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Abstract 
In recent years, graph neural networks (GNNs) have made great 
progress in recommendation. The core mechanism of GNNs-based 
recommender system is to iteratively aggregate neighboring in-
formation on the user-item interaction graph. However, existing 
GNNs treat users and items equally and cannot distinguish diverse 
local patterns of each node, which makes them suboptimal in the 
recommendation scenario. To resolve this challenge, we present 
a node-wise adaptive graph neural network framework ApeGNN. 
ApeGNN develops a node-wise adaptive difusion mechanism for in-
formation aggregation, in which each node is enabled to adaptively 
decide its difusion weights based on the local structure (e.g., de-
gree). We perform experiments on six widely-used recommendation 
datasets. The experimental results show that the proposed ApeGNN 
is superior to the most advanced GNN-based recommender meth-
ods (up to 48.94%), demonstrating the efectiveness of node-wise 
adaptive aggregation. 
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1 Introduction 
Graph neural networks (GNNs) have produced remarkable perfor-
mance on the task of recommendation [9, 13, 35, 42, 45]. Specifcally, 
GNNs perform the message passing process over graph structures 
to aggregate local neighborhood information and stack multiple 
representation layers in high-order propagation [8, 17, 34]. GNNs-
based recommender systems apply the information propagation 
operation over the user-item bipartite graphs, such as NGCF [36], 
LightGCN [9], and MixGCF [13]. 

Figure 1: Local structures of users are diverse and node-wise 
aggregation is important in GNNs-based recommendation 
scenario. 

However, there are remaining issues in GNNs-based models for 
recommendation. Firstly, node types are not distinguished in 
GNNs-based recommendation. User-item interaction network 
is a special type of graph in which edges can only be existed in 
the middle of users and items. In other words, there is no direct 
communication between two users or items. Up to now, the ex-
isting GNNs-based recommendation method is no diferent from 
the general GNNs that handles the other normal graphs, such as 
reference graphs [17], social networks etc. , that is, the same mod-
eling strategies are adopted for all users and items. Generally, user 
aggregates information from (only) 1-hop item neighbors with 0-th 
layer embeddings, from 2-hop users with 1-th layer representations, 
and from 3-hop items again with 2-th layer embeddings, in a high-
order neighborhood aggregation setting. By taking all layers the 
same, the aggregation step in GNNs-based recommender systems 
ignores the semantic diferences between users and items at each 
subgraph structure—and by extension their embeddings. Secondly, 
local structures of diferent users/items are diverse in rec-
ommendation. In Figure 1, we show a motivating example to 
fully understand motivation of this work, i.e., the node-wise neces-
sity for GNNs-based recommendation. To be specifc, we perform 
1-/2-/3-hop aggregation and propagation with LightGCN on Ali 
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and AMiner datasets respectively, and show the relation between 
the Recall@20 result and user nodes with diferent degree inter-
vals. We fnd that average result distribution of diferent degree 
nodes on each hop propagation is very unbalanced and the opti-
mal propagation number for each node is uncertain, which means 
each user/item has its local structure. This demonstrates that dif-
ferent nodes with diferent structures in recommendation should 
be given diferent importance. Take these issues into account, we 
argue that node-wise adaptive aggregation in GNNs for recommen-
dation is a necessary step to learn the node-level diference among 
layers. Therefore, we propose to study whether each node should 
be treated diferently in diferent layers during the aggregation 
process of GNNs-based recommendation methods. 

Table 1: Critical comparison between existing GNNs-based 
models for recommendation. 

Models Explicit Degree Info. Linear Propagation Node-wise 

GAT [33] % % ! 

LightGCN [9] ! ! % 

ADC [47] ! ! % 

ApeGNN ! ! ! 

However, the aggregation step in previous GNNs-based recom-
mender systems treats all nodes as the same and ignores their vari-
ant importance [38], which results in sub-optimal performance [24]. 
As Table 1 shows, we compare existing representative GNNs-based 
models for recommendation. Previous attention-based GNN models 
(e.g., GAT) attempt to model the diferent infuences among user and 
item nodes without considering the local diversity [1, 3, 10, 33, 41]. 
Moreover, for diferentiating the importance of interacted histor-
ical items, the degree-based GNNs process (e.g., LightGCN) can 
improve embedding learning and achieve better performance [9] in 
bipartite graph for recommendation [9, 13, 36], but still ignores the 
local diversity issue. In recent difusion-based GNNs studies (e.g., 
ADC), appropriate neighborhoods are selected fexibly to enhance 
GNNs’ expressiveness during the propagation [19, 47]. For instance, 
the graph difusion convolution [19] model incorporates the heat 
kernel and node centrality information into GNNs’ message pass-
ing process to reinforce structural smoothness. Nevertheless, GDC 
is based on the assumption of homophily and does not perform 
well on the link prediction task. An adaptive graph convolution 
work (ADC) [47] proposes to leverage the heat kernel theory [39] to 
learn the optimal neighborhood for enhancing the low-frequency 
flters. Though the heat kernel is originally used to enable neigh-
borhood selection in GNNs, it also provides a natural solution to 
address the aforementioned issues for recommendation. 

In this work, we present a novel AdaPtivE model (ApeGNN), 
which conducts node-wise adaptive aggregation in GNNs for rec-
ommendation. Instead of treating each user and item equally at 
each layer during the high-order aggregation and propagation, we 
leverage the graph difusion process to adaptively assign a unique 
weight (inner-layer weight) to each hop of neighbors and distin-
guish the information from diferent GNNs layers, promoting the 
development of aggregation methods from fxed aggregation to 
node-wise aggregation. The idea of ApeGNN for GNNs-based rec-
ommendation is that each user �� and each item � � respectively 
have a unique aggregation weight � (� (�� ), �) and � (� (� � ), �) with 

coefcient � and layer � . This difusion weights represent the dis-
tinctive contributions of �� ’s and � � ’s embedding that are captured 
by ApeGNN at each layer. 

ApeGNN can serve as a plug-in and be naturally incorporated 
into any existing GNNs-based models for recommendation without 
modifying the architecture of models. We conduct extensive exper-
iments on six widely-used public datasets and compare ApeGNN 
with representative GNNs-based and attention-based models to 
demonstrate the efectiveness of ApeGNN. We follow the same ex-
perimental procedure—data splits, optimization, and evaluation—as 
existing GNNs-based recommendation studies [9, 36]. The results 
suggest that the proposed ApeGNN can consistently outperform 
state-of-the-art GNN baselines (relative improvement up to 48.94% 
on Ali, 24.09% on Amazon and 7.67% on AMiner) among all data 
sets on both Recall and NDCG, which shows the benefts of node-
based adaptive aggregation. Case studies show that adaptive node 
weights contribute to the overall and each layer’s performance. 

2 Graph Neural Networks for Recommendation 
In this section, we revisit GNNs-based recommendation systems 
and discuss the limitations of existing GNNs for recommendation. 

2.1 Preliminaries 
Generally, the input of a GNNs-based recommendation model is a 
user-item bipartite graph G = {U, V, R} with the sets of users U = 
{�1, �2, . . . , �� }, items V = {�1, �2, . . . , �� }, and the interactions 
such as purchase, rate and click, among users and items R ∈ R�×� , 
where � is the amount of users and � denotes the total number of 
items. For each interaction, � (�� �� ) ∈ R is set to 1 if �� interacts with 
� � and 0 otherwise. With R, the purpose of the recommendation 
system is to predict the items which the user will interact further. 
GNNs have been recently found wide adoption in recommender 
systems [5, 40, 42, 48]. Similar to common GNN models, GNN-based 
recommender systems perform message passing over the input 
graph structure to get contextual representations. Commonly, the 
message passing process consists of the aggregation and pooling. 

Aggregation. For node �, the general representation at �-layer 
during propagation in GCN-based models can be represented as: 

h(� ) = � (h(� −1) , ��� ({h(� −1) , ∀� ∈ N� )}), (1)� � � 

where ��� and � stand for aggregation and update function re-
spectively. Take GCN [17] for example, it aggregates each node’s 
neighborhood nodes and performs message passing. In particular, 
the propagation rule Eq.(1) of GCN [17] is defned by: 

h(� ) = � (W(� ) (h(� −1) + Th(� −1) )) (2)� � � 

where h(� ) denotes the embedding representation of � after �-layer � 

GCN. In particular, h(0) is the 0-layer embedding; � (·) is non-linear � 
activation for feature propagation, W is a weight matrix; N� is the 

D− 12 Ã D̃ − 1 

neighborhood of node �. T can be calculated by ˜ 2 , where Í
D is the diagonal node degree matrix with D�� = � �� � . Note that 
Ã = I + A and D̃ = I + D, in which A is the adjacency matrix 
with self-loop and I is the identity matrix that implies self-loop 
connections on nodes. 

Inspired by the design and idea of the GCN model, emerging 
studies (e.g., GCMC [32] and NGCF [36]) attempt to adopt GCN 
structure for recommendation tasks. However, recent studies [2, 9] 
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reported that some of the most used designs of GCNs do not con-
tribute much to recommendation performance, which complicates 
learning process. They are designed to simplify the GCN for recom-
mendation and achieve better performance. Taking LightGCN [9] 
as an example, it deletes � (·), W and I. Thus, its aggregation and 
propagation process are expressed as: 

h(� ) = h(� −1) + Th(� −1)� � � , (3) 

where normalized item T is computed by D− 12 AD− 12 . 

Pooling. In GCN [17], the representation vector learned by the 
fnal layer is utilized to perform node classifcation. However, the 
fnal representation of nodes could be varying by changing the 
pooling operation at the each GCN layer (also called the layer com-
bination operation). In most GNNs-based recommender models, the 

, h(1) , · · · , h(�)pooling function combines the embeddings (h(0) )� � � 
propagated at each layer and generates the fnal representation 
vector h� 

∗ . Common pooling operations include weighted sum-
based [9, 23, 31], concat-based pooling [30, 36], attention-based and 
other approaches [45]. Generally, the pooling function � of user � 
can be formulated as: 

h∗ = � (h(0) , h(1) , · · · , h(�) ), (4)� � � � 

where � is the total number of propagation layers and the pooling 
function of item � is similar to that of user. In particular, weighted 
sum pooling function is the most commonly used. For example, Í� 
h∗ = �� h

(� ) , �� is the weight of �-th layer embedding for the � � 
� =0 

fnal embedding. Especially, they assign a constant value (e.g., �� = 
1/(� + 1)) as fxed weight for the embeddings of the each layer to 
perform layer combination. In other words, the importance of the 
embeddings represented by each subgraph structure in diferent 
GCN layers is the same. 

2.2 The limitation of GNNs-based models 
By default, the current GNNs-based recommendation models have 
the following setup in the aggregation process: First, these methods 
treat all nodes in the bipartite graph as the same; Second, they con-
sider the embeddings of multiple layers with the same importance 
in a local perspective. 

By design, aggregators of GNNs mainly include two categories: 
degree-based aggregator represented by LightGCN and attention-
based aggregator represented by GAT. In fact, they do not explicitly 
diferentiate nodes with global perspective during the message pass-
ing process, while all nodes are in nature diferent in recommender 
systems [9, 23, 29]. 
• Degree-based Aggregator Represented by LightGCN. By 
extending Eq. (3), the graph convolution on the frst and second 
layers for user embedding �� is formulated as Eq. (5), and item 
embedding is formulated similarly. 

h(1) 
∑ 

h(0)
1 

= √ ,�� �� 
�� ∈N�� 

( |N�� | |N� � |)∑ ∑ (5) 
h(2) 

1 1 
h(0)= √ ,�� �� |N�� | ( |N�� | |N�� |)�� ∈N�� �� ∈N�� 

WWW ’23, April 30–May 04, 2023, Austin, TX, USA √ 
where 1/|N�� | and 1/( |N�� | |N�� |) are the non-sysmmetric and 
symmetric normalization, respectively. It is observed that the ag-
gregation and propagation process of embeddings for users and 
items are exactly the same, that is, the information updated from 
same type (i.e., users or items) nodes is propagated in odd GCN 
layers (1, 3, · · · ), and messages from the other type is propagated 
in even GCN layers. 

The degree-based aggregator is applied to each node to control 
the decay factor during aggregation and propagation, potentially 
making these processes diferent. However, the normalization coef-
fcient is a constant value computed by degrees of node, which is 
irrelevant with node types and the layer subgraph structures. In fact, 
users and items are two diferent types of nodes with distinctive 
semantics in a user-item bipartite graph, and their own embeddings 
in diferent subgraphs should be naturally considered dissimilar as 
well. This efect has been initially investigated by grouping users 
in higher-order GCN layers [23]. In this work, we frst attempt to 
explicitly diferentiate node-aware users and items in the simple 
GNN architecture and examine whether diferent treatments to 
them can beneft GNNs-based recommender systems. 
• Attention-based Aggregator Represented by GAT. When 
representation of a node is obtained through all neighbors, the con-
tributions of these neighbors should be diferent as well. Diferent 
from degree-based aggregator, attention-based aggregator assigns 
diferent weights for neighbors of each node during aggregation in 
local graph structure. The aggregation process is described as: 

h(� ) · h(� −1)= � (W · ��� �� + b), ∀� � ∈ N�� . (6)�� �� 

where ��� �� denotes attentive scores and it is usually calculated 
by Softmax function. The attention weights are calculated in a 
local graph and propagated implicitly to next layer via non-linear 
activation function, which ignores decay factor of each node’s 
centrality distribution with a node-wise perspective. However, the 
embeddings at diferent layers of (graph) neural networks are in 
nature supposed to capture diferent levels of features [37, 46]. In 
addition, as introduced above, the information updated from same 
type nodes and the other type in GNNs-based recommendation 
models is propagated in odd and even GCN layers, respectively. In 
this paper, we study whether the diferent weights on each node 
should be assigned from one layer to another. Therefore, in this 
study, we try to address this research problem: "to what extent 
such node-wise and layer-wise diferentiation can improve the 
performance of GNNs for recommendation?" 

3 The ApeGNN 
We design a GNNs-based recommender system ApeGNN in this 
section. The main idea is to diferentiate each user as well as item 
from nodes during aggregation and calculate the impacts in a node-
wise way in GNNs. To achieve this, we incorporate the idea of graph 
difusion based adaptive operations into the aggregation. 

3.1 Node-Wise Adaptive Aggregation in GNNs 
To incorporate node importance into existing aggregation in GNNs-
based models for recommendation, we design a node-wise adaptive 
aggregation mechanism. For a user �� and its neighborhood nodes 
N�� , the aggregation function ��� with weight coefcient function 
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Figure 2: The overview of the ApeGNN model when � = 3. In ApeGNN, the users and items at each layer are modeled diferently 
with adaptive weights � via the heat kernel (default) and PPR in the process of aggregation and propagation. 

� (��� ) for user �� can be presented as: 
h�� = ��� ({h�� , ∀� � ∈ N�� }; � (��� )). (7) 

where ��� is a parameter of adaptive operation for user �� . Similarly, 
the aggregation function ��� with weight coefcient function 
� (��� ) for item � � can be described in Eq. (8). Then, we introduce 
how to use � (��� ) and � (��� ) during aggregation process. 

h�� = ��� ({h�� , ∀�� ∈ N�� }; � (��� )), (8) 

Weighting Coefcients � . As previously discussed, semantics 
contained in embeddings at diferent layers tend to be diferent in 
(graph) neural networks. For GNNs over a bipartite graph, each 
layer is made up of either users or items, which naturally makes 
the semantics of each layer diferently. In other words, the em-
beddings at diferent layers should be treated distinctly by setting 
diferent weights to capture the unique semantics of each layer 
during aggregation. Specially, we propose two methods, namely 
heat kernel (HT) [39] and personalized PageRank (PPR) [25], to 
simulate the graph difusion process and provide better importance 
selection support. Here, we will introduce how to formulate these 

, ���� two methods as coefcients (��� ) in detail. (� ) (� )(� ) (� )�� �� 
• The heat kernel. The feature propagation between nodes in 
the GNNs-based models can be viewed as the practice of Newton’s 
law of cooling (also known as the heat kernel) [20, 47], in which 
heat is transferred from regions with higher temperature to regions 
with lower one. That is, the embedding propagation between two 
nodes is naturally proportional to their representation. Thus, the 
derivation of this prior knowledge is calculated as: 

�h�� (�) + Δh�� (�) = 0, (9)
�� ∑ dh�� (�) 

= − A�� �� (h�� (�) − h�� (�)), (10)
d� 

�� ∈N�� 

where h�� (�) and h�� (�) denote representations of user �� and 
item � � after time � . This derivation indicates that h�� is related 
to its neighbors at one time. Inspired by difusion design of the 

heat kernel, we can incorporate the heat kernel into the GNNs-
based models for personalized recommendation. Given an initial 
defnition that the heat kernel can be expressed as �� = �−� Γ at 
time � in a graph, where Γ (Γ = I − D) is the Laplacian matrix of 
graph G. According to this defnition, Eq. (3) can be reformulated 
as: 

h(�) = �� h(0), (11) 

where h(�) denotes the hidden representation of a node after the 
difusion time � . For ∀� ≥ 0, the convolution kernel of G with the 
heat kernel is formulated as: 

∞ 
�� �−� ∑ 

�−� Γh = T� h, (12)
� ! 

� =0 

where � denotes the current layer, the parameter �� is related to 
neighborhood size of a node at �-th layer. Therefore, a function ��

�� 
� 

and ��� with ��� �� 
with ��� for each node are used to automatically 

learn and update �� and �� during training. Its formulation can be 
described as: 

�� �−��� 
��� �� 

(� ) = . (13)
(� ) � !�� 

• PPR. ApeGNN aims to recognize the local pattern from each 
node’s graph structure. To achieve this objective, we utilize the PPR 
used in PageRank [25] and APPNP [18] to build graph structure 
information and assign unique weights for each node. The coef-
cient ���� with teleport probability ��

(
� 

0) ∈ (0, 1) for user can be ��
represented as: 

���� (� ) (� ) )� (� ) = ��� (1 − ��� . (14)
(� )�� 

The common points between ApeGNN and APPNP are that we con-
nect GCN with personalized PageRank to propagate long range and 
reduce the oversmoothing risk, and leverage teleport probability 
properly to retain the initial features to gain better performance. 
By leveraging the heat kernel and personalized PageRank, we can 
assign appropriate weights fexibly for each node to enhance low-
frequency flters and enforce smoothness on a graph. 
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Centrality Importance � . As Figure 1 depicts, the best propaga-
tion of � is not certain. Thus, the neighbors weights at each layer 
should be considered when modeling the importance of nodes, 
and the diferent infuences among user and item nodes should be 
modeled when obtaining the representation of a node during the 
aggregation. Previous research [25] about node importance estima-
tion suggests that the importance of nodes is positively correlated 
with its centrality in a graph. Generally, the in-degree � (�� ) of user 
node �� denotes its centrality and popularity. Therefore, we use 

(0) (0)in-degree � (�� ) as weights � and � at the initial layer for �� �� �� 

and � � to model the diferences of users as well as items. Here, we 
defne � for user �� and obtain a small value for � . The centrality 
importance of items are similar to users’ in Eq. (15). 

(0)
� = � (� (�� )) = � (���(� (�� ) + �)), (15)�� 

where � is a small positive constant chosen as 10−7 and the teleport 
(0)propability � ∈ (0, 1).�� 

In ApeGNN, by giving a user-item interaction bipartite graph as 
the input, the embedding of each user and each item is diferentiated 
via an adaptive aggregation, and this embedding is parameterized 
with node-wise to form the fnal representations. The architecture 
of ApeGNN for recommendation is presented in Figure 2 which 
illustrates main parts of the model—the node-wise inner-layer ag-
gregation and inter-layer propagation. 

3.2 Propagation Process 
By using enhanced representation in the aggregation process, we 
can add each embedding layer to propagation layers to mine higher-
order connectivity information. The propagated embeddings of user 
�� and item � � at the �-th layer are formulated as:∑ 

h(� ) = � (� (� ) ) � (�� �� ) h
(� −1) 

,�� �� �� 
�� ∈N�� ∑ (16)

h(� ) = � (� (� ) ) � (�� �� ) h
(� −1) 

.�� �� �� 
�� ∈N�� 

(� ) (� )where � and � are the unique weight for �� as well as � � at�� �� √ 
�-th layer, and � (�� �� ) = 1/( |N�� | |N�� |) is the symmetric normal-
ization suggested by GCN [17]. Note that the efect of self-loop 
connections in the GCN layer could be captured by a weighted 
sum as pointed out by LightGCN[9]. By following the same setup, 
we remove the self-loop connections to reduce the information 
redundancy. 

By extending the embedding aggregation and propagation func-
tion with the convolution kernel, the adaptive graph convolution 
matrix E� and E� with weight matrix Θ for users and items in 
ApeGNN at the �-th layer can be represented as Eq. (17): ∑� 

E(� ) (� ) T� E(� −1)= Θ ,� � �� 
�=0 (17)
� 

E(� ) 
∑ (� ) T� E(� −1)= Θ� � .�� 
�=0 

By transforming Eq. (17) into the actual model training process, we 
take the graph convolution matrix (E(0) , · · · , E(� ) ) related to the 
layer into the pooling operation. 

3.3 Pooling 

Given the input user and item embeddings h(0) and h(0) at the 0-th �� �� 

layer, they are frst propagated through higher layers by Eq. (16). 
Then we update the integration of users as well as items through 
the embedding of the latest layer and the current layer by Eq. (1). 
Finally, the embeddings of each layer should be combined to for-
malize the fnal embeddings of user �� and item � � that are used for 
fnal recommendation. In ApeGNN, we formulate Eq. (4) to model 
the hop-wise semantic diferences that each layer of embeddings 
represents. Thus, the fnal embedding of �� and � � are pooled as: ∑� ∑� 

h(� ) h(� )h∗ = , h∗ = (18)�� �� �� �� 

�=0 �=0 

(� ) (� )where ℎ and ℎ have been used to model the weights and �� �� 

importance of the �-th layer embeddings of user �� and item � � , 
respectively. Eventually, the inner product of embeddings between 
�� and � � is calculated as �̂ (�� ,�� ) = h∗ ⊙h∗ , which can be exploited �� �� 

to calculate the preference of user �� on item � � . 

3.4 Optimization 
Similar to many other GNNs-based recommendation methods [9, 
30, 36], we use the Bayesian Personalized Ranking (BPR) loss [26] 
to optimize the neural network structure of ApeGNN. The BPR is a 
pairwise loss which is formalized as: ∑ 2 L = − ln � (�̂�� ,�� − �̂�� ,�� ) + � | |E(0) | | , (19) 

(�� ,�� ,�� ) ∈O 

where O = {(�� , � � , �� ) | (�� , � � ) ∈ O+ , (�� , �� ) ∈ O−} are the pair-
wise training data; O− is the set of pairs that interactions between 
the user and the item are not actually observed, while O+ is the set 
of interacted records. � infuences the strength of �2 regularization; 
sigmoid function is denoted by � (·) in this formulation; and the �2 
regularization is exploited to avoid overftting issue. 

The adaptive operation does not change the GNN nature and 
fexibility of ApeGNN. In fact, ApeGNN can serve as a plugin into 
any GNNs-based models for personalized recommendation. There-
fore, other advanced training techniques, e.g., the hop-mixing neg-
ative sampling strategy [13], can be straightforwardly applied into 
ApeGNN. In summary, the overall training process is formally de-
scribed in Algorithm 1 of Appendix. 

3.5 Model Analysis 
Here, we provide an additional discussion on the diferences be-
tween ApeGNN and other related models, regarding the designs of 
the inner-layer aggregation operations. 

ApeGNN vs. LightGCN. LightGCN [9] is representative graph 
convolution network with degree normalization based graph struc-
ture, while it ignores the distinctive semantics of each node. 
ApeGNN considers centrality-based importance to explicitly difer-
entiate each node. Compare to LightGCN, results in Tabel 2 and 
Table 4 both show the efectiveness of ApeGNN. 

ApeGNN vs. GAT. It is obvious that ApeGNN is similar to (dual) 
attention-based models which perform local aggregation for each 
layer and consider importance of nodes. Specially, attention-based 
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models assign weights for local neighbors via node features from a 
local perspective, while ApeGNN aggregates neighbors adaptively 
in a node-wise manner via centrality degree from the global 
perspective. In addition, by executing high-order propagation 
in attention-based models, the information of previous layer is 
implicitly propagated via non-linear activation to next layer. The 
adaptive aggregation of ApeGNN considers the infuence of sub-
graph structure and explicitly propagates the message via a layer 
coefcient. To sufciently show that adaptive aggregation is a better 
choice than attention modules, we provide compared experimental 
results in Table 3. As it shows, ApeGNN incorporates node-and-
layer-specifc weights to achieve adaptive aggregation, leading to 
better performance compared to attention-based methods. 

ApeGNN vs. ADC. The difusion model of ADC is able to learn 
the scale of neighbors during the propagation of each layer from 
the network for node classifcation. In particular, ADC learns the 
initial value � of every feature channel as well as layer, but ignores 
the of node importance. In contrast, the adaptive aggregator of 
ApeGNN learns centrality-aware � for each node which considers 
the importance of nodes. To prove the efectiveness of ApeGNN, 
we compare ADC (i.e., trained-� ) and ApeGNN in Table 3 in our 
ablation study. The experiments show that the efectiveness of 
centrality-based weights in ApeGNN. 

3.6 Complexity Analysis 
Let the number of nodes and edges be |U +V| and |E |, � denote the 
number of epochs, where � is the embedding size, and � is the layer 
number of the proposed GNN. The time and memory complexity 
are summarized as follows. 

Time Complexity. We analyze whether and how the adaptive 
operations in aggregation impact the complexity of GNNs-based 
recommendation methods. The time complexity of ApeGNN mainly 
comes from three parts: adjacency matrix construction, adaptive 
graph convolution operation, and BPR loss calculation. Here, we 
mainly introduce the time complexity of adaptive graph convolution 
operation. For the graph convolution module, although additional 
adaptive operations are integrated into its aggregation, it does not 
increase its complexity, i.e., � = � (�� |U + V|�). Although we try 
to learn the weighting coefcients as embeddings with fxed size, 
the cost of all steps is linearly increasing with the � , Thus, the 
cost of all three steps is linearly changing with the number of � 
and �—� ( |E | + �� ( |E | + � |U + V|)), making the time complexity 
of ApeGNN be equivalent to common GNNs-based recommender 
systems, such as LightGCN [9]. Take AMiner dataset as an example, 
the training time of ApeGNN/LightGCN is ∼21s/∼14s per epoch, 
which demonstrates that the additional node-wise parameters have 
limited afects on running time. 

Memory Complexity. In adaptive aggregation process , we assign 
centrality-based weights for each node. Thus, we train models with 
up to |U +V| parameters. Although this approach brings additional 
memory consumption (e.g., 12.9 GB on Amazon), ApeGNN can 
achieve signifcant performance gains with this operation. 

4 Experiments 
4.1 Experimental Settings 

Baselines. For performance comparison, we select various state-
of-the-art baselines including MF-based (BPRMF [26], NeuMF [11]), 
frst-order (Mult-VAE [22], GF-CF [28]), high-order (NGCF [36], 
LightGCN [9], i.e., GNNs-based ones), attention-based (NAIS [10], 
SASRec [15], GC-SAN [44] and LightSANs [4]) models. We will 
testify the efectiveness of our model ApeGNN on these four cat-
egories. The detailed description of these models is presented in 
Appedix A.2. 

Datasets. To evaluate the efectiveness of ApeGNN, we perform 
experiments on six public datasets (Ali, Amazon, AMiner, Gowalla, 
MovieLens, and Yelp2018) collected from real-world platforms with 
diferent data sizes, densities and conditions (# Users ≫ # Items and 
# Users ≪ # Items) for comparing with representative models. We 
further testify three datasets (Epinions, ML-1M and Pinterest) which 
are often evaluated among attention-based models. The detailed 
meta information of these datasets is shown in Table 5 of Appendix. 

Evaluation Metrics. We select two widely-used evaluation met-
rics, namely Recall and Normalized Discounted Cumulative Gain 
for the top-� prediction, which is denoted as Recall@� , NDCG@� , 
to evaluate performance of representative models. Besides, MRR@� 
and Hit Ratio (HR@� ) are further used to evaluate the performance 
between the ApeGNN and attention-based models. The detailed 
explanation and calculation of these metrics are presented in Ap-
pendix A.3. In the test stage, we select the all items which has 
not been interacted by this user and regard them as the negative 
samples, while the interacted items are regarded as positive ones. 
For each �� , we rank all predicted items ordered by the preference 
score �̂ (�� ,�� ) . By selecting top-� items, we present the average 
value of metrics on all users in the whole test set. Here, we conduct 
our experiments for the value of � in the range {5, 10, 20, 50}, and 
report the results of � = 20 for each user for simplicity. The trend 
of results on others � is similar to � = 20. To express convenience, 
Recall@20 is simplifed to Recall/R in Table 2/Table 4, etc. 

4.2 Performance Comparison 
The overall top-20 performance results on representative models 
with average Recall and NDCG metrics are presented in Table 2. 
In Table 2, we highlight the best results in bold and second best 
results in underline. The comparison results between ApeGNN and 
attention-based models are summarized in Table 3. The improve-
ment (%Improv.) is computed according to the second best results. 
Based on these results, we obtain the following observations: 

Comparison with MF-based models. From Table 2, we observe 
that high-order models outperform BPR-MF and NeuMF across 
all datasets. This illustrates they gain signifcant superiority com-
paring to traditional deep MF-based models. Further, gathering 
information from high-order neighbors improves the efectiveness 
of representation learning. This result is consistent with the claim 
in existing studies [9, 36]. Particularly, ApeGNN derives signif-
cantly better Recall@20 and NDCG@20 than MF-based models on 
Ali and Amazon datasets. 
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Table 2: Overall performance (% is omitted) comparison with representative model on six datasets. 

Dataset Ali Amazon AMiner Gowalla MovieLens Yelp2018 

Metrics Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG 
BPR-MF 1.03 0.46 1.65 0.76 18.42 9.38 14.17 12.04 8.20 10.75 4.72 3.84 
NeuMF 0.87 0.37 1.51 0.58 16.84 8.65 13.97 11.63 7.05 9.31 3.88 3.14 

Mult-VAE 2.60 0.78 2.30 0.82 17.89 9.81 15.49 11.98 6.18 5.23 5.94 4.64 
GF-CF 4.20 1.84 2.38 1.08 18.77 9.81 17.80 14.61 8.23 11.52 6.32 5.16 
NGCF 4.26 1.97 2.94 1.23 17.66 9.11 14.22 11.88 9.31 11.37 5.77 4.69 

LightGCN 6.13 2.86 4.11 1.86 19.69 9.87 17.75 15.22 9.41 11.36 6.61 5.39 
ApeGNN_HK 8.80 4.29 4.98 2.36 21.20 10.69 18.32 15.35 9.73 11.91 6.75 5.56 

%Improv. 43.56% 50.00% 21.17% 26.88% 7.67% 8.31% 3.21% 0.85% 3.40% 4.84 7.48% 7.96% 
ApeGNN_PPR 9.13 4.41 5.10 2.33 20.88 10.29 17.88 15.17 9.77 12.09 6.59 5.44 

%Improv. 48.94% 54.20% 24.09% 25.27% 6.04% 4.26% 0.73% - 3.83% 6.43% - 0.93% 

Table 3: Performance (% is omitted) comparison between 
ApeGNN and attention-based models. 

Dataset Models NAIS SASRec GC-SAN LightSANs ApeGNN 

Epinions 

Recall@20 
MRR@20 
NDCG@20 
HR@20 

1.11 
0.47 
0.61 
1.11 

1.45 
0.33 
0.57 
1.45 

1.56 
0.44 
0.69 
1.56 

1.68 
0.49 
0.75 
1.68 

1.82 
0.91 
1.11 
1.84 

ML-1M 

Recall@20 
MRR@20 
NDCG@20 
HR@20 

24.75 
42.65 
24.98 
84.57 

22.59 
4.4 
8.29 
22.59 

15.27 
3.00 
5.59 
15.27 

33.31 
8.17 
13.64 
33.31 

26.91 
44.52 
26.66 
86.37 

Pinterest 

Recall@20 
MRR@20 
NDCG@20 
HR@20 

11.68 
6.16 
6.06 
22.53 

9.41 
1.85 
3.44 
9.41 

9.64 
1.89 
3.53 
9.64 

9.96 
1.98 
3.60 
9.96 

16.66 
9.94 
9.37 
30.46 

Comparison with frst-order models. As high-order models, 
ApeGNN, NGCF and LightGCN overall outperform Mult-VAE and 
GF-CF on all four datasets, which demonstrates their advantages 
comparing with frst-order models. On Ali dataset, ApeGNN is 
higher than Mult-VAE in Recall@20 and NDCG@20. Moreover, 
NGCF and LightGCN underperform GF-CF on Gowalla, but outper-
form it on Amazon dataset, which may be caused by the diferent 
densities of datasets (0.084% in Gowalla v.s. 0.014% in Amazon). 
Meanwhile, our proposed ApeGNN exceeds GF-CF on all datasets 
and has an improvement up to 117% (Recall@20 on Ali dataset). 
These observations show that high-order approaches like ApeGNN 
have remarkable advantages in extreme sparse scenarios than frst-
order models. 

Comparison with other higher-order models. ApeGNN outper-
forms LightGCN on all six datasets, by 0.73-48.94% and 0.85-54.20% 
in terms of Recall@20 and NDCG@20 on average. This testifes 
that our ApeGNN can better handle deep multi-hop neighbors than 
LightGCN, which verifes the efectiveness of incorporating the 
adaptive aggregation function in ApeGNN. It captures the inter-
actions between users and items and distinguishes diferent im-
portance of embeddings from diferent layers in aggregation pro-
cess. Especially, the improvements of ApeGNN on Ali and Amazon 
dataset are more signifcant than those on the other datasets. In 
other words, ApeGNN can learn the representation better for users 
and items even if the graph is very sparse. 

Comparison with attention-based models. As Table 3 shows, 
LightSANs exploits self-attention network-based recommendation, 
and it performs better than NAIS and SASRec. This shows the 
usefulness of modeling the node-wise importance in recommender 
models. ApeGNN can achieve the optimal performance over the 
three datasets. Compared to NAIS and LightSANs, ApeGNN utilizes 
the centrality degree to model the importance of users and items, 
which helps to diferentiate each node. In addition, unlike NAIS, 
SASRec and LightSANs that use attention mechanism to learn the 
representations, ApeGNN models high-order user-item interaction 
to obtain embeddings in GNNs. 

4.3 Study of ApeGNN 
To comprehensively understand the structure of ApeGNN and in-
vestigate the reasons of its efectiveness, further exploration exper-
iments are performed. Firstly, we study the infuence of value of 
� . Secondly, we explore the efect of diferent layer numbers � in 
adaptive aggregation module. Finally, we evaluate the infuence of 
regularization �2 during training. 

Efect of value � . To get a better understanding of the proposed 
ApeGNN model, we evaluate the key components of ApeGNN, i.e. 
aggregation mechanisms. There are three diferent values of weight 
� during aggregation, including fxing � to the initialization value for 
user type and item type (fxed-� ), training one � for each node and 
item without centrality (trained-� ), training a unique � for each user 
and item with centrality (ApeGNN-� ). Here, we compare ApeGNN 
with its three variants: fxed-� , trained-� and ApeGNN-� . Figure 3 
shows the Recall@20 results of ApeGNN on six datasets when the 
inner-layer weights with �� , �� of users and items are set to diferent 
values. From the results, we have the main observations as follows. 

Overall, we reach the optimal performance when considering 
centrality of a node and training a unique � for this node on all 
datasets. It shows that in-degree of nodes is important to represent 
their centrality and popularity in user-item interacted graph, further 
verifes that importance should be considered during aggregation 
and propagation process. Besides, we fnd that the result of training 
one � for all nodes and all items respectively is better than fxing � 
for all nodes on six datasets. It justifes our assumption that users 
and items are nodes of diferent types that we should diferentiate 
them to learn better representations and improve the performance 
of recommendation. To sum up, ApeGNN can diferentiate users 
and items, and assign centrality-based and layer-wise weights via 
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ApeGNN-� for nodes in aggregation process, which can boost the 
recommendation performance. 
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Figure 3: Recall@20 (with omitting %) on six datasets when � 
is set with diferent values. 

Efect of layer numbers � in propagation. We analyze the 
efect of layer number of propagation from 1 to 4, provide a detailed 
comparison with the LightGCN, and highlight the best results with 
underline and bold for LightGCN and ApeGNN, respectively. From 
Figure 3, we also have the following main fndings. Overall, the 
ApeGNN outperforms LightGCN under all layer settings across all 
datasets. The result is consistent with Table 2. In general, with the 
increase of the layer number, the performance frst increases and 
then decreases. For details, the performance increases to peak value 
with the layer number from 1 to 2 (or 3), then the performance 
degrades. It indicates that it is helpful for a node to consider its 
low-order neighbors which can smooth its embedding and obtain 
powerful representation. 
Table 4: Results on top-20 recommendation between Light-
GCN and ApeGNN on three datasets at diferent layers. 

Dataset Ali Amazon AMiner 
#Layers Method Recall NDCG Recall NDCG Recall NDCG 

1 Layer LightGCN 
ApeGNN 

4.90 2.19 
8.70 4.23 

3.64 1.55 
4.98 2.36 

19.09 9.43 
20.90 10.49 

2 Layers LightGCN 
ApeGNN 

2.93 1.30 
8.69 4.22 

3.88 1.77 
4.91 2.28 

19.69 9.87 
21.20 10.69 

3 Layers LightGCN 
ApeGNN 

5.89 2.77 
8.80 4.29 

3.98 1.76 
4.78 2.20 

19.24 9.56 
21.04 10.65 

4 Layers LightGCN 
ApeGNN 

6.13 2.86 
8.76 4.29 

4.11 1.86 
4.70 2.17 

19.38 9.83 
21.02 10.61 

Efect of coefcient � of regularization �2 . In ApeGNN, � of 
�2 is the additional hyper-parameters. As shown in Figure 4, we 
analyze the infuence of diferent coefcient � on representative 
datasets (Amazon and MovieLens). We observe that ApeGNN is rel-
atively insensitive to these hyper-parameters. The optimal value for 
Amazon and MovieLens both are 10−2. When � is smaller than 10−3, 
the performance starts to drop, which indicates that regularization 
can prevent overftting in some degree for ApeGNN. 

5 Related Work 
5.1 Attention-based GNN Models 
Attention-based models can enhance the embedding vectors of 
users and items by applying attention-based mechanism to obtain 
the interactions on the user-item bipartite graph. To exploit the im-
portance relation between user and item, NAIS [10] automatically 
learns the importance weight of each interacted item. Similar to 
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Figure 4: Performance of ApeGNN at the 3-th layer on Ama-
zon and MovieLens datasets. 

NAIS, GraphRec [3] models the diferent contributions of historical 
items to shape user’s interest in a user-item graph. SASRec [15] 
proposes a self-attention model to capture long-term sequences 
and semantics, further predicting next action from users’ historical 
items. Inspired by the power of the attention mechanism, Light-
SANs [4] adopts low-rank decomposed self-attention for next-item 
recommendation. In contrast, the performance can be improved by 
projecting interacted items into a GNNs-based model to capture 
high-order neighbors. 

5.2 GNNs-based Recommendation Methods 
GNNs-based recommendation approaches model each user and 
each item as embeddings and learn the embedding vectors by re-
constructing the historical behavior between users and items. Early 
MF-based models (such as PMF [27] and SVD++ [21]) are based 
on decomposing the interaction adjacency matrix between users 
and items, and predict users’ preferences for unseen items based 
on these decomposed vectors, which are efective but insufcient 
to model complex user behaviors and large data inputs. Similar to 
classical CF methods, the neural collaborative fltering (NCF)-based 
methods (such as [7, 11, 12, 14, 22, 43]) expanded the inner product 
of MF in the manner of neural collaborative fltering to increase 
the capacity, but still faced the problem that it was difcult to learn 
high-order structural information in the data. 

Emerging Graph Convolution Networks (GCNs) put up promi-
nent performance by modeling graph structure and learning rep-
resentation. Motivated by the efciency of graph convolution, the 
GNNs-based paradigm is introduced into recommendation. Early 
studies such as GCN [17], PinSage [45] and GAT [34] aggregate the 
neighborhood representations to generate the embeddings of the 
target node on the spatial domain. Recent studies [9, 32, 36] build a 
user-item bipartite graph and use GCN to capture CF signals in high-
order neighbors on a graph. However, theses GNNs-based models 
fail to handle diferent importances of nodes during aggregation. 

6 Conclusion 
In this paper, we propose ApeGNN which introduces the graph 
difusion process into GNNs-based recommendation. ApeGNN ad-
dresses the issues that neighborhood types are not adaptive to 
identify and the importance of each node which is not divided by 
expanding the propagation of neighborhood. We assign diferent 
weights to entities with diferent types and importance of diferent 
nodes, and assign diferent importance on multi-order neighbor-
hoods. By performing experiments on public recommendation, we 
empirically show the superiority of the ApeGNN compared with 
existing baseline models. 
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A Supplementary 
In this supplementary, we present the detailed implementation note 
of ApeGNN, including the datasets, baselines, evaluation metrics, 
parameter settings, and the experimental results. 

A.1 Datasets 
We use public datasets to perform experiments and evaluate the 
performance of ApeGNN. The detailed descriptions and statistics 
of these datasets are as follows: 

Table 5: The statistics of our experimental datasets on repre-
sentative models. 

Dataset # Users # Items # Interactions # Density 

Ali 
Amazon 
AMiner 
Gowalla 

MovieLens 
Yelp2018 

106,042 
192,403 
5,340 
29,858 
6,040 
31,668 

53,591 
63,001 
14,967 
40,981 
3,416 
38,048 

907,407 
1,689,188 
163,084 
1,027,370 
999,611 
1,561,406 

0.00016 
0.00014 
0.00204 
0.00084 
0.04362 
0.00130 

Epinions 
ML-1M 
Pinterest 

116,260 
6,040 
55,187 

41,269 
3,706 
9,911 

188,478 
1,000,209 
1,445,622 

0.00004 
0.00264 
0.04468 

• Ali [13] dataset comes from the Alibaba e-commerce plat-form 
and interaction record of its users is more than 10 in a user-item 
bipartite graph. 

• Amazon [13] is a widely used dataset for recommendation eval-
uation. We use the Amazon-rec dataset which contains the inter-
action of the electronics category. Considering there are many 
preprocessing setting on the Amazon dataset, this paper keeps 
the same setting as [13]. 

• AMiner1 collects scientifc resource reading behavior from 
AMiner.org of its users from August to October in 2021. To unify 
the experimental settings, we remains users and items that each 
node has at least ten interactions, and splits the interacted records 
as training, test, and validation set. To evaluate the recommen-
dation performance, for each user, we select 10% of interactions 
for testing, another 10% of interactions is used for validation and 
adopting early stopping, and the remaining 80% interactions are 
used for training. 

• Gowalla2 comes from Gowalla website and contains the check-in 
historical behavior. Wherein, the locations are shared by users as 
the items and reviews from the user are regarded as interactions. 

• Yelp20183 dataset is obtained from the Yelp challenge in 2018 
and includes the interactions between users and lcoal businesses. 

• MovieLens/ML-1M4 datasets come from GroupLens Research, 
whose authors have collected and made available rating data sets 
from the MovieLens website5. 

1https://www.aminer.cn/data/?nav=openData#AMiner-Paper-Click 
2http://snap.stanford.edu/data/loc-gowalla.html 
3https://www.yelp.com/dataset 
4https://grouplens.org/datasets/movielens/1m/
5https://movielens.org 

• Epinions/Pinterest datasets come from RecBole [48] research. 

A.2 Baselines 
In our experiments, the compared baselines mainly include MF-
based models (BPR-MF and NeuMF), frst-order models (Mult-
VAE and GF-CF), high-order models (NGCF and LightGCN), and 
attention-based models (NAIS, SASRec, GC-SAN, and LightSANs). 
• BPR-MF [26] proposes an optimization criterion for personal-
ized ranking by BPR loss which is a matrix factorization-based 
approach to capture the interactions. 

• NeuMF [11] exploits collaborative fltering on implicit feedback 
based on deep neural networks. It leverages a multi-layer percep-
tion to model and learns the user-item interaction function with 
non-linearities. 

• Mult-VAE [22] is an item-based CF method for implicit feedback 
by variational autoencoders (VAEs). It adopts the multi-nomial 
likelihood of data, uses Bayesian inference for parameter estima-
tion, and connects information-theoretic to maximum entropy 
discrimination. 

• GF-CF [28] proposes graph flter based CF and proves the special 
cases via the lens of graph signal processing as well as the im-
portance of smoothness. To compare it with other models fairly, 
we update its embedding size and test process to keep unity with 
our test method. 

• NGCF [36] proposes a message-passing architecture to capture 
collaborative fltering signal in the frst-order and high-order 
propagation. NGCF stacks embeddings of multiple propagation 
layers as its fnal representation for users and items. 

• LightGCN [9] simplifes the design GCN and adopts the key 
component—neighborhood aggregation—for collaborative flter-
ing. After obtaining embeddings of all layers, a weighted sum 
calculation is applied to generate fnal embedding. 

• NAIS [10] is an attentive item similarity network which can dis-
tinguish each historical item of a user to address the inefciency 
issue for item-based CF. 

• SASRec [15] is a famous sequential-based model to capture long-
term interactions. It applies self-attention mechanism to address 
two issues, which are parsimony of markov chains-based models 
on sparse data and complexity of RNNs-based models on dense 
data. 

• GC-SAN [44] captures rich local dependencies via GNNs and 
learns graph contextualized representations of items in sequences 
via attention mechanism. 

• LightSANs [4] proposes the low-rank decomposed self-attention 
networks to address the issue of high complexity in self-attention 
and uncertain position encoding in sequential relations. 

A.3 Evaluation Metrics 
We apply widely-used metrics to evaluate the top-� performance of 
the ApeGNN. The detailed description of these metrics are described 
as follows: 
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• Recall indicates the coverage of true items as a result of top-� 
recommendation. ∑ 1 |� (�� ) | ∩ |�(�� ) | 
������@� = , � .� .|�(�� ) | = �, (20)|U| |� (�� ) | 

�� ∈ U 

where � (�� ) and � (�� ) are the test and recommended item set of 
user �� respectively. 

• NDCG (Normalized Discounted Cumulative Gain) computes a 
score which emphasizes higher-ranked true positives. First, the 
discounted cumulative gain (DCG) is calculated as: 

� ∑ ∑ 2(����,�� 1 ) − 1 
���@� = , (21)|U| ���2 (2 + �)

�� ∈ U �=1 

where ����,�� is 1 if k-th item k is interacted with user �� , else it 
is 0. Then the NDCG@� is calculated by Eq. (22): 

���@� 
� ���@� = , (22)

����@� 

where IDCG@K denotes the ideal cumulative gain. 

• MRR (Mean Reciprocal Rank) is a measure that can return a list 
of the correctly-recommended item to test users. ∑ 1 1 

���@� = , (23)
� ���� (�)
� ∈�� 

where � is the user’s number in test set. 

• HR (Hit Ratio) represents the proportion of the total number of 
test sets in the top-� list of each user to all test sets.Í 

� (�)
� ∈ U

��� �����@� = Í , (24)
� (�)

� ∈ U 

where U,� (�), �(�) are user set, recommended set of user � , and 
test set of user � , respectively. 

A.4 Implementation note 

Running Environment. We conduct all experiments on Ubuntu 
18.04.2 LTS server with Intel(R) Xeon(R) CPU E5-2680 v4 @ 
2.40GHz, 252G RAM and 8 NVIDIA GeForce RTX 2080TI-11GB. 
We implement ApeGNN with Python 3.7.6 and PyTorch 1.7.0. 

Hyper-parameter Settings We implement our ApeGNN in Py-
Torch. For all models, we set batch size as 2048. We optimize 
ApeGNN with a learning rate at 0.001 and Adam optimizer [16]. 
Meanwhile, we set the propagation layer from 1 to 4, the embed-
ding dimension in range of {64, 128, 256, 512}, and the coefcient � 
of �2 normalization in range of {10−2 , 10−3 , 10−4 , 10−5 , 10−6}. In 
terms of hyper-parameters, to fnd the best settings, we apply a 
grid search. For Ali, Amazon, AMiner, Gowalla, MovieLens, and 
Yelp2018, the �2 coefcient � are 10−3, 10−2, 10−3, 10−3, 10−2, and 
10−3, respectively. Besides, to initialize the model parameters, we 
use the Xavier initializer [6]. Moreover, if Recall@20 does not in-
crease for 10 consecutive epochs on the validation dataset, we apply 
an early stopping strategy to stop training. 

Training Algorithm. We show the training algorithm of ApeGNN 
in Algorithm 1. 
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Algorithm 1: The training algorithm of the ApeGNN. 

Input: G: user-item bipartite graph, 
U: user set, V: item set, �: number of layer. 

1: Initialize h(0) , h(0) , ∀�� ∈ U, ∀� � ∈ V �� �� 
2: iter ← 0 
3: while L is not converged do 
4: for � ← 0 to � do 

h(� )5: = Aggregate and Propagate by Eq. (7) and Eq. (16), �� 
∀�� ∈ U 
h(� )6: = Aggregate and Propagate by Eq. (8) and Eq. (16), �� 

∀� � ∈ V 
7: end for 

h(0)8: �� ← ℎ� 
∗ 
� 
= Pooling by Eq.(18), ∀�� ∈ U 

h(0)9: ← ℎ∗ = Pooling by Eq.(18), ∀� � ∈ V �� �� 

10: R̂ ← �̂ (�� ,�� ) = ℎ� 
∗ 
� 
⊙ ℎ∗ �� , ∀�� ∈ U, ∀� � ∈ V 

11: Update L with BPR Loss by Eq. (19) 
12: iter ← iter + 1 
13: end while 
Output: R̂ ∈ R�×� : preferences for users on candidated items. 

Additional Results. We show efectiveness of layer number on the 
other three datasets (Gowalla, MovieLens and Yelp2018) in Table 6. 

Table 6: Results on top-20 recommendation between Light-
GCN and ApeGNN on other datasets at diferent layers. 
Underline and bold denote the best results on LightGCN and 
ApeGNN, respectively. 

Dataset Gowalla Yelp2018 MovieLens 
#Layers 

1 Layer 

2 Layers 

3 Layers 

4 Layers 

Method 
LightGCN 
ApeGNN 
LightGCN 
ApeGNN 
LightGCN 
ApeGNN 
LightGCN 
ApeGNN 

Recall NDCG 
16.38 14.02 
17.86 15.04 
16.99 14.60 
18.16 15.24 
17.58 15.02 
18.28 15.36 
17.75 15.22 
18.32 15.35 

Recall NDCG 
5.75 4.66 
6.55 5.39 
6.12 5.00 
6.72 5.53 
6.34 5.15 
6.75 5.56 
6.61 5.39 
6.67 5.46 

Recall NDCG 
9.30 11.25 
9.73 11.91 
9.41 11.39 
9.67 11.87 
9.41 11.36 
9.65 11.86 
9.31 11.34 
9.62 11.83 
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