
Email Data Cleaning
Jie Tang

Department of Computer Science
Tsinghua University

12#109, Tsinghua University
Beijing, China, 100084

j-tang02@mails.tsinghua.edu.cn

Hang Li, Yunbo Cao
Microsoft Research Asia

5F Sigma Center
No.49 Zhichun Road, Haidian

Beijing, China, 100080.

{hangli, yucao}@microsoft.com

Zhaohui Tang
Microsoft Corporation
One Microsoft Way

Redmond,
WA, USA, 98052

zhaotang@microsoft.com

ABSTRACT
Addressed in this paper is the issue of ‘email data cleaning’ for
text mining. Many text mining applications need take emails as
input. Email data is usually noisy and thus it is necessary to clean
it before mining. Several products offer email cleaning features,
however, the types of noises that can be eliminated are restricted.
Despite the importance of the problem, email cleaning has
received little attention in the research community. A thorough
and systematic investigation on the issue is thus needed. In this
paper, email cleaning is formalized as a problem of non-text
filtering and text normalization. In this way, email cleaning
becomes independent from any specific text mining processing. A
cascaded approach is proposed, which cleans up an email in four
passes including non-text filtering, paragraph normalization,
sentence normalization, and word normalization. As far as we
know, non-text filtering and paragraph normalization have not
been investigated previously. Methods for performing the tasks on
the basis of Support Vector Machines (SVM) have also been
proposed in this paper. Features in the models have been defined.
Experimental results indicate that the proposed SVM based
methods can significantly outperform the baseline methods for
email cleaning. The proposed method has been applied to term
extraction, a typical text mining processing. Experimental results
show that the accuracy of term extraction can be significantly
improved by using the data cleaning method.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval - Information filtering, selection
process

General Terms
Algorithm, Design, Experimentation, Theory.

Keywords
Text Mining, Data Cleaning, Email Processing, Statistical
Learning

1. INTRODUCTION
Email is one of the commonest means for communication via text.
It is estimated that an average computer user receives 40 to 50
emails per day [8]. Many text mining applications need take
emails as inputs, for example, email analysis, email routing, email
filtering, email summarization, information extraction from email,
and newsgroup analysis.

Unfortunately, Email data can be very noisy. Specifically, it may
contain headers, signatures, quotations, and program codes; it
may contain extra line breaks, extra spaces, and special character
tokens; it may have spaces and periods mistakenly removed; and
it may contain words badly cased or non-cased and words
misspelled.

In order to achieve high quality email mining, it is necessary to
conduct data cleaning at the first step. This is exactly the problem
addressed in this paper.

Many text mining products have email data cleaning features.
However, the number of noise types that can be processed is
limited. In the research community, no previous study has so far
sufficiently investigated the problem, to the best of our
knowledge. Data cleaning work has been done mainly on
structured tabular data, not unstructured text data. In natural
language processing, sentence boundary detection, case
restoration, spelling error correction, and word normalization
have been studied, but usually as separated issues. The
methodologies proposed in the previous work can be used in
email data cleaning. However, they are not sufficient for
removing all the noises.

Three questions arise for email data cleaning: (1) how to
formalize the problem (since it involves many different factors at
different levels and appears to be very complex); (2) how to solve
the problem in a principled approach; and (3) how to make an
implementation.

(1) We formalize email data cleaning as that of non-text filtering
and text normalization. Specifically, email cleaning is defined as
a process of eliminating irrelevant non-text data (it includes
header, signature, quotation and program code filtering) and
transforming relevant text data into canonical form like that in
newspaper (it includes paragraph, sentence and word
normalization).

(2) We propose to conduct email cleaning in a ‘cascaded’ fashion.
In the approach, we clean up an email by running several passes:
first at email body level (non-text filtering), and then at paragraph,
sentence, and word levels (text normalization).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’05, August 21-24, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-135-X/05/0008...$5.00.

(3) It turns out that some of the tasks in the approach can be
accomplished with existing methodologies, but some cannot. The
tasks of email header detection, signature detection, and program
code detection in non-text filtering, and paragraph ending
detection in paragraph normalization do not seem to be examined
previously. We view the former three tasks as ‘reverse
information extraction’. We propose a unified statistical learning
approach to the tasks, based on SVM (Support Vector Machines).
We define features for the models.

We tried to collect data from as many sources as possible for
experimentation. In total, 5,565 emails from 14 different sources
were gathered. Our experimental results indicate that the proposed
SVM based methods perform significantly better than the baseline
methods for cleaning. We also applied our method to term
extraction. Experimental results indicate that our method can
indeed enhance the accuracy of term extraction. We observed
38%-45% improvements on term extraction in terms of F1-
measure.

The rest of the paper is organized as follows. In Section 2, we
introduce related work. In Section 3, we formalize the problem of
email data cleaning. In Section 4, we describe our approach to the
problem and in Section 5, we explain one possible
implementation. Section 6 gives our experimental results. We
make concluding remarks in Section 7.

2. RELATED WORK
2.1 Data Cleaning
Data cleaning is an important area in data mining. Many research
efforts have been made so far. However, most of the previous
work was focusing on cleaning up of structured data and only a
little work was concerned with semi-structured or non-structured
data cleaning.

Email Data Cleaning

Several products have email cleaning features. For instance,
eClean 2000 is a tool that can clean up emails by removing extra
spaces between words, removing extra line breaks between
paragraphs, removing email headers, and re-indenting forwarded
mails [33]. It conducts email cleaning using rules defined by users.

WinPure ListCleaner Pro is a data cleaning product. It also has an
email cleaning module [34]. It can identify inaccurate and
duplicated email addresses in a list of email addresses. However,
it does not conduct cleaning on email data itself.

To the best of our knowledge, no previous work has been done on
email cleaning in the research community.

Web Page Data Cleaning

Considerable efforts have been placed on the cleaning of web
pages.

For instance, Yi and Liu [30] define banner ads, navigational
guides, and decoration pictures as web page noises. They assign a
weight to each block in a web page, where a weight represents the
importance (cleanness) of a block. They use, in the weight
calculation, the fact that web pages in a site tend to follow fixed
layouts and those parts in a page that also appear in many other
pages in the site are likely to be noises.

Lin and Ho view the problem of web page cleaning as that of
discovering informative contents from web pages [16]. They first
partition a page into several blocks on the basis of HTML tags.
They next calculate entropy value of each block. Finally, they
select the informative blocks by a predefined threshold from the
page. See also [14].

Tabular Data Cleaning

Tabular data cleaning is aimed at detecting and removing
duplicate information when data is consolidated from different
sources. Therefore, tabular data cleaning significantly differs in
nature from text data cleaning.

Tabular data cleaning has been investigated at both schema level
and instance level. At schema level, the differences in data
schemas can be absorbed by schema translation and schema
integration. The main problem here is to resolve naming and
structural conflicts [23]. At instance level, the main problem is to
identify overlapping data. The problem is also referred to as
object identification [10], duplicate elimination, or merge/purge
problem [13]. See [25] for an overview.

Some products provide tools for tabular data cleaning. For
instance, SQL Server 2005 provides a tool for tabular data
cleaning called Fuzzy Grouping. The ETL tool performs data
cleaning by identifying rows of similar or duplicate data and
choosing a canonical row to represent the rows of the data [35].

2.2 Language Processing
Sentence boundary detection, word normalization, case
restoration, spelling error correction, and other related issues have
been intensively investigated in natural language processing, but
usually as separated issues.

Sentence Boundary Detection

Palmer and Hearst, for instance, propose using a neural network
model to determine whether a period in a sentence is the ending
mark of the sentence, an abbreviation, or both [22]. They utilize
the part of speech probabilities of the tokens surrounding the
period as information for the disambiguation. See also [20].

Case Restoration

Lita et al. propose employing a language modeling approach to
address the case restoration problem [17]. They define four
classes for word casing: all lower case, first letter upper case, all
letters upper case, and mixed case, and formalize the problem as
that of assigning the class labels to words in natural language
texts. They then make use of an n-gram model to calculate the
probability scores of the assignments.

Mikheev proposes making use of not only local information but
also global information in a document in case restoration [20].
See also [5, 9].

Spelling Error Correction

Spelling error correction can be formalized as a word sense
disambiguation problem. The goal then becomes to select a
correct word from a set of confusion words, e.g., {to, too, two} in
a specific context. For example, Golding and Roth propose using
statistical learning methods to address the issue [12].

The problem can also be formalized as that of data conversion
using the noise channel model from Information Theory. The
source model can be built as an n-gram language model and the
channel model can be constructed with confusing words measured
by edit distance. For example, Mayes et al., Church and Gale,
Brill and Moore have developed techniques for the confusing
words calculation [2, 4, 18].

Word Normalization

Sproat et al. have investigated normalization of non-standard
words in texts, including numbers, abbreviations, dates, currency
amounts, and acronyms [27]. They define a taxonomy of non-
standard words and apply n-gram language models, decision trees,
and weighted finite-state transducers to the normalization.

2.3 Information Extraction
In information extraction, given a sequence of instances, we
identify and pull out a sub sequence of the input that represents
information we are interested in. Hidden Markov Model [11],
Maximum Entropy Model [1, 3], Maximum Entropy Markov
Model [19], Support Vector Machines [7], Conditional Random
Field [15], and Voted Perceptron [6] are widely used information
extraction models.

Information extraction has been applied, for instance, to part-of-
speech tagging [26], named entity recognition [32] and table
extraction [21, 24, 29].

3. CLEANING AS FILTERING AND
NORMALIZATION
Mining from emails is an important subject in text mining. A
large number of applications can be considered, for example,
analysis of trends in emails, automatic routing of email messages,
automatic filtering of spam emails, summarization of emails,
information extraction from emails, and analysis of trends in
newsgroup discussions (newsgroup articles are usually emails).

1. On Mon, 23 Dec 2002 13:39:42 -0500, "Brendon"
2. <brendon@nospamitology.net> wrote:

3. NETSVC.EXE from the NTReskit. Or use the
4. psexec from
5. sysinternals.com. this lets you run
6. commands remotely - for example net stop 'service'.

7. --
8. --------------------------------------
9. Best Regards
10. Brendon
11.
12. Delighting our customers is our top priority. We welcome your comments and
13. suggestions about how we can improve the support we provide to you.
14. --------------------------------------

15. >>-----Original Message-----
16. >>"Jack" <jehandy@verizon.net> wrote in message
17. >>news:00a201c2aab2$12154680$d5f82ecf@TK2MSFTNGXA12...
18. >> Is there a command line util that would allow me to
19. >> shutdown services on a remote machine via a batch file?

20. >>Best Regards
21. >>Jack

Figure 1. Example of email message
1. NETSVC.EXE from the NTReskit. Or use the psexec from sysinternals.com.
2. This lets you run commands remotely - for example net stop 'service'.

Figure 2. Cleaned email message

Unfortunately, emails are usually very noisy and simply applying
text mining tools to them, which are usually not designed for
mining from noisy data, may not bring good results. We
examined the quality of the 5,565 emails and found that
surprisingly 98.4% of the emails have this or that type of noise for
text mining (based on the definition of clean email described
below).

Figure 1 shows an example email which includes many typical
noises (or errors) for text mining. Lines 1 and 2 are a header; lines
from 7 to 14 are a signature; and a quotation lies from line 15 to
line 21. All of them are supposed to be irrelevant to text mining.
Only lines from 3 to 6 are actual text content. However, the text is
not in canonical form. It is mistakenly separated by extra line
breaks. The word “this” in line 5 is also not capitalized.

Figure 2 shows an ideal output of cleaning on the email in Figure
1. Within it, the non-text parts (header, signature and quotation)
have been removed. The text has been normalized. Specifically,
the extra line breaks have been eliminated. The case of word
“this” has been correctly restored.

In this paper, we formalize the email cleaning problem as that of
non-text data filtering and text data normalization. By ‘filtering’
of an email we mean a process of removing the parts in the email
which are not needed for text mining, and by ‘normalization’ of
an email we mean a process of converting the parts necessary for
text mining into texts in canonical form (like a newspaper style
text).

Header, signature, quotation (in forwarded message or replied
message), program code, and table are usually irrelevant for
mining, and thus should be identified and removed (in a particular
text mining application, however, we can retain some of them
when necessary). On the other hand, text and list are needed for
text mining and thus should be retained.

In a text in canonical form, paragraphs are separated by line
breaks; sentences have punctuation marks (period, question mark,
exclamation mark, colon, ellipsis); the first words in the sentences
are capitalized; and all the words are correctly cased and spelled.

Usually natural language processing and text mining systems are
designed for processing texts in canonical form. A desirable
consequence of conducting cleaning in this way is that we can
significantly enhance the modularity of text mining.

Here, we only consider handling emails in plain text format, i.e.,
non-structured data. We do not take into consideration of emails
in other formats such as HTML and Rich Format Text. There are
two reasons: all the other formats can be reduced to plain text
(with the format information lost, however) and usually many
emails for text mining (and data mining) are stored in databases as
plain texts.

4. CASCADED APPROACH
We perform email cleaning in four passes of processing: non-text
filtering, paragraph normalization, sentence normalization, and
word normalization. Figure 3 shows the flow.

The input is an email message. In non-text filtering, we identify
the existing header, signature, quotation, and program code in the
email and remove the identified blocks. In paragraph
normalization, we identify extra line breaks and remove them. In

sentence normalization, we figure out whether a period, a
question mark, or an exclamation mark is a real sentence-ending.
If so, we take it as a sentence boundary. Moreover, we remove
non-words including non-ASCII words, tokens containing many
special symbols, and lengthy tokens, and take their locations as
sentence boundaries as well (a sentence obtained in this way is
not necessarily a natural sentence). In word normalization, we
conduct case restoration on badly cased words.

Non-text filtering

Paragraph Normalization

Sentence Normalization

Word Normalization

Text Normlization

Noisy email
message

Cleaned email
message

Figure 3. Flow of email data cleaning

We note that it is reasonable to conduct cleaning as described
above. Removing noisy blocks first are preferable, because such
blocks are not needed in the other processing. Normalizing text
from paragraph to sentence and then to word is desirable, because
there are dependencies between the processes. Word
normalization (e.g., case restoration) needs sentence beginning
information. Paragraph normalization (e.g., paragraph ending
information) helps sentence normalization.

We should also filter out other noisy blocks like tables. In this
paper, we confine ourselves to the removal of the noisy blocks
described above (header, signature, and program code), because
we have observed only a few other block types (tables) available
in our data. (0.6% of emails in the 14 data sets have other types).
We should also conduct spelling error correction in word
normalization. However, we will leave this to future work,
because spelling errors are less common than casing errors in
emails. (93.6% of the word level errors are casing errors.)

5. IMPLEMENTATION
We consider one implementation of the cascaded approach. We
employ a unified machine learning approach in non-text filtering
and paragraph normalization. Furthermore, we utilize rules in the
sentence normalization and word normalization. The former two
issues have not been investigated previously and are the main
focus of our work. The latter two issues have been intensively
studied in the literature as explained.

5.1 Outline
The input is an email message. The implementation carries out
cleaning in the following steps.

(1) Preprocessing. It uses patterns to recognize ‘special words’,
including email address, IP address, URL, date, file directory,
Date (e.g. 02-16-2005), number (e.g. 5.42), money (e.g. $100),
percentage (e.g. 92.86%), words containing special symbols (e.g.
C#, .NET, .doc, Dr.). It also uses patterns to recognize bullets in
list items (e.g.: (1), b), etc.)

(2) Non-text filtering. It detects the header and signature (if there
exist) in the email by using a classification model. It then
eliminates the identified blocks. It next detects program codes (if
there exist) in the email with the same approach and removes the
identified blocks. Finally, it filters out quotations using hard-
coded rules. It views lines starting with special characters (e.g. >, |,
>>) as quotations. After this step, only relevant text data remains.
The step relies on header detection, signature detection, and
program code detection.

(3) Paragraph normalization. It identifies whether or not each line
break is a paragraph ending by using a classification model. If not,
it removes the line break. It also forcibly removes consecutive
(redundant) line breaks between paragraphs into a single line-
break. As a result, the text is segmented into paragraphs. The step
is mainly based on paragraph ending detection.

(4) Sentence normalization. It determines whether each
punctuation mark (i.e., period, exclamation mark, and question
mark) is sentence ending by utilizing rules. If there is no space
after an identified sentence ending, it adds a space there. It also
removes redundant symbols (including space, exclamation mark,
question mark, and period) at the sentence ending. Furthermore,
it eliminates noisy tokens (e.g. non-ASCII characters, tokens
containing many special symbols, and lengthy tokens) and views
the positions as sentence endings (this is because a sentence can
rarely be across such tokens). As a result, each paragraph is
segmented into sentences.

(5) Word normalization. It conducts case restoration on badly
cased words using rules and a dictionary.

5.2 Classification Model
We make use of Support Vector Machines (SVM) as the
classification model [28].

Let us first consider a two class classification problem. Let {(x1,
y1), … , (xN, yN)} be a training data set, in which xi denotes an
instance (a feature vector) and }1,1{ +−∈iy denotes a
classification label. In learning, one attempts to find an optimal
separating hyper-plane that maximally separates the two classes
of training instances (more precisely, maximizes the margin
between the two classes of instances). The hyper-plane
corresponds to a classifier (linear SVM). It is theoretically
guaranteed that the linear classifier obtained in this way has small
generalization errors. Linear SVM can be further extended into
non-linear SVMs by using kernel functions such as Gaussian and
polynomial kernels.

We use SVM-light, which is available at
http://svmlight.joachims.org/. We choose polynomial kernel,
because our preliminary experimental results show that it works

best for our current task. We use the default values for the
parameters in SVM-light. When there are more than two classes,
we adopt the “one class versus all others” approach, i.e., take one
class as positive and the other classes as negative.

5.3 Header and Signature Detection
5.3.1 Processing
Header detection and signature detection are similar problems.
We view both of them as ‘reverse information extraction’.
Hereafter, we take header as example in our explanation. The
learning based header detection consists of two stages: training
and detection.

In detection, we identify whether or not a line is the start line of a
header, and whether or not a line is the end line of a header using
two SVM models. We next view the lines between the identified
start line and the end line as header.

In training, we construct the two SVM models that can detect the
start line and the end line, respectively. In the SVM models, we
view a line in an email as an instance. For each instance, we
define a set of features and assign a label. The label represents
whether the line is start, end, or neither. We use the labeled data
to train the SVM models in advance.
It seems reasonable to take lines as instances for non-text filtering.
We randomly picked up 104,538 lines from the 5,565 emails and
found that 98.37% of the lines are either text or non-text (header,
signature, program code, etc). It is really rare to have a mix of text
and non-text in a line.

The key issue here is how to define features for effectively
performing the cleaning task.

5.3.2 Features in Header Detection Models
The features are used in both the header-start and header-end
SVM models.

Position Feature: The feature represents whether the current line
is the first line in the email.

Positive Word Features: The features represent whether or not
the current line begins with words like “From:”, “Re:”, “In
article”, and “In message”, contains words such as “original
message” and “Fwd:”, or ends with words like “wrote:” and
“said:”.

Negative Word Features: The features respectively represent
whether or not the current line contains words like “Hi”, “dear”,
“thank you”, and “best regards”. The words are usually used in
greeting and should not be included in a header.

Number of Words Feature: The feature stands for the number of
words in the current line.

Person Name Feature: The feature represents whether or not the
current line contains a person name (first name or last name).

Ending Character Features: The features respectively represent
whether or not the current line ends with colon, semicolon,
quotation mark, question mark, exclamation mark or suspension
points. (The first line of a header is likely to end with characters
like quotation mark, but is less likely to end with characters like
colon or semicolon.)

Special Pattern Features: In the preprocessing step, the special
words have already been recognized. Each of the features
represents whether or not the current line contains one type of
special words. Positive types include email address and date.
Negative types include money and percentage.

Number of Line Breaks Feature: The feature represents how
many line breaks exist before the current line.

The features above are also defined similarly for the previous line
and the next line.

5.3.3 Features in Signature Detection Model
The features are used in both the signature-start and signature-end
SVM models.

Position Features: The two features are defined to represent
whether or not the current line is the first line or the last line in
the email.

Positive Word Features: The features represents whether or not
the current line contains positive words like “Best Regards”,
“Thanks”, “Sincerely” and “Good luck”.

Number of Words Features: One of the two features stands for
the number of words in the current line. The first line of a
signature usually contains a few words, such as the author’s name
or words like “Best Regards”, “Thanks”. The other feature stands
for the number of words in a dictionary.

Person Name Feature: The feature represents whether or not the
current line contains a person name (first name or last name). A
signature is likely to begin with the author’s name.

Ending Character Features: The features respectively represent
whether or not the current line ends with a punctuation mark like
colon, semicolon, quotation mark, question mark, exclamation
mark and suspension points. (A signature is less likely to end with
punctuation marks like colon or semicolon.)

Special Symbol Pattern Features: The features respectively
indicate whether the line contains consecutive special symbols
such as: “--------”, “======”, “******”. Such patterns can be
frequently found in signatures.

Case Features: The features represent the cases of the tokens in
the current line. They indicate whether the tokens are all in upper-
case, all in lower-case, all capitalized or only the first token is
capitalized.

Number of Line Breaks Feature: The feature represents how
many line breaks exist before the current line.

The features above are also defined similarly for the previous line
and the next line.

5.4 Program Code Detection
5.4.1 Processing
Program code detection is similar to header and signature
detection. It can also be viewed as a ‘reverse information
extraction’ problem. The detection is performed by identifying
the start line and the end line of a program code using SVMs. A
recognized program code is then removed. Again, utilizing
effective features in the SVM models is the key to a successful
detection.

5.4.2 Features in Program Code Detection Model
The following features are used in both the code-start and code-
end models.

Position Feature: The feature represents the position of the
current line.

Declaration Keyword Feature: The feature represents whether
or not the current line starts with one of the keywords, including
“string”, “char”, “double”, “dim”, “typedef struct”, “#include”,
“import”, “#define”, “#undef”, “#ifdef”, and “#endif”.

Statement Keyword Features: The four features represent

-whether or not the current line contains patterns like “i++”;

-whether or not the current line contains keywords like “if”, “else
if”, “switch”, and “case”;

-whether or not the current line contains keywords like “while”,
“do{”, “for”, and “foreach”;

-whether or not the current line contains keywords like “goto”,
“continue;”, “next;”, “break;”, “last;” and “return;”.

Equation Pattern Features: The four features are defined for
equations as follows:

-whether or not the current line contains an equation pattern like
“=”, “<=” and “<<=”;

-whether or not the current line contains an equation pattern like
“a=b+/*-c;”;

-whether or not the current line contains an equation pattern like
“a=B(bb,cc);”;

-whether or not the current line contains an equation pattern like
“a=b;”.

Function Pattern Feature: The feature represents whether or not
the current line contains function pattern, e.g., pattern covering
“fread(pbBuffer,1, LOCK_SIZE, hSrcFile);”.

Function Definition Features: The two features represent
whether or not the current line starts with “sub” or “function”, and
whether or not it starts with “end function” or “end sub”.

Bracket Features: The four features represent whether or not the
line starts with or ends with “{” and whether or not the line starts
with or ends with “}”.

Percentage of Real Words Feature: The feature represents the
percentage of ‘real’ words in the line that can be found in a
dictionary.

Ending Character Features: Program code lines usually end
with a semicolon “;”, but seldom end with a question mark “?” or
an exclamation mark “!”. The two features are defined to
represent whether the current line ends with a semicolon and
whether the line ends with a question mark or an exclamation
mark.

Number of Line Breaks Feature: The feature represents how
many line breaks exist before the current line.

The features above are also defined similarly for the previous line
and the next line.

5.5 Paragraph Ending Detection
5.5.1 Processing
A text may contain many line breaks. We identify whether each
of line break is a paragraph ending or an extra-line-break. We
view this problem as that of classification and employ a SVM
model to perform the task. If a line break is recognized as an
extra-line-break, then we remove it; otherwise, we retain it. In this
way, we segment the text into normalized paragraphs.

In the SVM model, we view a line as an instance. For each
instance, we define a set of features and assign a label. The label
represents whether the line break in the line is unnecessary. We
use the labeled data to train the SVM model in advance. The lines
having extra line breaks are positive instances, and the other lines
are negative instances.

5.5.2 Features in Paragraph Ending Detection
Model
The following features are defined in the paragraph-ending model.

Position Features: The two features represent whether or not the
current line is the first line and whether or not it is the last line.

Greeting Word Features: The features respectively represent
whether or not the line contains greeting words like “Hi” and
“Dear”. (In such case, the line break should not be removed).

Ending Character Features: The features respectively represent
whether or not the current line ends with a punctuation mark like
colon, semicolon, quotation mark, question mark, exclamation
mark and suspension points.

Case Features: The two features represent whether the current
line ends with a word in lower case letters and whether or not the
next line starts with a word in lower case letters.

Bullet Features: The features represent whether or not the next
line is one kind of bullet of a list item like “1.” and “a)”. (In such
cases, the line break should be retained)

Number of Line Breaks Feature: The feature represents how
many line breaks exist after the current line.

The features above are also defined similarly for the next line.

6. EXPERIMENTAL RESULTS
6.1 Data Sets and Evaluation Measures
6.1.1 Data sets
We tried to collect emails for experimentation from as many
sources as possible. We randomly chose in total 5,565 emails
from 14 sources and created 14 data sets. DC, Ontology, NLP and
ML and J2EE are from newsgroups at Google (http://groups-
beta.google.com/groups). Jena is a newsgroup at Yahoo
(http://groups.yahoo.com/group/jena-dev/). Weka is from a
newsgroup at Waikato University (https://list.scms.waikato.ac.nz).
Protégé and OWL are from a project at Stanford University
(http://protege.stanford.edu/). Mobility, WinServer, Windows,
PSS and BR are email collections or newsgroups at Microsoft.

Human annotators conducted annotation on all the emails.
Specifically, headers, signatures, quotations, program codes, etc,
in the emails were labeled. Paragraph boundaries were identified.

Sentence boundaries were marked. Incorrectly-cased words were
modified and spelling errors were corrected.

Table 1 shows the statistics on the data sets. The columns
respectively represent data set, number of emails, and percentages
of emails containing headers, signatures, program codes, and text
only.

Table 1. Statistics on data sets (%)

No Data Set Number Header Signature Code Text
Only

1 DC 100 100.0 87.0 15.0 0.0

2 Ontology 100 100.0 77.0 2.0 0.0

3 NLP 60 100.0 88.3 0.0 0.0

4 ML 40 100.0 97.5 5.0 0.0

5 Jena 700 99.6 97.0 38.0 0.0

6 Weka 200 99.5 97.5 17.0 0.5

7 Protégé 500 28.0 82.2 3.2 16.8

8 OWL 500 38.4 93.2 4.2 4.8

9 Mobility 400 44.0 74.5 0.0 18.3

10 WinServer 400 44.9 67.2 1.25 22.1

11 Windows 1000 47.6 65.3 0.7 21.8

12 PSS 1000 49.2 66.8 1.0 20.8

13 BR 310 49.5 64.3 0.0 24.4

14 J2EE 255 100.0 56.1 9.4 0

 Average 5565 58.5 76.0 7.2 13.8

From table 1, we see that a large portion of emails contain headers
and signatures. In three of the data sets, more than 15% of emails
contain program codes.

We also made statistics on other types of errors. In summary,
73.2% of the emails need paragraph normalization, 85.4% of the
emails need sentence normalization, and 47.1% of the emails need
case restoration. Only 7.4% of the emails contain at least one
spelling error. Only 1.6% of the emails are absolutely clean. We
omit the details due to space limitation.

6.1.2 Evaluation measures
In all the experiments on detection and extraction, we conducted
evaluations in terms of precision, recall and F1-measure. The
evaluation measures are defined as follows:

Precision: P = A / (A + B)

Recall: R = A / (A + C)

F1-measure: F1 = 2PR / (P + R)

where, A, B, C and D denote number of instances.

Table 2. Contingence table on results of detection and
extraction

 Is Target Is Not Target

Found A B

Non Found C D

In all evaluations, we view a correction or extraction made by
humans as a ‘target’. If a method can find the target, we say that it
makes a correct decision; otherwise, we say that it makes a
mistake. Precision, recall, and F1-measure are calculated on the
basis of the result. For header, signature, quotation, program code,
and paragraph ending detections, we conduct evaluation at line
level. For the other tasks, we perform evaluation at word level.

6.1.3 Baseline methods
For header detection and paragraph ending detection, we used
eClean [33] as baselines. There were default rules in eClean for
header detection, and we made some extensions on the rules
based on the features of our SVM models for header detection.

For signature detection, we used as a baseline the most useful
features in our SVM models for signature detection. For program
code detection, it was hard to find a baseline. (There is no feature
in eClean for signature and program code detection.)

The rule for header detection is as follow. If a line begins with a
pattern of “From:”, “Newsgroups:”, “To:”, “Sent:”, “Cc:”,
“Subject:”, “sender:”, “news:”, “In article”, “In Message”, or
“Re:”, contains a pattern of “---Original Message---” or “Fwd:”,
or ends with a pattern of “wrote:”, “said:”, or “wrote in message”,
then identify the line as a line in the header.

The rule for signature detection is as follow. If a line is in the last
five lines of the email, and begins with words of “Best Regards”,
“Regard”, “Best Wishes”, “Thanks”, “Hope this help”, “Cheers”,
“Sincerely”, “Yours”, or “Gratefully”, then identify the line and
all the following lines as signature.

The rule for paragraph ending detection is as follows. If a line
does not end with a punctuation mark of “!” and “.”, and the first
word of the next line is neither capitalized nor a number, then
remove the line break between the two lines.

6.2 Data Cleaning
6.2.1 Experiment
We evaluated the performances of our non-text filtering methods
(header, signature, quotation and program code filtering) and our
text normalization methods (paragraph normalization, sentence
normalization, and word normalization) on the first 12 data sets
and used the remaining two data sets for other experiment.

We conducted the experiment in the following way. First, we
conducted header and signature filtering. We also performed
quotation filtering. After that, we conducted program code
filtering. Then, we conducted paragraph normalization. Finally,
we conducted sentence normalization and word normalization. In
each step, we evaluated the data cleaning results in terms of
precision, recall, and F1-measure. We also made comparisons
with the baseline methods as described above.

Table 3 shows the five-fold cross-validation results on the 12 data
sets. In the table, Header, Signature, Quotation, Program,
Paragraph, Sentence, and Word denote the cleaning steps
described above.

We see that our methods can achieve high performances in all the
tasks. For Header, Signature, and Paragraph, our methods
significantly outperform the baselines. We conducted sign tests on

Table 3. Performances of non-text filtering and text
normalization (%)

Detection Task Precision Recall F1-
Measure

Our Method 98.97 96.57 97.76
Header

Baseline 99.81 60.55 75.37

Our Method 91.35 88.47 89.88
Signature

Baseline 88.54 23.68 37.36

Quotation 98.18 92.01 95.00

Program 92.97 72.17 81.26

Our Method 85.53 97.65 91.19
Paragraph

Baseline 63.55 98.13 77.15

Sentence 94.93 93.91 94.42

Word 93.23 89.51 91.33

the results. The p values are much smaller than 0.01, indicating
that the improvements are statistically significant.

For Header, Signature, and Paragraph, both precision and recall of
our methods are high. For Program, precision of our method is
high, but recall needs further improvement.

6.2.2 Discussions
(1) High precision. Precisions of our methods range from 85.53%
to 98.97%. It indicates that the use of features and rules described
above is very effective for email data cleaning.

 (2) Improvements over baseline methods. The rule-based
header detection baseline suffers from low recall (only 60.55%),
although its precision reaches 99.81%. This is due to a low
coverage of the rules. Usually it is difficult to identify headers by
using rules. For signature detection, recall of the baseline is also
low (only 23.68%) due to a similar reason. For paragraph ending
(conversely extra-line-break) detection, the baseline of using rules
cannot work well either. This is because the task is hard to be
performed with rules.

(3) Error analysis. We conducted error analysis on the results of
our method.

For header detection, there were mainly three types of errors.
More than 43% of the errors were from headers having specific
patterns. About 40% of the errors occurred when there were extra
line breaks in headers. Furthermore, there were about 5% errors
from headers containing non-ASCII characters.

For signature detection, about 38% of the errors were from
signature start line identification and 62% of the errors were from

end line identification. Sometimes, signatures are hard to detect.
The characteristics of signatures can vary largely depending on
authors. Signatures are sometimes similar to the main texts.

In program code detection, recall is only 72.17%. This is because
it is hard to find general patterns for the task.

For paragraph detection, 61% of the errors were due to incorrect
elimination of necessary line breaks and 39% of the errors were
results of overlooking unnecessary line breaks. About 69% of the
former errors happened before lists. This is because sometimes
bullets in lists were missing. As for the latter errors, about 51.6%
were due to errors of program code detection at the previous step.

For sentence ending detection, about 33% of the errors were
misclassification of periods in acronyms. 22% of the errors were
failures in recovering missing periods.

For word normalization, the errors fell into three categories. First,
more than half of the errors were due to out of vocabulary words.
Second, one fourth of the errors were due to ambiguities of words.
For example, “Outlook 2003” vs. “a pleasant outlook”. We need
implement a more sophisticated mechanism for dealing with the
problem. Third, the erroneous results of sentence ending detection
at the previous step also affected the results of word
normalization.

6.3 Term Extraction
6.3.1 Experiment
To evaluate the effectiveness of our method, we applied it to term
extraction. Term extraction is a task in which base noun phrases
are extracted from documents. The extracted terms can be used as
features of documents and thus term extraction is a fundamental
processing in text mining.

We evaluated term extraction results before and after conducting
email data cleaning.

The two data sets BR and J2EE were used in the experiment.
Terms in the two data sets were also manually labeled. In term
extraction, we employed a tool based on technologies proposed in
[30]. The tool first conducts part of speech tagging with a Hidden
Markov Model. It then extracts base noun phrases as terms using
a Finite State Machine.

We carried out data cleaning in the same way as that in the
experiment in Section 6.2. The SVM models were trained with the
first 12 data sets. After each step of data cleaning, we performed
term extraction. Table 4 shows the results of term extraction. In
the table, Original Data denotes the results of extraction from the
original noisy data and Header, Signature, Quotation, Program,
and Paragraph denote the results of extraction after the cleaning
steps described above. Base denotes the baseline method for
cleaning and SVM denotes our proposed method.

We see that significant improvements can be obtained on term
extraction precision (+74.2% on BR and +42.4% on J2EE). At
each cleaning step, we observe improvements on precision. The
results indicate that our method of data cleaning works well and
each of the steps in our method is needed.

From the results we see that our method is significantly better
than the baseline. We conducted sign tests on the results. The p

values on the two data sets are much smaller than 0.01, indicating
that the improvements are statistically significant.

Table 5 shows a comparison between the term extraction results
on manually cleaned data and those on the automatically cleaned
data using our method. The former results, thus, are upper bounds
for our method. We see that the results obtained with our method
are close to the upper bounds. We again confirm the effectiveness
of our data cleaning method.

Table 4. Performances of term extraction on original data and
cleaned data (%)

Precision Recall F1-MeasureData
Set

Term
Extraction Base SVM Base SVM Base SVM

Original
Data 50.0 85.2 63.0

+Header
60.1

+20.0
64.1

+28.0
85.2
+0.0

85.2
+0.0

70.5
+11.8

73.1
+16.0

+Signature
61.9

+23.7
79.8

+59.5
84.8
-0.4

84.3
-1.0

71.6
+13.6

82.0
+30.1

+Quotation
61.9

+23.7
79.8

+59.5
84.8
-0.4

84.3
-1.0

71.6
+13.6

82.0
+30.1

+Program
61.9

+23.7
79.8

+59.5
84.8
-0.4

84.3
-1.0

71.6
+13.6

82.0
+30.1

BR

+Paragraph
67.5

+34.8
87.2

+74.2
91.3
+7.2

90.6
+6.4

77.6
+23.1

88.9
+41.0

Original
Data 38.9 68.7 49.7

+Header
42.6
+9.5

43.3
+11.4

68.3
-0.6

68.3
-0.6

52.5
+5.6

53.0
+6.7

+Quotation
48.0

+23.3
48.6

+25.0
68.3
-0.6

68.3
-0.6

56.4
+13.4

56.8
+14.4

+Signature
48.6

+25.0
51.2

+32.9
67.9
-1.2

67.7
-1.5

56.7
+14.1

58.6
+18.0

+Program
Code

48.6
+25.0

52.9
+36.0

67.9
-1.2

67.6
-1.6

56.7
+14.1

59.3
+19.5

J2EE

+Paragraph
50.3

+29.4
55.4

+42.4
70.2
+2.2

70.3
+2.3

58.6
+18.0

62.0
+24.7

Table 5. Performances of term extraction on clean data and
data cleaned by our method (%)

Data
set

Term
Extraction Precision Recall F1-

Measure

Clean 88.71 91.87 90.26
BR

Our Method 87.16 90.63 88.86

Clean 61.68 71.05 66.03
J2EE

Our Method 55.40 70.27 61.96

6.3.2 Discussions
(1) The improvements on precision are significant (ranging from
+42.4% to +74.2%). The results are consistent with those
obtained in the experiment in Section 6.2.

(2) Non-text filtering (header, signature, quotation and program
code detection) makes major contributions to the improvements.
The improvements on precision are +59.5% and +36.0%.

(3) Non-text filtering induces small drops in recall sometimes.
This is because filtering has certain errors and can mistakenly
discard some text data.

(4) Paragraph normalization (paragraph ending detection) is
useful. It can concatenate broken lines and makes possible the
extraction of noun phrases that lie across two broken lines. As a
result, it improves not only precision (+14.7% and +6.4%), but
also recall (+6.4% and +2.3%).

(5) Term extraction after cleaning with our method outperforms
that with the baseline methods. On BR, the improvement by our
methods is +41.0% and the improvement by the baseline is only
+23.1%. On J2EE, the improvement by our methods is 24.7% and
that by the baseline is 18.0%.

(6) It is difficult to accurately extract terms from J2EE, even after
manual cleaning. This is because the text contains many out-of-
vocabulary words and thus it is hard to extract terms from the data.

7. CONCLUSION
In this paper, we have investigated the problem of email data
cleaning. We have defined the problem as that of non-text
filtering and text normalization. We have proposed a cascaded
approach to the task. Using Support Vector Machines, we have
been able to make an implementation of the approach.
Experimental results show that our approach can significantly
outperform baseline methods for email data cleaning. When
applying it to term extraction from emails, we observe a
significant improvement on extraction accuracy.

As future work, we plan to make further improvement on the
accuracy of each step. We also want to apply the cleaning method
to other text mining applications.

8. REFERENCES
[1] A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. A

Maximum Entropy Approach to Natural Language
Processing. Computational Linguistics, 22:39-71, 1996.

[2] E. Brill and R. C. Moore. An Improved Error Model for
Noisy Channel Spelling Correction. In Proc. of the 38th
Annual Meeting of the ACL, 2000, pages 286–293.

[3] H. L. Chieu and H. T. Ng. A Maximum Entropy Approach to
Information Extraction from Semi-Structured and Free Text.
In Proc. of Eighteenth National Conference on Artificial
Intelligence, 2002.

[4] K. Church and W. Gale. Probability Scoring for Spelling
Correction. In Statistics and Computing, Vol. 1, 1991, pages
93-103.

[5] A. Clark. Pre-processing Very Noisy Text. In Proc. of
Workshop on Shallow Processing of Large Corpora. Corpus
Linguistics 2003, Lancaster. 2003.

[6] M. Collins. Discriminative Training Methods for Hidden
Markov Models: Theory and Experiments with Perceptron
Algorithms. In Proc. of Conference on Empirical Methods in
NLP, 2002.

[7] C. Cortes and V. Vapnik. Support-Vector Networks.
Machine Learning 20:273-297, 1995

[8] N. Ducheneaut and V. Bellotti. E-mail as Habitat: An
Exploration of Embedded Personal Information Management.
Interactions, 8, pages 30-38.

[9] W. A. Gale, K. W. Church, and D. Yarowsky. 1994.
Discrimination Decisions for 100,000-Dimensional Spaces.
Current Issues in Computational Linguistics: In Honour of
Don Walker. Kluwer Academic Publishers, pages 429-450.

[10] H. Galhardas, D. Florescu, D. Shasha, and E. Simon.
Declaratively Cleaning Your Data Using AJAX. In Journees
Bases de Donnees, Oct. 2000.
http://caravel.inria.fr/~galharda/BDA.ps.

[11] Z. Ghahramani and M. I. Jordan. Factorial Hidden Markov
Models. Machine Learning, 29:245-273. 1997

[12] A. R. Golding and D. Roth. Applying Winnow to Context-
Sensitive Spelling Correction. In Proc. of the 13th
International Conference on Machine Learning (ICML 1996).

[13] M. A. Hernández and S. J. Stolfo. Real-world Data is Dirty:
Data Cleansing and The Merge/Purge Problem. Publisher
Kluwer Academic Publishers Hingham, MA, USA. Vol. 2,
Issue 1, January 1998, pages 9-37.

[14] N. Kushmerick. Learning to Remove Internet Advertisement.
In Proc. of the Third International Conference on
Autonomous Agents (Agents'99). ACM Press. Seattle, WA,
USA. 1999, pages 175-181.

[15] J. Lafferty, A. McCallum, and F. Pereira. Conditional
Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data. In Proc. of ICML 01, 2001.

[16] S. H. Lin and J. M. Ho. Discovering Informative Content
Blocks from Web Documents. In Proc. of SIGKDD-02, 2002.

[17] L. V. Lita, A. Ittycheriah, S. Roukos, and N. Kambhatla.
tRuEcasIng. In Proc. of the 41st Annual Meeting of the
Association for Computational Linguistics (ACL 2003), July
7-12, Sapporo, Japan.

[18] E. Mays, F. J. Damerau, and R. L. Mercer. Context Based
Spelling Correction. Information Processing and
Management: an International Journal, v.27 n.5, pages 517-
522, 1991

[19] A. McCallum, D. Freitag, and F. Pereira. Maximum Entropy
Markov Models for Information Extraction and
Segmentation, In Proc. of the ICML Coference, 2000.

[20] A. Mikheev. Periods, Capitalized Words, etc. Computational
Linguistics, 28(3):289-318, 2002.

[21] H. T. Ng, C. Y. Lim, J. L. T. Koo. Learning to Recognize
Tables in Free Text. In Proc. of the 37th annual meeting of
the Association for Computational Linguistics on
Computational Linguistics (ACL'99). 1999, pages 443-450.

[22] D. D. Palmer and M. A. Hearst. Adaptive Multilingual
Sentence Boundary Disambiguation. Computational
Linguistics. MIT Press Cambridge, MA, USA. Vol. 23, Issue
2 (June 1997), pages 241–267.

[23] C. Parent, and S. Spaccapietra. Issues and Approaches of
Database Integration. Comm. ACM 41(5):166-178, 1998.

[24] D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Table
Extraction Using Conditional Random Fields. In Proc. of the
26th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2003.

[25] E. Rahm and H. H. Do. Data Cleaning: Problems and
Current Approaches, IEEE Bulletin of the Technical
Committee on Data Engineering, Vol. 23 No. 4, December
2000

[26] A. Ratnaparkhi. Unsupervised Statistical Models for
Prepositional Phrase Attachment. In Proc. of
COLINGACL98. Montreal, Canada, 1998.

[27] R. Sproat, A. Black, S. Chen, S. Kumar, M. Ostendorf, and C.
Richards. Normalization of non-standard words. WS'99 Final
Report.http://www.clsp.jhu.edu/ws99/projects/normal/.

[28] V. Vapnik. Statistical Learning Theroy. Springer Verlage,
New York, 1998.

[29] Y. Wang and J. Hu. A Machine Learning based Approach
for Table Detection on the Web. In Proc. of The Eleventh
International World Wide Web Conference (WWW2002),
Honolulu, Hawaii, USA, May 2002

[30] E. Xun, C. Huang, and M. Zhou. A Unified Statistical Model
for the Identification of English baseNP. In Proc. of The 38th
Annual Meeting of the Association for Computational
Linguistics (ACL), Hong Kong, 3 - 6 October 2000

[31] L. Yi and B. Liu, and X. Li. Eliminating Noisy Information
in Web Pages for Data Mining. In Proc. of the ACM
SIGKDD International Conference on Knowledge Discovery
& Data Mining (KDD-2003), Washington, DC, USA, August,
2003, pages 24-27.

[32] L. Zhang, Y. Pan, and T. Zhang. Recognising and Using
Named Entities: Focused Named Entity Recognition Using
Machine Learning. In Proc. of SIGIR'04, 2004.

[33] J. Decker. eClean 2000, http://www.jd-
software.com/eClean2000/index.html.

[34] ListCleaner Pro. http://www.WinPure.com/EmailCleaner.
[35] Fuzzy Lookup and Fuzzy Grouping in Data Transformation

Services for SQL Server 2005.
http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/dnsql90/html/FzDTSSQL05.asp

