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The Application to Co-occurrence Matrices
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Chernoff Bounds

Theorem (Chernoff Bound, 1952): If X4, X5, -, X), are independent zero-mean scaler-
valued random variables with |X;| < 1. Then for € € (0,1)

k
1

P EEX,- > € | < 2exp(—ke?/4)
i=1

The sample mean

k
1
szi
i=1

falls into this area

with high prob. : _
Left Tail Right Tail

P[< —€] P[= €]




A Matrix Chernoff Bound for Markov Chains

P(X;|X4)
lndependenee
Markov Dependence
Sealar—valued
romomvarosies (i g
Matrix-valued
Random Variables f(Xy) fF(X)

Sample Mean Matrix %(f(Xl) + f(X3))



A Matrix Chernoff Bound for Markov Chains
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A Matrix Chernoff Bound for Markov Chains

P(X;|X;) P(X3|X2) P(X4|X3)
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A Matrix Chernoff Bound for Markov Chains

k k
1 1
Amin EZf(Xl) = —€ and P Amax Ez f(Xi) =€
i=1 i=1
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A Matrix Chernoff Bound for Markov Chains

Theorem: Let P be an regular Markov chain with state space [N], stationary
distribution m and spectral expansion A. Let f: [N] — C%*¢ be a matrix-valued
function such that

1. VX € |[N],f(X) is Hermitian and |[f(X)I|, < 1;

2. Yxe[N] nyf(X) = 0.

Let (X1, X3, -, X) denote a k-step random walk on P starting from an initial
distribution ¢. Then for € € (0, 1):

k
P4 %Zﬂxa < —¢| < 19llxdexp(~k(1 ~ D)e?/72)

k
P | Au %;ﬂxa > €| < llpllodZexp(~k(1 - )e?/72)



The Application to Co-occurrence Matrices
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Co-occurrence Matrix of Sequential Data

Sliding Window 1
X1 == (1,2,3)
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Co-occurrence Matrix of Sequential Data

Sliding Window 2
X, =(2,3,2)




Co-occurrence Matrix of Sequential Data

Sliding Window 3
X3 =(3,2,3)




Markov chain Matrix Chernoff Bound!

Sliding Window 4
X, =(2,31)

c—l
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\1 00/ *No 10/ *No 12/ *No 1 o0

1
= Z(f(xﬂ + f(X2) + f(X3) + f(X4))
Observation 1:
Let X1, X5, -, X _1 be the sequence of sliding windows, and f maps a sliding window to the co-occurrence matrix
within this window. The co-occurrence matrix C can be written as the sample mean of f(X1), f(X3), -, f(X;_1):

L-T
1
c = me fX)

Observation 2: If the input sequence v4, V5, -+ Is a Markov Chain, then X4, X5, -+ Is a Markov Chain, too.



Convergence Rate of Co-occurrence Matrices

* The co-occurrence matrix:

- Z fX)
* The asymptotic expectation of C (denote H diag(m)):

AE[C] = lim E[C Z — (IIP" + (IIP")")

Theorem: Let P be a regular Markov chain with state space [n], stationary distribution
 and mixing time 7. Let (v4, -+, v;) be a L-step random walk on P starting from a
distribution ¢. Given € € (0, 1), the probability that the co-occurrence matrix C
deviates from its asymptotic expectation AE[C] (in 2-norm) is bounded by:

2 J—
P(IIC — AE[C]ll, = €) < 2(z + )|l bl nZexp <_ 5676(& +T72)>

Roughly, one needs L = O(t(logn + logt)/€%) samples to guarantee good estimation
to the co-occurrence matrix.




Comparison

__

Chernoff '52 .I.d scalars exp(—Q(ke™?

Tropp'12 .i.d matrices X dexp(—ﬂ(ke‘z))

GLSS'18 Stationary random walk on an undirected dxd matrix dexp(—Q(k(1 — De™?2))
regular graph with spectral expansion 4

Ours Non-stationary random walk on a regular dxd matrix dexp(—Q(k(1 — De™ %))
Markov chain with spectral expansion A4

HKS15 Size-1 sliding windows on a reversible Co-occurrence matrix nexp(—Q(Le? /7))
Markov chain on [n] with mixing time t within window

Ours Size-T sliding windows on a regular Co-occurrence matrix ~ (t + T)nexp(—Q(Le™?/(t + T)))

Markov chain on [n] with mixing time t within window



Numerical Experiments
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Figure 1: The convergence rate of co-occurrence matrices on Barbell graph, winning streak chain,
BlogCatalog graph , and random graph (in log-log scale). The x-axis is the trajectory length L and

the y-axis is the approximation error ||[C' — AE|[C]
error bar is presented.

|,. Each experiment contains 64 trials, and the
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