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Chernoff Bounds

Theorem (Chernoff Bound, 1952): If 𝑿𝟏, 𝑿𝟐, ⋯ , 𝑿𝒌 are independent zero-mean scaler-
valued random variables with 𝑿𝒊 ≤ 𝟏. Then for 𝝐 ∈ 𝟎, 𝟏
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Theorem: Let 𝑃 be an regular Markov chain with state space [𝑁], stationary 
distribution 𝜋 and spectral expansion 𝜆. Let 𝒇: [𝑵] → ℂ𝒅×𝒅 be a matrix-valued
function such that
1. ∀ 𝑿 ∈ 𝑵 , 𝒇(𝑿) is Hermitian and 𝒇 𝑿 𝟐 ≤ 𝟏; 
2. ∑𝑿∈[𝑵]𝝅𝑿𝒇 𝑿 = 𝟎. 
Let (𝑿𝟏, 𝑿𝟐, ⋯ , 𝑿𝒌) denote a 𝒌-step random walk on 𝑷 starting from an initial 
distribution 𝝓. Then for 𝝐 ∈ 𝟎, 𝟏 :
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Co-occurrence Matrix of Sequential Data
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Observation 1: 
Let 𝑿𝟏, 𝑿𝟐, ⋯ , 𝑿𝑳/𝑻 be the sequence of sliding windows, and 𝒇 maps a sliding window to the co-occurrence matrix 
within this window. The co-occurrence matrix 𝐶 can be written as the sample mean of 𝒇(𝑿𝟏), 𝒇(𝑿𝟐),⋯ , 𝒇(𝑿𝑳/𝑻):

Observation 2: If the input sequence 𝑣&, 𝑣', ⋯ is a Markov Chain, then 𝑋&, 𝑋', ⋯ is a Markov Chain, too.

Markov chain Matrix Chernoff Bound!



Convergence Rate of Co-occurrence Matrices

• The co-occurrence matrix:  

𝑪 =
𝟏
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𝑳/𝑻
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• The asymptotic expectation of 𝑪 (denote 𝚷 = 𝐝𝐢𝐚𝐠(𝝅)):
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𝑳→@A

𝔼 𝑪 =+
𝒓%𝟏

𝑻
𝟏
𝟐𝑻

𝜫𝑷𝒓 + 𝜫𝑷𝒓 C

Theorem: Let 𝑃 be a regular Markov chain with state space [𝒏], stationary distribution 
𝜋 and mixing time 𝝉. Let (𝒗𝟏, ⋯ , 𝒗𝑳) be a 𝑳-step random walk on 𝑃 starting from a 
distribution 𝝓. Given 𝝐 ∈ 𝟎, 𝟏 , the probability that the co-occurrence matrix 𝑪
deviates from its asymptotic expectation 𝔸𝔼 𝑪 (in 2-norm) is bounded by:

ℙ 𝑪 − 𝔸𝔼[𝑪] 𝟐 ≥ 𝝐 ≤ 𝟐 𝝉 + 𝑻 𝝓 𝝅𝒏𝟐𝐞𝐱𝐩 −
𝝐𝟐 𝑳 − 𝑻
𝟓𝟕𝟔 𝝉 + 𝑻

Roughly, one needs 𝑳 = 𝑶(𝝉(𝐥𝐨𝐠𝒏 + 𝐥𝐨𝐠𝝉)/𝝐𝟐) samples to guarantee good estimation 
to the co-occurrence matrix.
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Numerical Experiments
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