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Introduction

Mining streaming data becomes an important topic.

» Challenge 1: the lack of labeled data

Related work: active learning for streaming data [28, 6, 5, 29]

» Challenge 2: network correlation between data instances

Related work: active learning for networked data [23, 25, 3, 4, 10, 27, 8, 22]

» A novel problem: active learning for streaming networked data

To deal with both challenges 1 & 2.



Problem Formulation

Streaming Networked Data
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When a new instances y; arrives, new edges are added to connect the new instance and existing instances.



Problem Formulation

Notations for Streaming Networked Data

Let A={d,},-, denote a data stream and each datum be denoted as a 4-tuple
6; o (Xi9ti’Yi9yi)

A data instance, represented as a feature vector.
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The time when the instance arrives in the data stream.

ol

A set of undirected edges connected to earlier arrived instances.

An associated label in {+1, -1} (we consider binary classification problem in
this paper) to represent the category of the instance.
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Problem Formulation

Active Learning for Streaming Networked Data

Our output is a data stream A= {5,};:0 At any time, we maintain a classifier Cl based on arrived

instances. >
Data Stream: ... ... Vi—1, Vi, Vi41 «- o

At any time [;, we go through the following steps: i, ik Yo | Lt
1. Predict the label for X; based on Cl._l YVi+1
2. Decide whether to query for the true label V; %
3. Update the model to be Cl,
Y2 i
evalve
T

Our goal is to use a small number of queries, to control (minimize) the accumulative error rate.



Challenges

Challenges

Concept drift.
The distribution of input data and network structure change over time as we are
handling streaming data. How to adapt to concept drift?

Network correlation.
In the networked data, there is correlation among instances. How to model the
correlation in the streaming data?

Online query.

We must decide whether to query an instance at the time of its appearance,
which makes it infeasible to optimize a global objective function. How to develop
online query algorithms?



Modeling Networked Data

Time-Dependent Network

At any time l‘l. , we can construct a time-dependent network G; based on all the
arrived instances before and at time l‘l..

Gi :(XﬂEz”yiL’yzy)

A matrix, with an element”;; indicating the]t feature of instance X,

'S

The set of all edges between instances.

< m

A set of labels of instances that we have already actively queried before.

A set of unknown labels for all the other instances.
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Modeling Networked Data

The Basic Model: Markov Random Field

Given the graph Gl. , We can write the energy as

QGZ.EQ'EJ;O):Z 2 f(xjﬂij)\‘)_l_zeleEi g(e,Pp)
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True labels of

queried instances The energy defined The energy

for instance X, associated with the
edge el — (yjaykacl)



Modeling Networked Data

Model Inference U
We try to assign labels to yi such that we can minimize the following energy

min yY QG (yl 9y )
Usually intractable to directly solve the above problem.

Apply dual decomposition [17] to decompose the original problems into a set of tractable
subproblems. The dual optimization problem is as follows:

L, =max, 2, mip—{g(e..f) 100} )

Local optimization Dual variables

l

Subject to

l
Zelezjf O, ()= f(X] ,>»A) | Global constraint

We can solve the above objective function with projected subgradient [13].



Modeling Networked Data

Model Learning

Applying max margin learning paradigm, the objective function for parameter learning is written as

|
min, — lO1° +ué,

where

=max L U1QGi(§,-L,y?;9)—QGi(yf,y?;HH oyl
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A slack variable Dissimilarity
measure between

two configurations

The margin between two
configurations



Modeling Networked Data

Model Learning

Applying dual decomposition, we have the dual optimization objective function as follows:

Lo =miny_  max (g(@,B)+nj@) + k@)
5 Zel:le,ylLIS'lL 7

— g(e1, B) — 5 (y;) — ni(yk)
+de(T5, Try Y5> Yk) + 75 (y5) + ’Yllc(yk))
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The optimization problem becomes min, 5 " 0 " +HL9

We can solve the above problem with projected subgradient method.



Streaming Active Query

Structural Variability

Intuition: control the gap between the energy of the inferred configuration and that of any other possible
configuration.

We define the structural variability as follows:

: — —L AU
V() =max,, (|Q o, ¥0 Hoo (33, 56)

The energy of any other configuration The energy of the inferred configuration



Streaming Active Query

Properties of Structural Variability

L L
1. Monotonicity. Suppose y1 and yz are two sets of instance labels. Given 6,
e oL L
if Y, €Y, ,then we have

] L ] L
v (y1) 21 (y;)
The structural variability will not increase as we label more instances in the MRF.

2. Normality. If ¥; =, we have
i LN
% (y;)=0

If we label all instances in the graph, we incur no structural variability at all.



Streaming Active Query

Properties of Structural Variability

3. Centrality

PROPOSITION 3. (Connection to centrality) Suppose G is a
star graph with (n + 1) instances. The central instance is yo and
the peripheral instances are {y;};—,. Each peripheral instance
y; is connected to yo with an edge e; and no other edges exist.
Given the parameter 0, suppose for each e, g(e;;0) = wt >0
ify; = yo = +1; g(e;;0) = w~ > 0ify; = yo = —1 and
otherwise g(e;;0) = w® < 0. If w™ # w™, then there exists a
positive integer N, such that for alln > N, we have

E[Ve({yo})] < EVe({y;})], Vi >0

Under certain circumstances, minimizing structural variability leads to querying instances with high
network centrality.



Streaming Active Query

Decrease Function

We define a decrease function for each instance y;

I ey

Structural variability Structural variability
before querying y_i after querying y_i

The second term is in general intractable. We estimate the second term by expectation

=3 |; (5 = ylvayf_l U {yi = y))

€
Y yThe true probability

We approximate the true probability by
—Q°
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P(yi=y) =

e + e 9y



Streaming Active Query

Decrease Function

We define a decrease function for each instance y;

I ey

Structural variability Structural variability
before querying y_i after querying y_i

The first term can be computed by dual decomposition. The dual problem is

Lo :minz max (g(el B) + XJ (y;) + Xk(yk)

X e |yl ’yl
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Streaming Active Query

The algorithm

Given the constant threshold [, we query yi if and only if

Analysis

Random sampling
Uncertainty sampling

—

=== |Minimizing structural variability
@ Positive instances
O
?

Negative instances

Unlabeled instances

evolve



Enhancement by Network Sampling

Basic Idea

Maintain an instance reservoir of a fixed size, and update the reservoir sequentially on the arrival
of streaming data.

Which instances to discard when the size of the reservoir is exceeded?

Simply discard early-arrived instances may deteriorate the network correlation. Instead, we consider
the loss of discarding an instance in two dimensions:

1. Spatial dimension: the loss in a snapshot graph based on network correlation deterioration
2. Temporal dimension: integrating the spatial loss over time



Enhancement by Network Sampling

Spatial Dimension

Use dual variables as indicators of network correlation.

The violation for instance can be written as
Measure how much the

l S
FGi (yk) — f(xk,yk, A) - E Uk(yk> . e e e .
y optimization constraint is violated
el EIk’I‘ .
after remove the instance

Then the spatial loss is

A, (y5) = Z Lainy; (yx) = Z Ji:(yk)

t; t.
YrEN," Yk Ee €L

Intuition

1. Dual variables can be viewed as the message sent from the edge factor to each

instance
2. The more serious the optimization constraint is violated, the more we need to adjust

the dual variables



Enhancement by Network Sampling

Temporal Dimension

The streaming network is evolving dynamically, we should not only consider the current spatial loss.

: . . : . !
To proceed, we assume that for a given instance y;, dual variables of its neighbors O, (yk) have a
distribution with an expectation‘uj and that the dual variables are independent.

We obtain an unbiased estimator for U
~ l t,
f=2 ., 0i00/|T;
Integrating the spatial loss over time, we obtain

tj +Tm
Lossg, (y;) = E { / A (yj)dt]
t

)

Suppose edges are added according to preferential attachment [2], the loss function is written as

3
Lossa, (15) = O (45) ( (& + T — ¢ )



Enhancement by Network Sampling

The algorithm

At time 7;, we receive a new datum from the data stream, and update the graph.
If the number of instances exceed the reservoir size, we remove the instance with the least loss

function and its associated edges from the MRF model.

Interpretation

The firstterm A4, (y,)

» Enables us to leverage the spatial loss function in the network.
» Instances that are important to the current model are also likely to remain important in
the successive time stamps.

The second term ((tj £ T2 — t?)

» Instances with larger _ are reserved.
» Our sampling procedure’/implicitly handled concept drift, because later-arrived instances
are more relevant to the current concept [28].



The Framework

Algorithm 1: Framework: Active Learning for Streaming Net-
worked Data

Input: The data stream A

Output: Predictive labels {g; }i2;
1 initialize @, 1, and ~y
2 initialize Go
3 while A not the end do
4 Step 1: MRF-based inference:
d; < new datum from A
insert y; and the associated edges into G;_; to form G;
initialize o
while not convergence do

L search local minimizers @g in Eq. (3)
update o by projected subgradient

L =I- -B B N

10

11 predict ¢; by the label in §¥
12 Step 2: Streaming active query by Algorithm 2
13 Step 3: MRF-based parameter update:

14 create components in 77 and -~y for y; and the associated
edges

15 while rnot convergence do

16 search local maximizers 3}3 in Eq. (9)

17 update 6, 1 and ~y by projected subgradient

18 Step 4: Network sampling by § 4.2

Step 1: MRF-based inference

Step 2: Streaming active query

Step 3: MRF-based parameter update
Step 4: Network sampling



Experiments

Datasets

» Weibo [26] is the most popular microblogging service in China.
» View the retweeting flow as a data stream.

» Predict whether a user will retweet a microblog.

» 3 types of edge factors: friends; sharing the same user; sharing the same tweet
» Slashdot is an online social network for sharing technology related news.

» Treat each follow relationship as an instance.

» Predict “friends” or “foes”.

» 3 types of edge factors: appearing in the same post; sharing the same follower; sharing
the same followee.

» IMDB is an online database of information related to movies and TVs.
» Each movie is treated as an instance.
» Classify movies into categories such as romance and animation.
» Edges indicate common-star relationships.

» ArnetMiner [19] is an academic social network.
» Each publication is treated as an instance.

» Classify publications into categories such as machine learning and data mining.
» Edges indicate co-author relationships.



Experiments

Datasets

Table 1: Dataset Statistics

Dataset #Instance #Edge | Time Stamp
Weibo 72,923 123,517 | Second
Slashdot 19,901 | 1,790,137 | Second
IMDB 45,275 | 1,145,977 | Day
ArnetMiner 20,415 227,375 | Month




Experiments

Active Query Performance
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Experiments

Concept Drift
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1. Clearly found some evidence about the existence of concept drift

2. Our algorithm is robust because it not only better adapts to concept drift (upper

row) but also performs well without concept drift (lower row).

First row: data stream
Second row: shuffled data

(F1 score v.s. data chunk index)



Experiments

Streaming Network Sampling
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Speedup Performance (Running time v.s. reservoir size)

The decrease of the reservoir size leads to minor decrease in
performance but significantly less running time.
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Experiments

0.74

F1 Score

Streaming Network Sampling
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We fix the labeling rate, and compare different streaming network sampling algorithms with varied

reservoir sizes.



Experiments

Performance of Hybrid Approach

Table 2: F1 Score (%) Comparison for Different Combinations of Streaming Active Query and Network Sampling Algorithms

Query MV vU FD RAN

Sampling ML SW | PIES | MD ML SW | PIES | MD ML SW | PIES | MD ML SW | PIES | MD
IMDB 74.78 | 72.30 | 72.38 | 62.54 | 58.62 | 54.55 | 55.40 | 43.83 | 7191 | 67.16 | 66.64 | 56.19 | 71.93 | 67.22 | 67.67 | 55.05
Slashdot 70.95 | 67.33 | 65.35 | 69.12 | 60.69 | 58.98 | 57.20 | 41.52 | 68.70 | 68.80 | 66.78 | 53.26 | 69.21 | 67.67 | 66.46 | 56.10
Weibo 67.39 | 6698 | 64.18 | 64.42 | 58.60 | 57.90 | 59.08 | 66.92 | 66.45 | 66.78 | 65.46 | 66.48 | 65.08 | 64.56 | 64.58 | 66.90
ArnetMiner | 81.82 | 78.87 | 81.08 | 81.45 | 67.04 | 61.20 | 62.29 | 78.83 | 76.90 | 74.10 | 75.64 | 76.59 | 79.60 | 74.01 | 75.25 | 74.72

We fix the labeling rate and reservoir size, and compare different combinations of active query
algorithms and network sampling algorithms.



Conclusions

» Formulate a novel problem of active learning for streaming networked
data

» Propose a streaming active query algorithm based on the structural
variability

» Design a network sampling algorithm to handle large volume of
streaming data

» Empirically evaluate the effectiveness and efficiency of our algorithm



Thanks

Zhilin Yang, Jie Tang, Yutao Zhang

Computer Science Department, Tsinghua University



