
ApeGNN: Node-Wise Adaptive Aggregation in GNNs for
Recommendation

Dan Zhang Yifan Zhu Yuxiao Dong Yuandong Wang
Tsinghua University Tsinghua University Tsinghua University Tsinghua University

zd21@mails.tsinghua.edu.cn zhuyifan@tsinghua.edu.cn yuxiaod@tsinghua.edu.cn wangyd21@tsinghua.edu.cn

Wenzheng Feng Evgeny Kharlamov Jie Tang∗
Tsinghua University Bosch Center for Artifcial Tsinghua University

wenzhengfeng96@gmail.com Intelligence jietang@tsinghua.edu.cn
evgeny.kharlamov@de.bosch.com

Abstract
In recent years, graph neural networks (GNNs) have made great
progress in recommendation. The core mechanism of GNNs-based
recommender system is to iteratively aggregate neighboring in-
formation on the user-item interaction graph. However, existing
GNNs treat users and items equally and cannot distinguish diverse
local patterns of each node, which makes them suboptimal in the
recommendation scenario. To resolve this challenge, we present
a node-wise adaptive graph neural network framework ApeGNN.
ApeGNN develops a node-wise adaptive difusion mechanism for in-
formation aggregation, in which each node is enabled to adaptively
decide its difusion weights based on the local structure (e.g., de-
gree). We perform experiments on six widely-used recommendation
datasets. The experimental results show that the proposed ApeGNN
is superior to the most advanced GNN-based recommender meth-
ods (up to 48.94%), demonstrating the efectiveness of node-wise
adaptive aggregation.

CCS Concepts
• Information systems → Recommender systems.

Keywords
Recommender Systems; Graph Neural Networks; Node-wise Adap-
tive Aggregation

ACM Reference Format:
Dan Zhang, Yifan Zhu, Yuxiao Dong, Yuandong Wang, Wenzheng Feng,
Evegeny Kharlamov, Jie Tang. 2023. ApeGNN: Node-Wise Adaptive Ag-
gregation in GNNs for Recommendation. In Proceedings of the ACM Web
Conference 2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3543507.3583530

∗Jie Tang is the corresponding author.

The code is available at https://github.com/zhangdan0602/ApeGNN.

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583530

1 Introduction
Graph neural networks (GNNs) have produced remarkable perfor-
mance on the task of recommendation [9, 13, 35, 42, 45]. Specifcally,
GNNs perform the message passing process over graph structures
to aggregate local neighborhood information and stack multiple
representation layers in high-order propagation [8, 17, 34]. GNNs-
based recommender systems apply the information propagation
operation over the user-item bipartite graphs, such as NGCF [36],
LightGCN [9], and MixGCF [13].

Figure 1: Local structures of users are diverse and node-wise
aggregation is important in GNNs-based recommendation
scenario.

However, there are remaining issues in GNNs-based models for
recommendation. Firstly, node types are not distinguished in
GNNs-based recommendation. User-item interaction network
is a special type of graph in which edges can only be existed in
the middle of users and items. In other words, there is no direct
communication between two users or items. Up to now, the ex-
isting GNNs-based recommendation method is no diferent from
the general GNNs that handles the other normal graphs, such as
reference graphs [17], social networks etc. , that is, the same mod-
eling strategies are adopted for all users and items. Generally, user
aggregates information from (only) 1-hop item neighbors with 0-th
layer embeddings, from 2-hop users with 1-th layer representations,
and from 3-hop items again with 2-th layer embeddings, in a high-
order neighborhood aggregation setting. By taking all layers the
same, the aggregation step in GNNs-based recommender systems
ignores the semantic diferences between users and items at each
subgraph structure—and by extension their embeddings. Secondly,
local structures of diferent users/items are diverse in rec-
ommendation. In Figure 1, we show a motivating example to
fully understand motivation of this work, i.e., the node-wise neces-
sity for GNNs-based recommendation. To be specifc, we perform
1-/2-/3-hop aggregation and propagation with LightGCN on Ali

759

https://doi.org/10.1145/3543507.3583530
https://github.com/zhangdan0602/ApeGNN
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543507.3583530
mailto:evgeny.kharlamov@de.bosch.com
mailto:wenzhengfeng96@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583530&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al.

and AMiner datasets respectively, and show the relation between
the Recall@20 result and user nodes with diferent degree inter-
vals. We fnd that average result distribution of diferent degree
nodes on each hop propagation is very unbalanced and the opti-
mal propagation number for each node is uncertain, which means
each user/item has its local structure. This demonstrates that dif-
ferent nodes with diferent structures in recommendation should
be given diferent importance. Take these issues into account, we
argue that node-wise adaptive aggregation in GNNs for recommen-
dation is a necessary step to learn the node-level diference among
layers. Therefore, we propose to study whether each node should
be treated diferently in diferent layers during the aggregation
process of GNNs-based recommendation methods.

Table 1: Critical comparison between existing GNNs-based
models for recommendation.

Models Explicit Degree Info. Linear Propagation Node-wise

GAT [33] % % !

LightGCN [9] ! ! %

ADC [47] ! ! %

ApeGNN ! ! !

However, the aggregation step in previous GNNs-based recom-
mender systems treats all nodes as the same and ignores their vari-
ant importance [38], which results in sub-optimal performance [24].
As Table 1 shows, we compare existing representative GNNs-based
models for recommendation. Previous attention-based GNN models
(e.g., GAT) attempt to model the diferent infuences among user and
item nodes without considering the local diversity [1, 3, 10, 33, 41].
Moreover, for diferentiating the importance of interacted histor-
ical items, the degree-based GNNs process (e.g., LightGCN) can
improve embedding learning and achieve better performance [9] in
bipartite graph for recommendation [9, 13, 36], but still ignores the
local diversity issue. In recent difusion-based GNNs studies (e.g.,
ADC), appropriate neighborhoods are selected fexibly to enhance
GNNs’ expressiveness during the propagation [19, 47]. For instance,
the graph difusion convolution [19] model incorporates the heat
kernel and node centrality information into GNNs’ message pass-
ing process to reinforce structural smoothness. Nevertheless, GDC
is based on the assumption of homophily and does not perform
well on the link prediction task. An adaptive graph convolution
work (ADC) [47] proposes to leverage the heat kernel theory [39] to
learn the optimal neighborhood for enhancing the low-frequency
flters. Though the heat kernel is originally used to enable neigh-
borhood selection in GNNs, it also provides a natural solution to
address the aforementioned issues for recommendation.

In this work, we present a novel AdaPtivE model (ApeGNN),
which conducts node-wise adaptive aggregation in GNNs for rec-
ommendation. Instead of treating each user and item equally at
each layer during the high-order aggregation and propagation, we
leverage the graph difusion process to adaptively assign a unique
weight (inner-layer weight) to each hop of neighbors and distin-
guish the information from diferent GNNs layers, promoting the
development of aggregation methods from fxed aggregation to
node-wise aggregation. The idea of ApeGNN for GNNs-based rec-
ommendation is that each user �� and each item � � respectively
have a unique aggregation weight � (� (��), �) and � (� (� �), �) with

coefcient � and layer � . This difusion weights represent the dis-
tinctive contributions of �� ’s and � � ’s embedding that are captured
by ApeGNN at each layer.

ApeGNN can serve as a plug-in and be naturally incorporated
into any existing GNNs-based models for recommendation without
modifying the architecture of models. We conduct extensive exper-
iments on six widely-used public datasets and compare ApeGNN
with representative GNNs-based and attention-based models to
demonstrate the efectiveness of ApeGNN. We follow the same ex-
perimental procedure—data splits, optimization, and evaluation—as
existing GNNs-based recommendation studies [9, 36]. The results
suggest that the proposed ApeGNN can consistently outperform
state-of-the-art GNN baselines (relative improvement up to 48.94%
on Ali, 24.09% on Amazon and 7.67% on AMiner) among all data
sets on both Recall and NDCG, which shows the benefts of node-
based adaptive aggregation. Case studies show that adaptive node
weights contribute to the overall and each layer’s performance.

2 Graph Neural Networks for Recommendation
In this section, we revisit GNNs-based recommendation systems
and discuss the limitations of existing GNNs for recommendation.

2.1 Preliminaries
Generally, the input of a GNNs-based recommendation model is a
user-item bipartite graph G = {U, V, R} with the sets of users U =
{�1, �2, . . . , �� }, items V = {�1, �2, . . . , �� }, and the interactions
such as purchase, rate and click, among users and items R ∈ R�×� ,
where � is the amount of users and � denotes the total number of
items. For each interaction, � (�� ��) ∈ R is set to 1 if �� interacts with
� � and 0 otherwise. With R, the purpose of the recommendation
system is to predict the items which the user will interact further.
GNNs have been recently found wide adoption in recommender
systems [5, 40, 42, 48]. Similar to common GNN models, GNN-based
recommender systems perform message passing over the input
graph structure to get contextual representations. Commonly, the
message passing process consists of the aggregation and pooling.

Aggregation. For node �, the general representation at �-layer
during propagation in GCN-based models can be represented as:

h(�) = � (h(� −1) , ��� ({h(� −1) , ∀� ∈ N�)}), (1)� � �

where ��� and � stand for aggregation and update function re-
spectively. Take GCN [17] for example, it aggregates each node’s
neighborhood nodes and performs message passing. In particular,
the propagation rule Eq.(1) of GCN [17] is defned by:

h(�) = � (W(�) (h(� −1) + Th(� −1))) (2)� � �

where h(�) denotes the embedding representation of � after �-layer �

GCN. In particular, h(0) is the 0-layer embedding; � (·) is non-linear �
activation for feature propagation, W is a weight matrix; N� is the

D− 12 Ã D̃ − 1

neighborhood of node �. T can be calculated by ˜ 2 , where Í
D is the diagonal node degree matrix with D�� = � �� � . Note that
Ã = I + A and D̃ = I + D, in which A is the adjacency matrix
with self-loop and I is the identity matrix that implies self-loop
connections on nodes.

Inspired by the design and idea of the GCN model, emerging
studies (e.g., GCMC [32] and NGCF [36]) attempt to adopt GCN
structure for recommendation tasks. However, recent studies [2, 9]

760

ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation

reported that some of the most used designs of GCNs do not con-
tribute much to recommendation performance, which complicates
learning process. They are designed to simplify the GCN for recom-
mendation and achieve better performance. Taking LightGCN [9]
as an example, it deletes � (·), W and I. Thus, its aggregation and
propagation process are expressed as:

h(�) = h(� −1) + Th(� −1)� � � , (3)

where normalized item T is computed by D− 12 AD− 12 .

Pooling. In GCN [17], the representation vector learned by the
fnal layer is utilized to perform node classifcation. However, the
fnal representation of nodes could be varying by changing the
pooling operation at the each GCN layer (also called the layer com-
bination operation). In most GNNs-based recommender models, the

, h(1) , · · · , h(�)pooling function combines the embeddings (h(0))� � �
propagated at each layer and generates the fnal representation
vector h�

∗ . Common pooling operations include weighted sum-
based [9, 23, 31], concat-based pooling [30, 36], attention-based and
other approaches [45]. Generally, the pooling function � of user �
can be formulated as:

h∗ = � (h(0) , h(1) , · · · , h(�)), (4)� � � �

where � is the total number of propagation layers and the pooling
function of item � is similar to that of user. In particular, weighted
sum pooling function is the most commonly used. For example, Í�
h∗ = �� h

(�) , �� is the weight of �-th layer embedding for the � �
� =0

fnal embedding. Especially, they assign a constant value (e.g., �� =
1/(� + 1)) as fxed weight for the embeddings of the each layer to
perform layer combination. In other words, the importance of the
embeddings represented by each subgraph structure in diferent
GCN layers is the same.

2.2 The limitation of GNNs-based models
By default, the current GNNs-based recommendation models have
the following setup in the aggregation process: First, these methods
treat all nodes in the bipartite graph as the same; Second, they con-
sider the embeddings of multiple layers with the same importance
in a local perspective.

By design, aggregators of GNNs mainly include two categories:
degree-based aggregator represented by LightGCN and attention-
based aggregator represented by GAT. In fact, they do not explicitly
diferentiate nodes with global perspective during the message pass-
ing process, while all nodes are in nature diferent in recommender
systems [9, 23, 29].
• Degree-based Aggregator Represented by LightGCN. By
extending Eq. (3), the graph convolution on the frst and second
layers for user embedding �� is formulated as Eq. (5), and item
embedding is formulated similarly.

h(1)
∑

h(0)
1

= √ ,�� ��
�� ∈N��

(|N�� | |N� � |)∑ ∑ (5)
h(2)

1 1
h(0)= √ ,�� �� |N�� | (|N�� | |N�� |)�� ∈N�� �� ∈N��

WWW ’23, April 30–May 04, 2023, Austin, TX, USA √
where 1/|N�� | and 1/(|N�� | |N�� |) are the non-sysmmetric and
symmetric normalization, respectively. It is observed that the ag-
gregation and propagation process of embeddings for users and
items are exactly the same, that is, the information updated from
same type (i.e., users or items) nodes is propagated in odd GCN
layers (1, 3, · · ·), and messages from the other type is propagated
in even GCN layers.

The degree-based aggregator is applied to each node to control
the decay factor during aggregation and propagation, potentially
making these processes diferent. However, the normalization coef-
fcient is a constant value computed by degrees of node, which is
irrelevant with node types and the layer subgraph structures. In fact,
users and items are two diferent types of nodes with distinctive
semantics in a user-item bipartite graph, and their own embeddings
in diferent subgraphs should be naturally considered dissimilar as
well. This efect has been initially investigated by grouping users
in higher-order GCN layers [23]. In this work, we frst attempt to
explicitly diferentiate node-aware users and items in the simple
GNN architecture and examine whether diferent treatments to
them can beneft GNNs-based recommender systems.
• Attention-based Aggregator Represented by GAT. When
representation of a node is obtained through all neighbors, the con-
tributions of these neighbors should be diferent as well. Diferent
from degree-based aggregator, attention-based aggregator assigns
diferent weights for neighbors of each node during aggregation in
local graph structure. The aggregation process is described as:

h(�) · h(� −1)= � (W · ��� �� + b), ∀� � ∈ N�� . (6)�� ��

where ��� �� denotes attentive scores and it is usually calculated
by Softmax function. The attention weights are calculated in a
local graph and propagated implicitly to next layer via non-linear
activation function, which ignores decay factor of each node’s
centrality distribution with a node-wise perspective. However, the
embeddings at diferent layers of (graph) neural networks are in
nature supposed to capture diferent levels of features [37, 46]. In
addition, as introduced above, the information updated from same
type nodes and the other type in GNNs-based recommendation
models is propagated in odd and even GCN layers, respectively. In
this paper, we study whether the diferent weights on each node
should be assigned from one layer to another. Therefore, in this
study, we try to address this research problem: "to what extent
such node-wise and layer-wise diferentiation can improve the
performance of GNNs for recommendation?"

3 The ApeGNN
We design a GNNs-based recommender system ApeGNN in this
section. The main idea is to diferentiate each user as well as item
from nodes during aggregation and calculate the impacts in a node-
wise way in GNNs. To achieve this, we incorporate the idea of graph
difusion based adaptive operations into the aggregation.

3.1 Node-Wise Adaptive Aggregation in GNNs
To incorporate node importance into existing aggregation in GNNs-
based models for recommendation, we design a node-wise adaptive
aggregation mechanism. For a user �� and its neighborhood nodes
N�� , the aggregation function ��� with weight coefcient function

761

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al.

Embedding

𝑢!

𝑢"
𝑢#

𝑢$

𝑢%
𝑣!

𝑣%

𝑣$

𝑣"
3-hop neighbors 2-hop neighbors 1-hop neighbors

∑ e!!
(∗)

e%!
(∗)

 ∑

Input

RankAdaptive Aggregation and Propagation

𝒕(𝑫𝒆𝒈)𝒕(𝑫𝒆𝒈) 𝜽
𝒕𝒖
(𝟎)
𝑯𝑻

𝒕(𝑫𝒆𝒈)

user 𝒖𝟏

item 𝒗𝟏
Adaptive Aggregation and Propagation

e!!
(&)

 e!!
(')

 e!!
(()

𝜽
𝒕𝒖
(𝟏)
𝑯𝑻 𝜽

𝒕𝒖
(𝟐)
𝑯𝑻

Figure 2: The overview of the ApeGNN model when � = 3. In ApeGNN, the users and items at each layer are modeled diferently
with adaptive weights � via the heat kernel (default) and PPR in the process of aggregation and propagation.

� (���) for user �� can be presented as:
h�� = ��� ({h�� , ∀� � ∈ N�� }; � (���)). (7)

where ��� is a parameter of adaptive operation for user �� . Similarly,
the aggregation function ��� with weight coefcient function
� (���) for item � � can be described in Eq. (8). Then, we introduce
how to use � (���) and � (���) during aggregation process.

h�� = ��� ({h�� , ∀�� ∈ N�� }; � (���)), (8)

Weighting Coefcients � . As previously discussed, semantics
contained in embeddings at diferent layers tend to be diferent in
(graph) neural networks. For GNNs over a bipartite graph, each
layer is made up of either users or items, which naturally makes
the semantics of each layer diferently. In other words, the em-
beddings at diferent layers should be treated distinctly by setting
diferent weights to capture the unique semantics of each layer
during aggregation. Specially, we propose two methods, namely
heat kernel (HT) [39] and personalized PageRank (PPR) [25], to
simulate the graph difusion process and provide better importance
selection support. Here, we will introduce how to formulate these

, ���� two methods as coefcients (���) in detail. (�) (�)(�) (�)�� ��
• The heat kernel. The feature propagation between nodes in
the GNNs-based models can be viewed as the practice of Newton’s
law of cooling (also known as the heat kernel) [20, 47], in which
heat is transferred from regions with higher temperature to regions
with lower one. That is, the embedding propagation between two
nodes is naturally proportional to their representation. Thus, the
derivation of this prior knowledge is calculated as:

�h�� (�) + Δh�� (�) = 0, (9)
�� ∑ dh�� (�)

= − A�� �� (h�� (�) − h�� (�)), (10)
d�

�� ∈N��

where h�� (�) and h�� (�) denote representations of user �� and
item � � after time � . This derivation indicates that h�� is related
to its neighbors at one time. Inspired by difusion design of the

heat kernel, we can incorporate the heat kernel into the GNNs-
based models for personalized recommendation. Given an initial
defnition that the heat kernel can be expressed as �� = �−� Γ at
time � in a graph, where Γ (Γ = I − D) is the Laplacian matrix of
graph G. According to this defnition, Eq. (3) can be reformulated
as:

h(�) = �� h(0), (11)

where h(�) denotes the hidden representation of a node after the
difusion time � . For ∀� ≥ 0, the convolution kernel of G with the
heat kernel is formulated as:

∞
�� �−� ∑

�−� Γh = T� h, (12)
� !

� =0

where � denotes the current layer, the parameter �� is related to
neighborhood size of a node at �-th layer. Therefore, a function ��

��
�

and ��� with ��� ��
with ��� for each node are used to automatically

learn and update �� and �� during training. Its formulation can be
described as:

�� �−���
��� ��

(�) = . (13)
(�) � !��

• PPR. ApeGNN aims to recognize the local pattern from each
node’s graph structure. To achieve this objective, we utilize the PPR
used in PageRank [25] and APPNP [18] to build graph structure
information and assign unique weights for each node. The coef-
cient ���� with teleport probability ��

(
�

0) ∈ (0, 1) for user can be ��
represented as:

���� (�) (�))� (�) = ��� (1 − ��� . (14)
(�)��

The common points between ApeGNN and APPNP are that we con-
nect GCN with personalized PageRank to propagate long range and
reduce the oversmoothing risk, and leverage teleport probability
properly to retain the initial features to gain better performance.
By leveraging the heat kernel and personalized PageRank, we can
assign appropriate weights fexibly for each node to enhance low-
frequency flters and enforce smoothness on a graph.

762

ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Centrality Importance � . As Figure 1 depicts, the best propaga-
tion of � is not certain. Thus, the neighbors weights at each layer
should be considered when modeling the importance of nodes,
and the diferent infuences among user and item nodes should be
modeled when obtaining the representation of a node during the
aggregation. Previous research [25] about node importance estima-
tion suggests that the importance of nodes is positively correlated
with its centrality in a graph. Generally, the in-degree � (��) of user
node �� denotes its centrality and popularity. Therefore, we use

(0) (0)in-degree � (��) as weights � and � at the initial layer for �� �� ��

and � � to model the diferences of users as well as items. Here, we
defne � for user �� and obtain a small value for � . The centrality
importance of items are similar to users’ in Eq. (15).

(0)
� = � (� (��)) = � (���(� (��) + �)), (15)��

where � is a small positive constant chosen as 10−7 and the teleport
(0)propability � ∈ (0, 1).��

In ApeGNN, by giving a user-item interaction bipartite graph as
the input, the embedding of each user and each item is diferentiated
via an adaptive aggregation, and this embedding is parameterized
with node-wise to form the fnal representations. The architecture
of ApeGNN for recommendation is presented in Figure 2 which
illustrates main parts of the model—the node-wise inner-layer ag-
gregation and inter-layer propagation.

3.2 Propagation Process
By using enhanced representation in the aggregation process, we
can add each embedding layer to propagation layers to mine higher-
order connectivity information. The propagated embeddings of user
�� and item � � at the �-th layer are formulated as:∑

h(�) = � (� (�)) � (�� ��) h
(� −1)

,�� �� ��
�� ∈N�� ∑ (16)

h(�) = � (� (�)) � (�� ��) h
(� −1)

.�� �� ��
�� ∈N��

(�) (�)where � and � are the unique weight for �� as well as � � at�� �� √
�-th layer, and � (�� ��) = 1/(|N�� | |N�� |) is the symmetric normal-
ization suggested by GCN [17]. Note that the efect of self-loop
connections in the GCN layer could be captured by a weighted
sum as pointed out by LightGCN[9]. By following the same setup,
we remove the self-loop connections to reduce the information
redundancy.

By extending the embedding aggregation and propagation func-
tion with the convolution kernel, the adaptive graph convolution
matrix E� and E� with weight matrix Θ for users and items in
ApeGNN at the �-th layer can be represented as Eq. (17): ∑�

E(�) (�) T� E(� −1)= Θ ,� � ��
�=0 (17)
�

E(�)
∑ (�) T� E(� −1)= Θ� � .��
�=0

By transforming Eq. (17) into the actual model training process, we
take the graph convolution matrix (E(0) , · · · , E(�)) related to the
layer into the pooling operation.

3.3 Pooling

Given the input user and item embeddings h(0) and h(0) at the 0-th �� ��

layer, they are frst propagated through higher layers by Eq. (16).
Then we update the integration of users as well as items through
the embedding of the latest layer and the current layer by Eq. (1).
Finally, the embeddings of each layer should be combined to for-
malize the fnal embeddings of user �� and item � � that are used for
fnal recommendation. In ApeGNN, we formulate Eq. (4) to model
the hop-wise semantic diferences that each layer of embeddings
represents. Thus, the fnal embedding of �� and � � are pooled as: ∑� ∑�

h(�) h(�)h∗ = , h∗ = (18)�� �� �� ��

�=0 �=0

(�) (�)where ℎ and ℎ have been used to model the weights and �� ��

importance of the �-th layer embeddings of user �� and item � � ,
respectively. Eventually, the inner product of embeddings between
�� and � � is calculated as �̂ (�� ,��) = h∗ ⊙h∗ , which can be exploited �� ��

to calculate the preference of user �� on item � � .

3.4 Optimization
Similar to many other GNNs-based recommendation methods [9,
30, 36], we use the Bayesian Personalized Ranking (BPR) loss [26]
to optimize the neural network structure of ApeGNN. The BPR is a
pairwise loss which is formalized as: ∑ 2 L = − ln � (�̂�� ,�� − �̂�� ,��) + � | |E(0) | | , (19)

(�� ,�� ,��) ∈O

where O = {(�� , � � , ��) | (�� , � �) ∈ O+ , (�� , ��) ∈ O−} are the pair-
wise training data; O− is the set of pairs that interactions between
the user and the item are not actually observed, while O+ is the set
of interacted records. � infuences the strength of �2 regularization;
sigmoid function is denoted by � (·) in this formulation; and the �2
regularization is exploited to avoid overftting issue.

The adaptive operation does not change the GNN nature and
fexibility of ApeGNN. In fact, ApeGNN can serve as a plugin into
any GNNs-based models for personalized recommendation. There-
fore, other advanced training techniques, e.g., the hop-mixing neg-
ative sampling strategy [13], can be straightforwardly applied into
ApeGNN. In summary, the overall training process is formally de-
scribed in Algorithm 1 of Appendix.

3.5 Model Analysis
Here, we provide an additional discussion on the diferences be-
tween ApeGNN and other related models, regarding the designs of
the inner-layer aggregation operations.

ApeGNN vs. LightGCN. LightGCN [9] is representative graph
convolution network with degree normalization based graph struc-
ture, while it ignores the distinctive semantics of each node.
ApeGNN considers centrality-based importance to explicitly difer-
entiate each node. Compare to LightGCN, results in Tabel 2 and
Table 4 both show the efectiveness of ApeGNN.

ApeGNN vs. GAT. It is obvious that ApeGNN is similar to (dual)
attention-based models which perform local aggregation for each
layer and consider importance of nodes. Specially, attention-based

763

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al.

models assign weights for local neighbors via node features from a
local perspective, while ApeGNN aggregates neighbors adaptively
in a node-wise manner via centrality degree from the global
perspective. In addition, by executing high-order propagation
in attention-based models, the information of previous layer is
implicitly propagated via non-linear activation to next layer. The
adaptive aggregation of ApeGNN considers the infuence of sub-
graph structure and explicitly propagates the message via a layer
coefcient. To sufciently show that adaptive aggregation is a better
choice than attention modules, we provide compared experimental
results in Table 3. As it shows, ApeGNN incorporates node-and-
layer-specifc weights to achieve adaptive aggregation, leading to
better performance compared to attention-based methods.

ApeGNN vs. ADC. The difusion model of ADC is able to learn
the scale of neighbors during the propagation of each layer from
the network for node classifcation. In particular, ADC learns the
initial value � of every feature channel as well as layer, but ignores
the of node importance. In contrast, the adaptive aggregator of
ApeGNN learns centrality-aware � for each node which considers
the importance of nodes. To prove the efectiveness of ApeGNN,
we compare ADC (i.e., trained-�) and ApeGNN in Table 3 in our
ablation study. The experiments show that the efectiveness of
centrality-based weights in ApeGNN.

3.6 Complexity Analysis
Let the number of nodes and edges be |U +V| and |E |, � denote the
number of epochs, where � is the embedding size, and � is the layer
number of the proposed GNN. The time and memory complexity
are summarized as follows.

Time Complexity. We analyze whether and how the adaptive
operations in aggregation impact the complexity of GNNs-based
recommendation methods. The time complexity of ApeGNN mainly
comes from three parts: adjacency matrix construction, adaptive
graph convolution operation, and BPR loss calculation. Here, we
mainly introduce the time complexity of adaptive graph convolution
operation. For the graph convolution module, although additional
adaptive operations are integrated into its aggregation, it does not
increase its complexity, i.e., � = � (�� |U + V|�). Although we try
to learn the weighting coefcients as embeddings with fxed size,
the cost of all steps is linearly increasing with the � , Thus, the
cost of all three steps is linearly changing with the number of �
and �—� (|E | + �� (|E | + � |U + V|)), making the time complexity
of ApeGNN be equivalent to common GNNs-based recommender
systems, such as LightGCN [9]. Take AMiner dataset as an example,
the training time of ApeGNN/LightGCN is ∼21s/∼14s per epoch,
which demonstrates that the additional node-wise parameters have
limited afects on running time.

Memory Complexity. In adaptive aggregation process , we assign
centrality-based weights for each node. Thus, we train models with
up to |U +V| parameters. Although this approach brings additional
memory consumption (e.g., 12.9 GB on Amazon), ApeGNN can
achieve signifcant performance gains with this operation.

4 Experiments
4.1 Experimental Settings

Baselines. For performance comparison, we select various state-
of-the-art baselines including MF-based (BPRMF [26], NeuMF [11]),
frst-order (Mult-VAE [22], GF-CF [28]), high-order (NGCF [36],
LightGCN [9], i.e., GNNs-based ones), attention-based (NAIS [10],
SASRec [15], GC-SAN [44] and LightSANs [4]) models. We will
testify the efectiveness of our model ApeGNN on these four cat-
egories. The detailed description of these models is presented in
Appedix A.2.

Datasets. To evaluate the efectiveness of ApeGNN, we perform
experiments on six public datasets (Ali, Amazon, AMiner, Gowalla,
MovieLens, and Yelp2018) collected from real-world platforms with
diferent data sizes, densities and conditions (# Users ≫ # Items and
Users ≪ # Items) for comparing with representative models. We
further testify three datasets (Epinions, ML-1M and Pinterest) which
are often evaluated among attention-based models. The detailed
meta information of these datasets is shown in Table 5 of Appendix.

Evaluation Metrics. We select two widely-used evaluation met-
rics, namely Recall and Normalized Discounted Cumulative Gain
for the top-� prediction, which is denoted as Recall@� , NDCG@� ,
to evaluate performance of representative models. Besides, MRR@�
and Hit Ratio (HR@�) are further used to evaluate the performance
between the ApeGNN and attention-based models. The detailed
explanation and calculation of these metrics are presented in Ap-
pendix A.3. In the test stage, we select the all items which has
not been interacted by this user and regard them as the negative
samples, while the interacted items are regarded as positive ones.
For each �� , we rank all predicted items ordered by the preference
score �̂ (�� ,��) . By selecting top-� items, we present the average
value of metrics on all users in the whole test set. Here, we conduct
our experiments for the value of � in the range {5, 10, 20, 50}, and
report the results of � = 20 for each user for simplicity. The trend
of results on others � is similar to � = 20. To express convenience,
Recall@20 is simplifed to Recall/R in Table 2/Table 4, etc.

4.2 Performance Comparison
The overall top-20 performance results on representative models
with average Recall and NDCG metrics are presented in Table 2.
In Table 2, we highlight the best results in bold and second best
results in underline. The comparison results between ApeGNN and
attention-based models are summarized in Table 3. The improve-
ment (%Improv.) is computed according to the second best results.
Based on these results, we obtain the following observations:

Comparison with MF-based models. From Table 2, we observe
that high-order models outperform BPR-MF and NeuMF across
all datasets. This illustrates they gain signifcant superiority com-
paring to traditional deep MF-based models. Further, gathering
information from high-order neighbors improves the efectiveness
of representation learning. This result is consistent with the claim
in existing studies [9, 36]. Particularly, ApeGNN derives signif-
cantly better Recall@20 and NDCG@20 than MF-based models on
Ali and Amazon datasets.

764

ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 2: Overall performance (% is omitted) comparison with representative model on six datasets.

Dataset Ali Amazon AMiner Gowalla MovieLens Yelp2018

Metrics Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG
BPR-MF 1.03 0.46 1.65 0.76 18.42 9.38 14.17 12.04 8.20 10.75 4.72 3.84
NeuMF 0.87 0.37 1.51 0.58 16.84 8.65 13.97 11.63 7.05 9.31 3.88 3.14

Mult-VAE 2.60 0.78 2.30 0.82 17.89 9.81 15.49 11.98 6.18 5.23 5.94 4.64
GF-CF 4.20 1.84 2.38 1.08 18.77 9.81 17.80 14.61 8.23 11.52 6.32 5.16
NGCF 4.26 1.97 2.94 1.23 17.66 9.11 14.22 11.88 9.31 11.37 5.77 4.69

LightGCN 6.13 2.86 4.11 1.86 19.69 9.87 17.75 15.22 9.41 11.36 6.61 5.39
ApeGNN_HK 8.80 4.29 4.98 2.36 21.20 10.69 18.32 15.35 9.73 11.91 6.75 5.56

%Improv. 43.56% 50.00% 21.17% 26.88% 7.67% 8.31% 3.21% 0.85% 3.40% 4.84 7.48% 7.96%
ApeGNN_PPR 9.13 4.41 5.10 2.33 20.88 10.29 17.88 15.17 9.77 12.09 6.59 5.44

%Improv. 48.94% 54.20% 24.09% 25.27% 6.04% 4.26% 0.73% - 3.83% 6.43% - 0.93%

Table 3: Performance (% is omitted) comparison between
ApeGNN and attention-based models.

Dataset Models NAIS SASRec GC-SAN LightSANs ApeGNN

Epinions

Recall@20
MRR@20
NDCG@20
HR@20

1.11
0.47
0.61
1.11

1.45
0.33
0.57
1.45

1.56
0.44
0.69
1.56

1.68
0.49
0.75
1.68

1.82
0.91
1.11
1.84

ML-1M

Recall@20
MRR@20
NDCG@20
HR@20

24.75
42.65
24.98
84.57

22.59
4.4
8.29
22.59

15.27
3.00
5.59
15.27

33.31
8.17
13.64
33.31

26.91
44.52
26.66
86.37

Pinterest

Recall@20
MRR@20
NDCG@20
HR@20

11.68
6.16
6.06
22.53

9.41
1.85
3.44
9.41

9.64
1.89
3.53
9.64

9.96
1.98
3.60
9.96

16.66
9.94
9.37
30.46

Comparison with frst-order models. As high-order models,
ApeGNN, NGCF and LightGCN overall outperform Mult-VAE and
GF-CF on all four datasets, which demonstrates their advantages
comparing with frst-order models. On Ali dataset, ApeGNN is
higher than Mult-VAE in Recall@20 and NDCG@20. Moreover,
NGCF and LightGCN underperform GF-CF on Gowalla, but outper-
form it on Amazon dataset, which may be caused by the diferent
densities of datasets (0.084% in Gowalla v.s. 0.014% in Amazon).
Meanwhile, our proposed ApeGNN exceeds GF-CF on all datasets
and has an improvement up to 117% (Recall@20 on Ali dataset).
These observations show that high-order approaches like ApeGNN
have remarkable advantages in extreme sparse scenarios than frst-
order models.

Comparison with other higher-order models. ApeGNN outper-
forms LightGCN on all six datasets, by 0.73-48.94% and 0.85-54.20%
in terms of Recall@20 and NDCG@20 on average. This testifes
that our ApeGNN can better handle deep multi-hop neighbors than
LightGCN, which verifes the efectiveness of incorporating the
adaptive aggregation function in ApeGNN. It captures the inter-
actions between users and items and distinguishes diferent im-
portance of embeddings from diferent layers in aggregation pro-
cess. Especially, the improvements of ApeGNN on Ali and Amazon
dataset are more signifcant than those on the other datasets. In
other words, ApeGNN can learn the representation better for users
and items even if the graph is very sparse.

Comparison with attention-based models. As Table 3 shows,
LightSANs exploits self-attention network-based recommendation,
and it performs better than NAIS and SASRec. This shows the
usefulness of modeling the node-wise importance in recommender
models. ApeGNN can achieve the optimal performance over the
three datasets. Compared to NAIS and LightSANs, ApeGNN utilizes
the centrality degree to model the importance of users and items,
which helps to diferentiate each node. In addition, unlike NAIS,
SASRec and LightSANs that use attention mechanism to learn the
representations, ApeGNN models high-order user-item interaction
to obtain embeddings in GNNs.

4.3 Study of ApeGNN
To comprehensively understand the structure of ApeGNN and in-
vestigate the reasons of its efectiveness, further exploration exper-
iments are performed. Firstly, we study the infuence of value of
� . Secondly, we explore the efect of diferent layer numbers � in
adaptive aggregation module. Finally, we evaluate the infuence of
regularization �2 during training.

Efect of value � . To get a better understanding of the proposed
ApeGNN model, we evaluate the key components of ApeGNN, i.e.
aggregation mechanisms. There are three diferent values of weight
� during aggregation, including fxing � to the initialization value for
user type and item type (fxed-�), training one � for each node and
item without centrality (trained-�), training a unique � for each user
and item with centrality (ApeGNN-�). Here, we compare ApeGNN
with its three variants: fxed-� , trained-� and ApeGNN-� . Figure 3
shows the Recall@20 results of ApeGNN on six datasets when the
inner-layer weights with �� , �� of users and items are set to diferent
values. From the results, we have the main observations as follows.

Overall, we reach the optimal performance when considering
centrality of a node and training a unique � for this node on all
datasets. It shows that in-degree of nodes is important to represent
their centrality and popularity in user-item interacted graph, further
verifes that importance should be considered during aggregation
and propagation process. Besides, we fnd that the result of training
one � for all nodes and all items respectively is better than fxing �
for all nodes on six datasets. It justifes our assumption that users
and items are nodes of diferent types that we should diferentiate
them to learn better representations and improve the performance
of recommendation. To sum up, ApeGNN can diferentiate users
and items, and assign centrality-based and layer-wise weights via

765

https://0.85-54.20
https://0.73-48.94

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al.

ApeGNN-� for nodes in aggregation process, which can boost the
recommendation performance.

5.0

6.8

8.6

10.4

Re
ca

ll@
20

Ali
fixed-t
trained-t
ApeGNN-t

4.1

4.5

4.9

5.3 Amazon

19.8

20.3

20.8

21.3 AMiner

17.5

17.8

18.2

18.5

Re
ca

ll@
20

Gowalla

9.0

9.3

9.6

9.9 MovieLens

6.0

6.3

6.6

6.9 Yelp2018

Figure 3: Recall@20 (with omitting %) on six datasets when �
is set with diferent values.

Efect of layer numbers � in propagation. We analyze the
efect of layer number of propagation from 1 to 4, provide a detailed
comparison with the LightGCN, and highlight the best results with
underline and bold for LightGCN and ApeGNN, respectively. From
Figure 3, we also have the following main fndings. Overall, the
ApeGNN outperforms LightGCN under all layer settings across all
datasets. The result is consistent with Table 2. In general, with the
increase of the layer number, the performance frst increases and
then decreases. For details, the performance increases to peak value
with the layer number from 1 to 2 (or 3), then the performance
degrades. It indicates that it is helpful for a node to consider its
low-order neighbors which can smooth its embedding and obtain
powerful representation.
Table 4: Results on top-20 recommendation between Light-
GCN and ApeGNN on three datasets at diferent layers.

Dataset Ali Amazon AMiner
#Layers Method Recall NDCG Recall NDCG Recall NDCG

1 Layer LightGCN
ApeGNN

4.90 2.19
8.70 4.23

3.64 1.55
4.98 2.36

19.09 9.43
20.90 10.49

2 Layers LightGCN
ApeGNN

2.93 1.30
8.69 4.22

3.88 1.77
4.91 2.28

19.69 9.87
21.20 10.69

3 Layers LightGCN
ApeGNN

5.89 2.77
8.80 4.29

3.98 1.76
4.78 2.20

19.24 9.56
21.04 10.65

4 Layers LightGCN
ApeGNN

6.13 2.86
8.76 4.29

4.11 1.86
4.70 2.17

19.38 9.83
21.02 10.61

Efect of coefcient � of regularization �2 . In ApeGNN, � of
�2 is the additional hyper-parameters. As shown in Figure 4, we
analyze the infuence of diferent coefcient � on representative
datasets (Amazon and MovieLens). We observe that ApeGNN is rel-
atively insensitive to these hyper-parameters. The optimal value for
Amazon and MovieLens both are 10−2. When � is smaller than 10−3,
the performance starts to drop, which indicates that regularization
can prevent overftting in some degree for ApeGNN.

5 Related Work
5.1 Attention-based GNN Models
Attention-based models can enhance the embedding vectors of
users and items by applying attention-based mechanism to obtain
the interactions on the user-item bipartite graph. To exploit the im-
portance relation between user and item, NAIS [10] automatically
learns the importance weight of each interacted item. Similar to

0 10 6 10 5 10 4 10 3 10 23.5

3.9

4.3

4.7

5.1

Re
ca

ll
(A

m
az

on
)

Amazon

9.20

9.35

9.50

9.65

9.80

Re
ca

ll
(M

ov
ie

Le
ns

)

MovieLens

0 10 6 10 5 10 4 10 3 10 21.70

1.85

2.00

2.15

2.30

ND
CG

(A
m

az
on

)

10.0

10.5

11.0

11.5

12.0

ND
CG

(M
ov

ie
Le

ns
)

Figure 4: Performance of ApeGNN at the 3-th layer on Ama-
zon and MovieLens datasets.

NAIS, GraphRec [3] models the diferent contributions of historical
items to shape user’s interest in a user-item graph. SASRec [15]
proposes a self-attention model to capture long-term sequences
and semantics, further predicting next action from users’ historical
items. Inspired by the power of the attention mechanism, Light-
SANs [4] adopts low-rank decomposed self-attention for next-item
recommendation. In contrast, the performance can be improved by
projecting interacted items into a GNNs-based model to capture
high-order neighbors.

5.2 GNNs-based Recommendation Methods
GNNs-based recommendation approaches model each user and
each item as embeddings and learn the embedding vectors by re-
constructing the historical behavior between users and items. Early
MF-based models (such as PMF [27] and SVD++ [21]) are based
on decomposing the interaction adjacency matrix between users
and items, and predict users’ preferences for unseen items based
on these decomposed vectors, which are efective but insufcient
to model complex user behaviors and large data inputs. Similar to
classical CF methods, the neural collaborative fltering (NCF)-based
methods (such as [7, 11, 12, 14, 22, 43]) expanded the inner product
of MF in the manner of neural collaborative fltering to increase
the capacity, but still faced the problem that it was difcult to learn
high-order structural information in the data.

Emerging Graph Convolution Networks (GCNs) put up promi-
nent performance by modeling graph structure and learning rep-
resentation. Motivated by the efciency of graph convolution, the
GNNs-based paradigm is introduced into recommendation. Early
studies such as GCN [17], PinSage [45] and GAT [34] aggregate the
neighborhood representations to generate the embeddings of the
target node on the spatial domain. Recent studies [9, 32, 36] build a
user-item bipartite graph and use GCN to capture CF signals in high-
order neighbors on a graph. However, theses GNNs-based models
fail to handle diferent importances of nodes during aggregation.

6 Conclusion
In this paper, we propose ApeGNN which introduces the graph
difusion process into GNNs-based recommendation. ApeGNN ad-
dresses the issues that neighborhood types are not adaptive to
identify and the importance of each node which is not divided by
expanding the propagation of neighborhood. We assign diferent
weights to entities with diferent types and importance of diferent
nodes, and assign diferent importance on multi-order neighbor-
hoods. By performing experiments on public recommendation, we
empirically show the superiority of the ApeGNN compared with
existing baseline models.

766

ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Acknowledgments
This research was supported by Natural Science Foundation of
China (NSFC) 62276148 and 61836013, Tsinghua-Bosch Joint ML
Center and Zhipu.AI.

References
[1] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-

Seng Chua. 2017. Attentive collaborative fltering: Multimedia recommendation
with item-and component-level attention. In Proceedings of the 40th International
ACM SIGIR conference on Research and Development in Information Retrieval.
335–344.

[2] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting
Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional
Network Approach. In AAAI 2020. 27–34.

[3] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[4] Xinyan Fan, Zheng Liu, Jianxun Lian, Wayne Xin Zhao, Xing Xie, and Ji-Rong
Wen. 2021. Lighter and better: low-rank decomposed self-attention networks for
next-item recommendation. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1733–1737.

[5] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan
Quan, Jianxin Chang, Depeng Jin, Xiangnan He, and Yong Li. 2021. Graph Neu-
ral Networks for Recommender Systems: Challenges, Methods, and Directions.
(2021). https://arxiv.org/abs/2109.12843

[6] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difculty of training
deep feedforward neural networks. In AISTATS 2010, Vol. 9. 249–256.

[7] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In
IJCAI 2017. 1725–1731.

[8] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In NIPS 2017. 1024–1034.

[9] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. In SIGIR 2020. 639–648.

[10] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and
Tat-Seng Chua. 2018. Nais: Neural attentive item similarity model for recom-
mendation. IEEE Transactions on Knowledge and Data Engineering 30, 12 (2018),
2354–2366.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In WWW 2017. 173–182.

[12] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge J. Belongie, and
Deborah Estrin. 2017. Collaborative Metric Learning. In WWW 2017. 193–201.

[13] Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu
Wang, and Jie Tang. 2021. MixGCF: An Improved Training Method for Graph
Neural Network-based Recommender Systems. In KDD 2021. 665–674.

[14] Jiarui Jin, Jiarui Qin, Yuchen Fang, Kounianhua Du, Weinan Zhang, Yong Yu,
Zheng Zhang, and Alexander J. Smola. 2020. An Efcient Neighborhood-based
Interaction Model for Recommendation on Heterogeneous Graph. In KDD. 75–84.

[15] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In ICDM (2018). IEEE, 197–206.

[16] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR 2015.

[17] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classifcation with
Graph Convolutional Networks. In ICLR 2017.

[18] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-
dict then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997 (2018).

[19] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Difu-
sion Improves Graph Learning. In NeurIPS 2019. 13333–13345.

[20] Risi Imre Kondor and John Laferty. 2002. Difusion Kernels on Graphs and Other
Discrete Structures. In ICML 2002. 315–322.

[21] Yehuda Koren. [n. d.]. Factorization meets the neighborhood: a multifaceted
collaborative fltering model. In KDD 2008.

[22] Dawen Liang, Rahul G. Krishnan, Matthew D. Hofman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In WWW 2018. 689–698.

[23] Fan Liu, Zhiyong Cheng, Lei Zhu, Zan Gao, and Liqiang Nie. 2021. Interest-aware
Message-Passing GCN for Recommendation. In WWW 2021. 1296–1305.

[24] Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. 2021. Is homophily a necessity
for graph neural networks? arXiv preprint arXiv:2106.06134 (2021).

[25] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[26] Stefen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI 2009.
452–461.

[27] Ruslan Salakhutdinov and Andriy Mnih. 2007. Probabilistic Matrix Factorization.
In NIPS 2007. 1257–1264.

[28] Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, Khaled B. Letaief, and
Dongsheng Li. 2021. How Powerful is Graph Convolution for Recommendation?.
In CIKM 2021. 1619–1629.

[29] Jinbo Song, Chao Chang, Fei Sun, Xinbo Song, and Peng Jiang. 2020. NGAT4Rec:
Neighbor-Aware Graph Attention Network For Recommendation. (2020). https:
//arxiv.org/abs/2010.12256

[30] Jianing Sun, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Xiuqiang He,
Chen Ma, and Mark Coates. 2020. Neighbor Interaction Aware Graph Convolution
Networks for Recommendation. In SIGIR 2020. 1289–1298.

[31] Riku Togashi, Masahiro Kato, Mayu Otani, and Shin’ichi Satoh. 2021. Density-
Ratio Based Personalised Ranking from Implicit Feedback. In WWW. 3221–3233.

[32] Rianne van den Berg, Thomas N. Kipf, and Max Welling. 2017. Graph Convolu-
tional Matrix Completion. (2017). http://arxiv.org/abs/1706.02263

[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[34] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR 2018.

[35] Menghan Wang, Yujie Lin, Guli Lin, Keping Yang, and Xiao-Ming Wu. 2020.
M2GRL: A Multi-task Multi-view Graph Representation Learning Framework
for Web-scale Recommender Systems. In KDD 2020. 2349–2358.

[36] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR 2019. 165–174.

[37] Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xianling Mao, and Minghui Qiu.
2020. Global Context Enhanced Graph Neural Networks for Session-based Rec-
ommendation. In SIGIR 2020. 169–178.

[38] Zhen Wang, Zhewei Wei, Yaliang Li, Weirui Kuang, and Bolin Ding. 2022. Graph
Neural Networks with Node-wise Architecture. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1949–1958.

[39] Widder and David Vernon. 1976. The heat Kernel. Academic Press 1976.
[40] Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, and Meng Wang. 2021. A Survey

on Neural Recommendation: From Collaborative Filtering to Content and Context
Enriched Recommendation. (2021). https://arxiv.org/abs/2104.13030

[41] Le Wu, Junwei Li, Peijie Sun, Richang Hong, Yong Ge, and Meng Wang. 2020.
Difnet++: A neural infuence and interest difusion network for social recom-
mendation. IEEE Transactions on Knowledge and Data Engineering (2020).

[42] Shiwen Wu, Wentao Zhang, Fei Sun, and Bin Cui. 2020. Graph Neural Networks
in Recommender Systems: A Survey. (2020). https://arxiv.org/abs/2011.02260

[43] Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016. Collabora-
tive Denoising Auto-Encoders for Top-N Recommender Systems. In WSDM 2016.
153–162.

[44] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Fuzhen
Zhuang, Junhua Fang, and Xiaofang Zhou. 2019. Graph Contextualized Self-
Attention Network for Session-based Recommendation.. In IJCAI, Vol. 19. 3940–
3946.

[45] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In KDD 2018. 974–983.

[46] Quanzeng You, Zhengyou Zhang, and Jiebo Luo. 2018. End-to-End Convolutional
Semantic Embeddings. In CVPR 2018. 5735–5744.

[47] Jialin Zhao, Yuxiao Dong, Ming Ding, Evgeny Kharlamov, and Jie Tang. 2021.
Adaptive Difusion in Graph Neural Networks. In NeurIPS 2021, Vol. 34.

[48] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu
Pan, Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, Yingqian Min, Zhichao
Feng, Xinyan Fan, Xu Chen, Pengfei Wang, Wendi Ji, Yaliang Li, Xiaoling Wang,
and Ji-Rong Wen. 2021. RecBole: Towards a Unifed, Comprehensive and Efcient
Framework for Recommendation Algorithms. In CIKM 2021. 4653–4664.

767

https://arxiv.org/abs/2109.12843
https://arxiv.org/abs/2010.12256
https://arxiv.org/abs/2010.12256
http://arxiv.org/abs/1706.02263
https://arxiv.org/abs/2104.13030
https://arxiv.org/abs/2011.02260
https://Zhipu.AI

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al.

A Supplementary
In this supplementary, we present the detailed implementation note
of ApeGNN, including the datasets, baselines, evaluation metrics,
parameter settings, and the experimental results.

A.1 Datasets
We use public datasets to perform experiments and evaluate the
performance of ApeGNN. The detailed descriptions and statistics
of these datasets are as follows:

Table 5: The statistics of our experimental datasets on repre-
sentative models.

Dataset # Users # Items # Interactions # Density

Ali
Amazon
AMiner
Gowalla

MovieLens
Yelp2018

106,042
192,403
5,340
29,858
6,040
31,668

53,591
63,001
14,967
40,981
3,416
38,048

907,407
1,689,188
163,084
1,027,370
999,611
1,561,406

0.00016
0.00014
0.00204
0.00084
0.04362
0.00130

Epinions
ML-1M
Pinterest

116,260
6,040
55,187

41,269
3,706
9,911

188,478
1,000,209
1,445,622

0.00004
0.00264
0.04468

• Ali [13] dataset comes from the Alibaba e-commerce plat-form
and interaction record of its users is more than 10 in a user-item
bipartite graph.

• Amazon [13] is a widely used dataset for recommendation eval-
uation. We use the Amazon-rec dataset which contains the inter-
action of the electronics category. Considering there are many
preprocessing setting on the Amazon dataset, this paper keeps
the same setting as [13].

• AMiner1 collects scientifc resource reading behavior from
AMiner.org of its users from August to October in 2021. To unify
the experimental settings, we remains users and items that each
node has at least ten interactions, and splits the interacted records
as training, test, and validation set. To evaluate the recommen-
dation performance, for each user, we select 10% of interactions
for testing, another 10% of interactions is used for validation and
adopting early stopping, and the remaining 80% interactions are
used for training.

• Gowalla2 comes from Gowalla website and contains the check-in
historical behavior. Wherein, the locations are shared by users as
the items and reviews from the user are regarded as interactions.

• Yelp20183 dataset is obtained from the Yelp challenge in 2018
and includes the interactions between users and lcoal businesses.

• MovieLens/ML-1M4 datasets come from GroupLens Research,
whose authors have collected and made available rating data sets
from the MovieLens website5.

1https://www.aminer.cn/data/?nav=openData#AMiner-Paper-Click
2http://snap.stanford.edu/data/loc-gowalla.html
3https://www.yelp.com/dataset
4https://grouplens.org/datasets/movielens/1m/
5https://movielens.org

• Epinions/Pinterest datasets come from RecBole [48] research.

A.2 Baselines
In our experiments, the compared baselines mainly include MF-
based models (BPR-MF and NeuMF), frst-order models (Mult-
VAE and GF-CF), high-order models (NGCF and LightGCN), and
attention-based models (NAIS, SASRec, GC-SAN, and LightSANs).
• BPR-MF [26] proposes an optimization criterion for personal-
ized ranking by BPR loss which is a matrix factorization-based
approach to capture the interactions.

• NeuMF [11] exploits collaborative fltering on implicit feedback
based on deep neural networks. It leverages a multi-layer percep-
tion to model and learns the user-item interaction function with
non-linearities.

• Mult-VAE [22] is an item-based CF method for implicit feedback
by variational autoencoders (VAEs). It adopts the multi-nomial
likelihood of data, uses Bayesian inference for parameter estima-
tion, and connects information-theoretic to maximum entropy
discrimination.

• GF-CF [28] proposes graph flter based CF and proves the special
cases via the lens of graph signal processing as well as the im-
portance of smoothness. To compare it with other models fairly,
we update its embedding size and test process to keep unity with
our test method.

• NGCF [36] proposes a message-passing architecture to capture
collaborative fltering signal in the frst-order and high-order
propagation. NGCF stacks embeddings of multiple propagation
layers as its fnal representation for users and items.

• LightGCN [9] simplifes the design GCN and adopts the key
component—neighborhood aggregation—for collaborative flter-
ing. After obtaining embeddings of all layers, a weighted sum
calculation is applied to generate fnal embedding.

• NAIS [10] is an attentive item similarity network which can dis-
tinguish each historical item of a user to address the inefciency
issue for item-based CF.

• SASRec [15] is a famous sequential-based model to capture long-
term interactions. It applies self-attention mechanism to address
two issues, which are parsimony of markov chains-based models
on sparse data and complexity of RNNs-based models on dense
data.

• GC-SAN [44] captures rich local dependencies via GNNs and
learns graph contextualized representations of items in sequences
via attention mechanism.

• LightSANs [4] proposes the low-rank decomposed self-attention
networks to address the issue of high complexity in self-attention
and uncertain position encoding in sequential relations.

A.3 Evaluation Metrics
We apply widely-used metrics to evaluate the top-� performance of
the ApeGNN. The detailed description of these metrics are described
as follows:

768

https://5https://movielens.org
https://4https://grouplens.org/datasets/movielens/1m
https://3https://www.yelp.com/dataset
https://2http://snap.stanford.edu/data/loc-gowalla.html
https://AMiner.org

ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation

• Recall indicates the coverage of true items as a result of top-�
recommendation. ∑ 1 |� (��) | ∩ |�(��) |
������@� = , � .� .|�(��) | = �, (20)|U| |� (��) |

�� ∈ U

where � (��) and � (��) are the test and recommended item set of
user �� respectively.

• NDCG (Normalized Discounted Cumulative Gain) computes a
score which emphasizes higher-ranked true positives. First, the
discounted cumulative gain (DCG) is calculated as:

� ∑ ∑ 2(����,�� 1) − 1
���@� = , (21)|U| ���2 (2 + �)

�� ∈ U �=1

where ����,�� is 1 if k-th item k is interacted with user �� , else it
is 0. Then the NDCG@� is calculated by Eq. (22):

���@�
� ���@� = , (22)

����@�

where IDCG@K denotes the ideal cumulative gain.

• MRR (Mean Reciprocal Rank) is a measure that can return a list
of the correctly-recommended item to test users. ∑ 1 1

���@� = , (23)
� ���� (�)
� ∈��

where � is the user’s number in test set.

• HR (Hit Ratio) represents the proportion of the total number of
test sets in the top-� list of each user to all test sets.Í

� (�)
� ∈ U

��� �����@� = Í , (24)
� (�)

� ∈ U

where U,� (�), �(�) are user set, recommended set of user � , and
test set of user � , respectively.

A.4 Implementation note

Running Environment. We conduct all experiments on Ubuntu
18.04.2 LTS server with Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40GHz, 252G RAM and 8 NVIDIA GeForce RTX 2080TI-11GB.
We implement ApeGNN with Python 3.7.6 and PyTorch 1.7.0.

Hyper-parameter Settings We implement our ApeGNN in Py-
Torch. For all models, we set batch size as 2048. We optimize
ApeGNN with a learning rate at 0.001 and Adam optimizer [16].
Meanwhile, we set the propagation layer from 1 to 4, the embed-
ding dimension in range of {64, 128, 256, 512}, and the coefcient �
of �2 normalization in range of {10−2 , 10−3 , 10−4 , 10−5 , 10−6}. In
terms of hyper-parameters, to fnd the best settings, we apply a
grid search. For Ali, Amazon, AMiner, Gowalla, MovieLens, and
Yelp2018, the �2 coefcient � are 10−3, 10−2, 10−3, 10−3, 10−2, and
10−3, respectively. Besides, to initialize the model parameters, we
use the Xavier initializer [6]. Moreover, if Recall@20 does not in-
crease for 10 consecutive epochs on the validation dataset, we apply
an early stopping strategy to stop training.

Training Algorithm. We show the training algorithm of ApeGNN
in Algorithm 1.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Algorithm 1: The training algorithm of the ApeGNN.

Input: G: user-item bipartite graph,
U: user set, V: item set, �: number of layer.

1: Initialize h(0) , h(0) , ∀�� ∈ U, ∀� � ∈ V �� ��
2: iter ← 0
3: while L is not converged do
4: for � ← 0 to � do

h(�)5: = Aggregate and Propagate by Eq. (7) and Eq. (16), ��
∀�� ∈ U
h(�)6: = Aggregate and Propagate by Eq. (8) and Eq. (16), ��

∀� � ∈ V
7: end for

h(0)8: �� ← ℎ�
∗
�
= Pooling by Eq.(18), ∀�� ∈ U

h(0)9: ← ℎ∗ = Pooling by Eq.(18), ∀� � ∈ V �� ��

10: R̂ ← �̂ (�� ,��) = ℎ�
∗
�
⊙ ℎ∗ �� , ∀�� ∈ U, ∀� � ∈ V

11: Update L with BPR Loss by Eq. (19)
12: iter ← iter + 1
13: end while
Output: R̂ ∈ R�×� : preferences for users on candidated items.

Additional Results. We show efectiveness of layer number on the
other three datasets (Gowalla, MovieLens and Yelp2018) in Table 6.

Table 6: Results on top-20 recommendation between Light-
GCN and ApeGNN on other datasets at diferent layers.
Underline and bold denote the best results on LightGCN and
ApeGNN, respectively.

Dataset Gowalla Yelp2018 MovieLens
#Layers

1 Layer

2 Layers

3 Layers

4 Layers

Method
LightGCN
ApeGNN
LightGCN
ApeGNN
LightGCN
ApeGNN
LightGCN
ApeGNN

Recall NDCG
16.38 14.02
17.86 15.04
16.99 14.60
18.16 15.24
17.58 15.02
18.28 15.36
17.75 15.22
18.32 15.35

Recall NDCG
5.75 4.66
6.55 5.39
6.12 5.00
6.72 5.53
6.34 5.15
6.75 5.56
6.61 5.39
6.67 5.46

Recall NDCG
9.30 11.25
9.73 11.91
9.41 11.39
9.67 11.87
9.41 11.36
9.65 11.86
9.31 11.34
9.62 11.83

769

	Abstract
	1 Introduction
	2 Graph Neural Networks for Recommendation
	2.1 Preliminaries
	2.2 The limitation of GNNs-based models

	3 The ApeGNN
	3.1 Node-Wise Adaptive Aggregation in GNNs
	3.2 Propagation Process
	3.3 Pooling
	3.4 Optimization
	3.5 Model Analysis
	3.6 Complexity Analysis

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance Comparison
	4.3 Study of ApeGNN

	5 Related Work
	5.1 Attention-based GNN Models
	5.2 GNNs-based Recommendation Methods

	6 Conclusion
	Acknowledgments
	References
	A Supplementary
	A.1 Datasets
	A.2 Baselines
	A.3 Evaluation Metrics
	A.4 Implementation note

