

Forecasting Potential Diabetes Complications

Yang Yang, Jie Tang, Juanzi Li Tsinghua University Walter Luyten, Marie-Francine Moens Katholieke Universiteit Leuven Lu Liu

Northwestern University

Diabetes Complications

- Life-Threatening
 - Over **4.8 million** people died in 2012 due to diabetes^[1].
 - Over 68% of diabetes-related mortality is caused by diabetes complications^[2].
 - 471 billion USD, while 185 million patients remain undiagnosed^[1].
- Need to be diagnosed in time

[1] http://www.diabetes.org/[2] http://www.idf.org/diabetesatlas/

Forecasting Diabetes Complication

Data Set

• A collection of real clinical records from a hospital in Beijing, China over one year.

Our Approach

Baseline Model I

Baseline Model II

Proposed Model

Learning Algorithm

Input: a feature matrix X, learning rate
$$\eta$$

Output: estimated parameters λ
Initialize $\alpha, \beta, \theta, \mu, \phi$ randomly;
Initialize $\delta \leftarrow 1$;
repeat
Calculate $P(k_{nl}|x_n, \lambda_n)$ according to Eq. 8;
Update $\theta, \mu, \delta, \phi$ according to Eq. 9-12;
Call LBP to calculate $E[\sum_n f(\theta_n, y_n)]$ and
 $E[\sum_c g(y_{c_1}, y_{c_2})]$;
Call LBP to calculate $E_{P_{\alpha}(y|\theta)}[\sum_n f(\theta_n, y_n)]$ and
 $E_{P_{\beta}(y)}[\sum_c g(y_{c_1}, y_{c_2})]$;
Calculate $\frac{\partial O(\alpha, \beta)}{\partial \alpha}$ and $\frac{\partial O(\alpha, \beta)}{\partial \beta}$ according to Eq. 14;
 $\alpha_{\text{new}} = \alpha_{\text{old}} + \eta \frac{\partial O(\alpha, \beta)}{\partial \beta}$;
 $\beta_{\text{new}} = \beta_{\text{old}} + \eta \frac{\partial O(\alpha, \beta)}{\partial \beta}$
until *Convergence*;

Algorithm 1: Learning algorithm of SparseFGM.

Learning Algorithm (cont.)

- Update the dimensional reduction parameters
 - The remaining part of SparseFGM could be regarded as a mixture generative model, with the loglikelihood

 $O(\theta, \phi, \mu, \delta) = \sum_{n} \sum_{l_1} \log \sum_{k} \theta_{nk} \frac{\exp\{\frac{-(r_{nl_1} - \mu_{kl})^2}{2\delta_k^2}\}}{\delta_k \sqrt{2\pi}}$ $\theta_{nk} = \frac{\sum_{l} P(k_{nl} | \boldsymbol{x}_{n}, \lambda_{n})}{\sum_{l} \sum_{k_{nl}} P(k_{nl} | \boldsymbol{x}_{n}, \lambda_{n})} + \alpha_{k} y_{n}$ $\mu_{kl} = \frac{\sum_{n} P(k_{nl} | \boldsymbol{x}_{n}, \lambda_{n}) r_{nl}}{\sum_{n} P(k_{nl} | \boldsymbol{x}_{n}, \lambda_{n})}$ $+\sum_{n}\sum_{l_{2}}\log\sum_{k}\theta_{nk}\phi_{kl_{2}r_{nl_{2}}}$ – Jensen's inequality tells us that $1 \geq \sum_{n,l_1,k} P(k_{nl}|x_n,\lambda_n) [\log \theta_{nk} - \frac{(r_{nl_1} - \mu_{kl_1})^2}{2\delta^2}$ $\delta_k^2 = \frac{\sum_n \sum_l (r_{nl} - \mu_{kl})^2}{N \times L_1}$ $\phi_{klr} = \frac{\sum_{n} P(k_{nl} | \boldsymbol{x}_{n}, \lambda_{n})}{\sum_{n} \sum_{r} P(k_{nl} | \boldsymbol{x}_{n}, \lambda_{n})}$ $-\log(\delta\sqrt{2\pi P(k_{nl}|\boldsymbol{x}_n,\lambda_n)})] + \sum_{n,l_2,k} P(k_{nl}|\boldsymbol{x}_n,\lambda_n)$ $\times \left[\log \theta_{nk} + \log \phi_{kl_{2}r} - \log P(k_{nl}|x_n, \lambda_n)\right]$ – Derivate with respect to each parameters, set them to zero, and get the update equations.

Learning Algorithm (cont.)

- Update the classification parameters
 - New log-likelihood

$$O(\alpha,\beta) = \sum_{n} \alpha f(\theta_n, y_n) + \sum_{c} \beta g(y_{c_1}, y_{c_2}) - \log Z$$

 Adopt a gradient descent method to optimize the new log-likelihood

$$\begin{aligned} \frac{\partial O(\alpha,\beta)}{\partial \alpha} &= E[\sum_{n} f(\theta_{n},y_{n})] - E_{P_{\alpha}(y|\theta)}[\sum_{n} f(\theta_{n},y_{n})] \\ \frac{\partial O(\alpha,\beta)}{\partial \beta} &= E[\sum_{c} g(y_{c_{1}},y_{c_{2}})] - E_{P_{\beta}(y)}[\sum_{c} g(y_{c_{1}},y_{c_{2}})] \end{aligned}$$

Input: a feature matrix X, learning rate η **Output**: estimated parameters λ Initialize $\alpha, \beta, \theta, \mu, \phi$ randomly; Initialize $\delta \leftarrow 1$; **repeat** Update $P(k_{nl}|x_n, \lambda_n), \theta, \mu, \delta, \phi$ according to Eq 4.16-4.20; Call LBP to calculate $E[\sum_n f(\theta_n, y_n)]$ and $E[\sum_c g(y_{c_1}, y_{c_2})]$; Call LBP to calculate $E_{P_{\alpha}(y|\theta)}[\sum_n f(\theta_n, y_n)]$ and $E_{P_{\beta}(y)}[\sum_c g(y_{c_1}, y_{c_2})]$; $\alpha_{\text{new}} = \alpha_{\text{old}} + \eta \frac{\partial O(\alpha, \beta)}{\partial \alpha};$ $\beta_{\text{new}} = \beta_{\text{old}} + \eta \frac{\partial O(\alpha, \beta)}{\partial \beta}$ **until** *Convergence*;

Algorithm 1: Learning algorithm of SparseFGM.

Theoretical Analysis

THEOREM 3.1. The maximal log-likelihood of SparseFGM is no less than FGM when $K \ge \max\{|t_n|\}$, $t_n = \{l|x_{nl} \ne /\}$

Proof. Assuming we have a parameter configuration of FGM $\tilde{\lambda} = (\tilde{\alpha}, \tilde{\beta})$, which maximizes FGM's objective function.

$$\widetilde{O}(\widetilde{\lambda}) = \sum_{n} \widetilde{\alpha} f(r_n, y_n) + \sum_{c} \widetilde{\beta} g(y_{c_1}, y_{c_2}) - \log \widetilde{Z}$$

Let $\theta_{nk} = \frac{\widetilde{\alpha}_{t_{nk}} r_{t_{nk}}}{Z_k}$ for $k \leq |t_n|$ and $\theta_{nk} = 0$ for $k \geq |t_n|$, where Z_k is a normalization term. Also let $\alpha_k = Z_k$, $\beta = \widetilde{\beta}$, and for each $1 \leq k \leq K$, we select a particular distribution as Ω_k such that $\forall n$, we have $\sum_k \theta_{nk} \Omega = 1$. Thus, we have

$$\sum_{n} \alpha f(\theta_{n}, y_{n}) = \sum_{n} y_{n} \sum_{k} \alpha_{k} \theta_{nk}$$
$$= \sum_{n} y_{n} \sum_{i=1}^{t(n)} Z_{i} \times \frac{\widetilde{\alpha}_{t_{nk}} r_{t_{nk}}}{Z_{k}}$$
$$= \sum_{n} \widetilde{\alpha} f(r_{n}, y_{n})$$

$$2 \log Z = \sum_{n} \sum_{y_n} \alpha f(\theta_n, y_n) + \sum_{c} \sum_{y_{c_1}, y_{c_2}} \beta g(y_{c_1}, y_{c_2})$$
$$= \sum_{n} \sum_{y_n} \widetilde{\alpha} f(r_n, y_n) + \sum_{c} \sum_{y_{c_1}, y_{c_2}} \widetilde{\beta} g(y_{c_1}, y_{c_2})$$
$$= \log \widetilde{Z}$$

3

$$O(\lambda) = \sum_{n} \alpha f(\theta_{n}, y_{n}) + \sum_{c} \beta g(y_{c_{1}}, y_{c_{2}}) + \sum_{n} \sum_{l} \log \sum_{k} \theta_{nk} \Omega_{k,l,r_{nl}} - \log Z$$

$$= \sum_{n} \widetilde{\alpha} f(r_{n}, y_{n}) + \sum_{c} \widetilde{\beta} g(y_{c_{1}}, y_{c_{2}}) - \log \widetilde{Z}$$

$$= \widetilde{O}(\widetilde{\lambda})$$

, 2, 3 indicate

 $\max_{\lambda} \{ O(\lambda) \} \ge O(\lambda) = \widetilde{O}(\widetilde{\lambda}) = \max_{\lambda} \{ \widetilde{O}(\lambda) \}$

Experiments

Setting

Experiments

- Is our model effective?
- How do different diabetes complications associate with each lab test?
- Can we forecast all diabetes complications well?
- Comparison Methods
 - SVM (model I)
 - FGM (model II)
 - FGM+PCA (an alternative method to handle feature sparseness)
 - SparseFGM (our approach)

Experimental Results

HTN: hypertension, CHD: coronary heart disease, HPL: hyperlipidemia

SVM and FGM suffer from feature sparseness. -59.9% in recall.	cation	Method	Precision	Recall	F1
		SVM	0.3804	0.4789	0.4241
		FGM	0.5666	0.4959	0.5075
IIIN		FGM+PCA	0.5741	0.3284	0.4178
		SparseFGM	0.4714	0.6319	0.5400
FGM vs. FGM + PCA (increase +40.3% in recall)	D	SVM	0.2132	0.0636	0.0980
		FGM	0.6264	0.1369	0.2247
		FGM+PCA	0.2425	0.8367	0.3761
		SparseFGM	0.2522	0.7972	0.3832
		SVM	0.2208	0.0460	0.0761
PGM+PCA vs. SparseFGM (increase +13.5% in F1)	L	FGM	0.6557	0.0591	0.1084
		FGM+PCA	0.2047	0.8035	0.3262
		SparseFGM	0.2796	0.8396	0.4195

Association Pattern Illustration

c: complication, e: lab test

Can We Forecast All Diabetes Complications?

Conclusion

- We study the problem of forecasting diabetes complications.
- We propose a graphical model which integrates dimensional reduction and classification into a uniform framework.
- We further study the underlying associations between different diabetes complications and lab test types.

Thanks! Q&A?

@ Yang Yang http://yangy.org/