add a linear classifer 
on top of node representations and fne-tune all parameters under 
the semi-supervised setting. We randomly sample 1% and 5% labels 
from the training set to fnetune the pretrained model, aiming to 
test the ability to transfer knowledge learned from unlabeled data 
to facilitate the downstream performance with a few labels. For 
both cases, we run the experiments for 10 trials with random seeds 
and report the average accuracy and standard variance. 

Results. The results of linear probing are illustrated in Table 3. And 
we interpret the result from 3 aspects. First, GraphMAE2 achieves 
better results than all self-supervised baselines across all datasets. 
This manifests that the proposed method can learn more discrim-

inative representations under the unsupervised setting. Notably, 
GraphMAE2 improves upon GraphMAE by a margin of 1.91% and 
2.35% (absolute diference) on MAG-Scholar-F and Papers100M. 
These results demonstrate the signifcance of the proposed im-

provement. Second, our approach, together with most baselines, 
outperforms the randomly initialized, untrained model by a large 
margin. This demonstrates that the designed self-supervised pretext 
task guides the model to better capture the semantic and structural 
information than the untrained model. As a comparison, improper 
self-supervised signals can lead the model to perform even worse, 
yet this phenomenon is ignored in most previous studies. Third, 
GraphMAE2 consistently generates better performance than SGC. 
Despite the fact that methods based on decoupled propagation have 
achieved promising results in the full-supervised setting with the 
assistance of self-training, we demonstrate that graph neural net-

works, like GAT, could still be more powerful at generating node 
representations in the unsupervised setting. 

Table 4 shows the results of fnetuning the pretrained model in 
the semi-supervised setting. On the one hand, it is observed that 
self-supervised pretraining of GraphMAE2 benefts downstream 
supervised training with signifcant performance gains. In ogbn-

Products, with the pre-trained model, the performance achieves 
improvement by above 5.1%. And fnetuning with only 5% of data 
generates comparative performance (80.52%) to many supervised 
learning methods in OGB leaderboard2 

with all 100% of training 
data, e.g., GraphSAINT: 80.27, Cluster-GAT: 79.23%. On the other 
hand, our approach remarkably achieves state-of-the-art perfor-

mance for all benchmarks. The only exception is on the Products 
dataset with 1% training data, where GraphMAE2 slightly underper-

forms GRACE yet still achieves the second-best result. It should be 
noted that in ogbn-Papers100M, only GraphMAE2 and GraphMAE 
generate better performance than the random-initialized model, 
while all contrastive baselines fail to bring improvement with pre-
training. One possible reason is that the data augmentation tech-

niques used in baselines fail in this dataset. 

2
https://ogb.stanford.edu/docs/leader_nodeprop/ 
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Table 6: Ablation studies of GraphMAE2 key components. 

Products MAG Papers100M 

GraphMAE2 
w/o random remask 
w/o latent rep pred. 
w/o input recon. 

GraphMAE 

81.59±0.02 

81.04±0.03 

80.01±0.02 

76.88±0.02 

78.89±0.01 

59.24±0.01 

59.01±0.02 

58.87±0.02 

55.20±0.02 

58.75±0.03 

64.89±0.04 

64.16±0.02 

62.98±0.01 

59.20±0.00 

62.54±0.09 

Table 7: Ablation study on sampling strategy. “SAINT” refers 
to GraphSAINT, “Cluster” refers to Cluster-GCN, and “LC” refers 
the presented local clustering algorithm. 

Strategy Products MAG Papers100M 

GRACE 
BGRL 

SAINT 
SAINT 

79.47±0.59 

78.59±0.02 

57.39±0.02 

57.57±0.01 

61.21±0.12 

62.18±0.15 

GraphMAE2 
GraphMAE2 
GraphMAE2 

SAINT 
Cluster 
LC 

80.96±0.03 

79.35±0.05 

81.59±0.02 

58.75±0.03 

58.05±0.02 

59.24±0.01 

64.21±0.11 

63.77±0.11 

64.89±0.12 

3.2 Evaluating on Small-scale Datasets 
Experimental setup. We also report results on small yet widely 
adopted datasets, i.e., Cora, Citeseer, and PubMed [49], to show the 
generality of our method. We follow the public data splits as [14, 42]. 

We compare GraphMAE2 with state-of-the-art self-supervised 
graph learning methods, including contrastive methods, DGI [42], 
MVGRL [14], GRACE [57], BGRL [39], InfoGCL [48], CCA-SSG [54], 
and GGD [55] as well as generative methods GAE [24], Graph-

MAE [18]. For the evaluation, we employ the linear probing men-

tioned above and report the average performance of accuracy on 
the test nodes based on 20 random initialization. The GNN encoder 
and decoder both use standard GAT as the backbone, and an MLP 
is employed as the representation projector �. 

Results. From Table 5, we can observe that our approach gen-

erally outperforms all baselines in all datasets, suggesting that 
GraphMAE2 serves as a general and efective framework for graph 
self-supervised learning on graphs of varied scales. We observe that 
the improvement over GraphMAE is not as signifcant as that in the 
experiments of large graphs. We guess that the reason lies in the 
construction of input node features. Bag-of-word vectors behave 
more like discrete features as words in text and pixels image and, 
thus are less noisy as reconstruction targets. And this may partially 
support our assumption that GraphMAE2 is more advantageous 
than GraphMAE when there is more noise in the data. 

3.3 Ablation Studies 
We further conduct ablation studies to verify the contributions of 
the designs in GraphMAE2. We choose linear probing for evalua-

tion. 

Ablation on the learning framework. We study the infuence of 
the proposed two strategies—latent representation prediction and 
multi-view random re-masking. The results are shown in Table 6 
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, where the “w/o random re-mask” represents that we adopt the 
fxed re-masking strategy as GraphMAE. It is observed that the 
two strategies both contribute to performance improvement. This 
demonstrates the efectiveness and further supports our motivation 
for the efects of input feature quality. Latent representation pre-
diction brings more benefts as the accuracy drops more when the 
component is removed, e.g., -1.58% in ogbn-Products and -1.91% in 
ogbn-Papers100M, than the multi-view random re-masking, e.g., 
-0.45% and -0.73%. The target generator network provides valuable 
guidance and constraints on the encoded representation. 

We also conduct an experiment by totally removing the input 
feature reconstruction, and the training only involves latent repre-
sentation prediction. In such cases, the learning degrades to self-
knowledge distillation without heavy data augmentation and causes 
a signifcant drop in performance. The network may fall into a triv-
ial solution and may learn collapsed representation as the results are 
worse than GraphMAE or even worse than the random-initialized 
model in MAG-Scholar-F and ogbn-Papers100M. This indicates that 
feature reconstruction substantially supports SSL, and the proposed 
two strategies serve as auxiliaries to help overcome the defciency. 
Overall speaking, the results confrm that the superior performance 
of GraphMAE2 comes from the design rather than any individual 
contribution. 

Ablation on sampling strategies. Table 7 shows the infuence of 
diferent sampling strategies. We compare local clustering against 
two popular subgraph sampling algorithms–ClusterGCN [7] and 
GraphSAINT [53]. Neighborhood sampling is not included since 
it is not friendly to masked feature reconstruction, especially with 
GNN decoder. The local clustering is conducive to the excellent 
performance of GraphMAE2, as our algorithm shows an advan-

tage over GraphSAINT and Cluster-GCN with 0.57% and 1.49% 
improvement on average. Recall that GraphSAINT tends to sample 
nodes globally, and thus the subgraph is more sparse. Although 
ClusterGCN generates large and connected partitions, it sufers 
from high information loss as edges between clusters are aban-

doned. And the results indicate that the densely-connected local 
subgraph produced can generate better representations. In addition, 
we compare our approach with the strongest baselines using the 
same sampling strategy. And GraphMAE2 still generates a 1.49% 
advantage in ogbn-Products, demonstrating its efectiveness. 

Ablation on model capacity. The efects of model capacity have 
attracted signifcant attention in other felds like CV [15] and 
NLP [4] as it is demonstrated that SSL can largely beneft from 
increasing model parameters. We take an interest in whether the 
scaling law of model capacity also applies to GNNs. Specifcally, we 
employ a GAT as the encoder and explore the infuence of depth 
and width. And experiments are conducted on ogbn-Products of 
around 2 million nodes. The results are shown in Figure 3. Increas-

ing the hidden size drives the model to achieve better performance. 
Doubling the hidden size leads to a performance improvement of 
nearly 2% in accuracy when the hidden size does not exceed 1024. 
But further enlarging the width only brings very marginal gain. 

Another way to increase the capacity is to stack more network 
layers. Figure 3 shows that increasing the depth can slightly boost 
the performance as the accuracy increases by 0.65% when the num-

ber of network layers is increased from 2 to 4. And the benefts 
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Figure 3: Ablation study on hidden size and the number of 
GNN layers. The efects of width are more signifcant than depth. 

would diminish when stacking more layers. One possible reason 
is that deeper GNNs are harder to optimize, while current down-

stream tasks or semantics of homogeneous structured data beneft 
little from more complex network architecture. It is observed that 
the infuence of the depth is less remarkable than the width of GNN. 

4 RELATED WORK 
In this section, we introduce related works about graph self-supervised 
learning and scalable graph neural networks. 

4.1 Graph Self-Supervised Learning 
Graph self-supervised learning (SSL) can be roughly categorized 
into two genres, including graph contrastive learning and graph 
generative learning, based on the learning paradigm. 

Contrastive methods. Contrastive learning is an important way to 
learn representations in a self-supervised manner and has achieved 
successful practices in graph learning [14, 29, 35, 37, 42, 51, 55]. 
DGI [42] and InfoGraph [37] adopt the local-global mutual infor-

mation maximization to learn node-level and graph-level repre-
sentations. MVGRL [14] leverages graph difusion to generate an 
additional view of the graph and contrasts node-graph representa-

tions of distinct views. GCC [35] utilizes subgraph-based instance 
discrimination and adopts InfoNCE as the pre-training objective 
with MoCo-style dictionary [16]. GRACE [57], GraphCL [51], and 
GCA [58] learn the node or graph representation by maximizing 
agreement between diferent augmentations. GGD [55] analyzes 
the defect of existing contrastive methods (i.e., improper usage of 
Sigmoid function) and proposes a group discrimination paradigm. 

To avoid the expensive computation of negative samples, some 
researchers propose graph SSL methods that do not require negative 
samples. BGRL [39] uses an online encoder and a target encoder to 
contrast two augmented versions without negative samples. CCA-

SSG [54] leverages a feature-level objective for graph SSL, inspired 
by Canonical Correlation Analysis methods. 

Most graph contrastive learning methods rely on complex graph 
augmentation operators to generate two diferent views, which 
are used to be contrasted or correlated. However, the theoretical 
understanding of augmentation techniques on the graph SSL has 
not been well-studied. The choice of graph augmentation operators 

mostly depends on the empirical analysis of researchers. Although 
some works [44, 47] have made attempts to alleviate this reliance, 
it still remains further exploration. 

Generative methods. Graph autoencoders (GAE) and VGAE [24] 
follow the spirit of autoencoder [17] to learn node representations. 
Following VGAE, most GAEs focus on reconstructing the struc-

tural information (e.g., ARVGA [33]) or adopt the reconstruction 
objective of both structural information and node attributes (e.g., 
MGAE [43], GALA [34]). NWR-GAE [38] designs a graph decoder to 
reconstruct the entire neighborhood information of graph structure. 
kgTransformer [31] applies the masked GAE to knowledge graph 
reasoning. However, these previous GAE models do not perform 
well on node-level and graph-level classifcation tasks. To mitigate 
the performance gap, GraphMAE [18] leverages masked feature 
reconstruction as the objective with auxiliary designs and obtains 
comparable or better performance than contrastive methods. In 
addition to graph autoencoders, inspired by the success of autore-

gressive models in natural language processing, GPT-GNN [22] 
designs an attributed graph generation task, including attribute and 
edge generation, for pre-training GNN models. Generative methods 
can alleviate the defciency of contrastive rivals since the objective 
of generative ones is to directly reconstruct the input graph data. 

4.2 Scalable Graph Neural Networks 
There are two genres of methods for scalable GNNs. One is based 
on sampling that trains GNN models on sampled mini-batch data. 
GraphSAGE [13] adopts the neighbor sampling method to con-

duct the mini-batch training. FastGCN [6] performs layer-wise 
sampling and leverages importance sampling to reduce variance. 
GraphSAINT [53] and ClusterGCN [7] both produce a subgraph 
from the original graph for mini-batch training by graph parti-
tion or random walks. Another paradigm for scalable GNNs is 
to decouple the message propagation and feature transformation. 
SGC [46] removes the nonlinear functions and is equivalent to a 
pre-processing K-step propagation and a logistic regression on the 
propagated features. SIGN [11] extends SGC to stack the propa-
gated results of diferent hops and graph flters, and then only trains 
MLPs for applications. These decoupled methods achieve excellent 
performance in the supervised setting but have no advantage in 
generating high-quality embeddings. 

5 CONCLUSION 
In this work, we explore graph self-supervised learning with masked 
feature prediction. We frst examine its potential concern that 
the discriminability of input features hinders current attempts to 
achieve promising performance. Then we present a framework 
GraphMAE2 to address this issue by imposing regularization on 
the prediction. We focus on the decoding stage and introduce latent 
representation target and randomness to input reconstruction. The 
novel decoding strategy signifcantly boosts the performance in 
realistic large-scale benchmarks. Our work further supports that 
node-level signals could provide abundant supervision for masked 
graph self-supervised learning and deserves further exploration. 
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A APPENDIX 

A.1 Theorem for Local Clustering. 
Theorem A.1 (Theorem 1 in [59]; Theorem 4.3 in [50]). Let 

� ⊂ � be some unknown targeted cluster that we are trying to retrieve 
from an unweighted graph. Let � be the inverse mixing time of the 
random walk on the subgraph induced by � . Then there exists �� ⊆ � 
with vol (��) ≥ vol (� )/2, such that for any seed � ∈ �� , PPR-Nibble h i 

1 1with � = Θ(�) and � ∈ outputs a set � with
10 vol (� ) , 5 vol (� )� n√ o� √ 

Φ(�) ≤ �e min Φ(� ), Φ(� )/ � . 

Here, vol (�) ≜ 
Í 
�� ∈S ������ (�� ) is the graph volume, and Φ(�) ≜Í Í 

�� ∈V−S �(�, � )�� ∈S 
defnes the conductance of a non-empty

min(vol (S),vol (V−S) ) 
node set S ⊂ V . 

A.2 Finetuning Results for Supervised Learning 

Table 8: Fine-tuning results of mini-batch training with full 
labels. We report accuracy(%) for all datasets. 

Arxiv Products MAG. Papers100M 

MLP 55.50 61.06 39.11 47.24 
SGC 66.92 74.87 54.68 63.29 

Random-Init��� �� 71.88 81.15 57.11 66.36 
Random-Init�� 71.47 81.59 56.84 66.47 

CCA-SSG 72.24 80.61 56.54 66.11 
GRACE 72.54 82.45 57.23 66.45 
BGRL 72.48 82.37 57.34 66.57 

GraphMAE 72.38 81.89 59.77 66.64 

GraphMAE2 72.69 83.65 60.01 66.66 

Table 8 shows the results of fnetuning the pretrained encoder 
with all labels in the training set. It is observed that self-supervised 
learning can still lead to improvements in the supervised setting. 
GraphMAE2 can bring 1.22%-3.17% improvement compared to the 
randomly initialized model on three datasets, i.e., ogbn-Arxiv, Prod-

ucts, and MAG-Scholar-F. The only exception is ogbn-Papers100M, 
in which the improvement is only 0.2% in accuray. The reason 
could be that the splitting strategy of this dataset (train:val:test = 
78%:8%:14%) resulted in an overly well-labeled training set. It is 
worth mentioning that on ogbn-Products, our method achieves bet-
ter results than the current best single model in OGB leaderboard3

, 
i.e., GAMLP: 83.54%. 

A.3 Linear Probing Results on ogbn-Arxiv with 
Full-graph Training. 

As ogbn-Arxiv dataset is relatively small, we can conduct full batch 
training and inference. Table 9 shows the results of GraphMAE2 
as well as baselines under full batch training. Compared to Graph-

MAE, GraphMAE2 has a 0.2% improvement. It is worth noting that 
GraphMAE results are better when trained with full-batch than 

3
https://ogb.stanford.edu/docs/leader_nodeprop/ 

Hou, et al. 

Table 9: Linear probing results on ogbn-Arxiv with full-graph 
training. We report accuracy(%). 

Arxiv 

GCN 71.74±0.29 

GAT 72.10±0.13 

DGI 70.34±0.16 

GRACE 71.51±0.11 

BGRL 71.64±0.12 

CCA-SSG 71.24±0.20 

GraphMAE 71.75±0.17 

GraphMAE2 71.95±0.08 

with mini-batch, while the mini-batch training results of Graph-

MAE2 are comparable to the full-batch results. 

A.4 Implementation Notes 
Running Environment. Our proposed framework is implemented 
via PyTorch. For our methods, the experiments are conducted on a 
Linux machine with 1007G RAM, and 8 NVIDIA A100 with 80GB 
GPU memory. As for software versions, we use Python 3.9, PyTorch 
1.12.0, OGB 1.3.3, and CUDA 11.3. 

Model Confguration. For our model and all baselines, we pretrain 
the model using AdamW Optimizer with cosine learning rate decay 
without warmup. More details about pre-training hyper-parameters 
are in Table 10. 

Table 10: Hyper-parameters on large-scale datasets. 

Arxiv Products MAG Papers100M 

masking rate 0.5 0.5 0.5 0.5 
re-masking rate 0.5 0.5 0.5 0.5 
num_re-masking 3 3 3 3 

coefcient � 10.0 5.0 0.1 10.0 
hidden_size 1024 1024 1024 1024 
num_layer 4 4 4 4 

lr 0.0025 0.002 0.001 0.001 
weight_decay 0.06 0.06 0.04 0.05 
max epoch 60 20 10 10 

A.5 Baselines 
For large datasets, we choose four baselines GRACE [57], BGRL [39], 
CCA-SSG [54] and GraphMAE [18]. To have a fair comparison, we 
download the public source code and use the GAT backbone. We 
adapted their code to integrate with sampling algorithms to run on 
large-scale graphs. For GGD [55], we can only report the results 
available in the original paper since the authors have not released 
the code. The sources of the codes used are as follows: 

• BRGL: https://github.com/Namkyeong/BGRL_Pytorch 
• GRACE: https://github.com/CRIPAC-DIG/GRACE 
• CCA-SSG: https://github.com/hengruizhang98/CCA-SSG/ 
• GraphMAE:https://github.com/THUDM/GraphMAE 
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