

A Matrix Chernoff Bound for Markov Chains and its Application to Co-occurrence Matrices

Jiezhong Qiu, Chi Wang, Ben Liao, Richard Peng, Jie Tang

The Application to Co-occurrence Matrices

counts	1	like	enjoy	deep	learning	NLP	flying	
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

NLP (LDA, Word2vec, Glove)

Graph Learning (DeepWalk, node2vec, metapath2vec)

Recommendation System (Pin2Vec, Item2vec)

H 0.5 0.5 0.1 0.9 H 0.5 0.5 0.1 0.9 H 0.2 B 0.8 B 0.8

Reinforcement Learning (Act2Vec) Hidden Markov Models (Emission Co-occurrence)

Chernoff Bounds

Theorem (Chernoff Bound, 1952): If X_1, X_2, \dots, X_k are independent zero-mean scaler-valued random variables with $|X_i| \le 1$. Then for $\epsilon \in (0, 1)$ $\mathbb{P}\left(\left|\frac{1}{k}\sum_{i=1}^k X_i\right| \ge \epsilon\right) \le 2\exp(-k\epsilon^2/4)$

Scalar-valued Random Variables Matrix-valued Random Variables

 $f(X_2)$

 $f(X_1)$

Sample Mean Matrix

$$\frac{1}{2}(f(X_1) + f(X_2))$$

Independence Markov Dependence

Scalar-valued Random Variables Matrix-valued Random Variables

 $f(X_1)$ $f(X_2)$ $f(X_3)$

Sample Mean Matrix

$$\frac{1}{3}(f(X_1) + f(X_2) + f(X_3))$$

$$\mathbb{P}\left[\lambda_{\min}\left(\frac{1}{k}\sum_{i=1}^{k}f(X_{i})\right) \leq -\epsilon\right] \quad \text{and} \quad \mathbb{P}\left[\lambda_{\max}\left(\frac{1}{k}\sum_{i=1}^{k}f(X_{i})\right) \geq \epsilon\right]$$

Comparison	Chernoff `52	Tropp`12	GLSS`18	Our Result
X	i.i.d scalars	i.i.d matrices	Stationary random walk on an undirected regular graph with spectral expansion λ	Non-stationary random walk on a regular Markov chain with spectral expansion λ
f(X)	X	X	d × d matrix	d × d matrix
tail prob.	$\exp(-\Omega(k\epsilon^{-2}))$	$d\exp(-\Omega(k\epsilon^{-2}))$	$d\exp(-\Omega(k(1-\lambda)\epsilon^{-2}))$	$d\exp(-\Omega(k(1-\lambda)\epsilon^{-2}))$

Theorem: Let *P* be an regular Markov chain with state space [*N*], stationary distribution π and spectral expansion λ . Let $f: [N] \to \mathbb{C}^{d \times d}$ be a matrix-valued function such that

- 1. $\forall X \in [N], f(X)$ is Hermitian and $||f(X)||_2 \leq 1$;
- 2. $\sum_{X\in[N]}\pi_Xf(X)=\mathbf{0}$.

Let (X_1, X_2, \dots, X_k) denote a *k*-step random walk on *P* starting from an initial distribution ϕ . Then for $\epsilon \in (0, 1)$:

$$\mathbb{P}\left[\lambda_{\min}\left(\frac{1}{k}\sum_{i=1}^{k}f(X_{i})\right) \leq -\epsilon\right] \leq \|\phi\|_{\pi}d^{2}\exp(-k(1-\lambda)\epsilon^{2}/72)$$
$$\mathbb{P}\left[\lambda_{\max}\left(\frac{1}{k}\sum_{i=1}^{k}f(X_{i})\right) \geq \epsilon\right] \leq \|\phi\|_{\pi}d^{2}\exp(-k(1-\lambda)\epsilon^{2}/72)$$

The Application to Co-occurrence Matrices

counts	1	like	enjoy	deep	learning	NLP	flying	
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

NLP (LDA, Word2vec, Glove)

Graph Representation Learning (DeepWalk, node2vec, metapath2vec)

Recommendation System (Pin2Vec, Item2vec)

Reinforcement Learning (Act2Vec) Hidden Markov Models (Emission Co-occurrence)

Co-occurrence Matrix of Sequential Data

Sliding Window 1 $X_1 = (1,2,3)$

$$\boldsymbol{C} = \frac{1}{4} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Co-occurrence Matrix of Sequential Data

Sliding Window 2 $X_2 = (2,3,2)$

$$\boldsymbol{C} = \frac{1}{2} \begin{bmatrix} \frac{1}{4} \begin{pmatrix} 0 & 1 & 1\\ 1 & 0 & 0\\ 1 & 0 & 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0\\ 0 & 2 & 1\\ 0 & 1 & 0 \end{pmatrix} \end{bmatrix}$$

Co-occurrence Matrix of Sequential Data

Sliding Window 3 $X_3 = (3,2,3)$

$$\boldsymbol{C} = \frac{1}{3} \begin{bmatrix} \frac{1}{4} \begin{pmatrix} 0 & 1 & 1\\ 1 & 0 & 0\\ 1 & 0 & 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0\\ 0 & 2 & 1\\ 0 & 1 & 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 2 \end{pmatrix} \end{bmatrix}$$

Markov chain Matrix Chernoff Bound!

Sliding Window 4

$$X_4 = (2,3,1)$$

1 - 2 - 3 - 2 - 3 - 1

$$\begin{aligned} \boldsymbol{\mathcal{C}} &= \frac{1}{4} \begin{bmatrix} 1}{4} \begin{pmatrix} 0 & 1 & 1\\ 1 & 0 & 0\\ 1 & 0 & 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0\\ 0 & 2 & 1\\ 0 & 1 & 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 2 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix} \end{bmatrix} \\ &= \frac{1}{4} (f(X_1) + f(X_2) + f(X_3) + f(X_4)) \end{aligned}$$

Observation 1:

Let X_1, X_2, \dots, X_{L-T} be the sequence of sliding windows, and f maps a sliding window to the co-occurrence matrix within this window. The co-occurrence matrix C can be written as the **sample mean** of $f(X_1), f(X_2), \dots, f(X_{L-T})$:

$$\boldsymbol{C} = \frac{1}{L-T} \sum_{k=1}^{L-T} \boldsymbol{f}(\boldsymbol{X}_k)$$

Observation 2: If the input sequence v_1, v_2, \cdots is a Markov Chain, then X_1, X_2, \cdots is a Markov Chain, too.

Convergence Rate of Co-occurrence Matrices

• The co-occurrence matrix:

$$C = \frac{1}{L-T} \sum_{k=1}^{L-T} f(X_k)$$

• The asymptotic expectation of C (denote $\Pi = \text{diag}(\pi)$):

$$\mathbb{AE}[C] = \lim_{L \to +\infty} \mathbb{E}[C] = \sum_{r=1}^{T} \frac{1}{2T} (\Pi P^r + (\Pi P^r)^{\mathsf{T}})$$

Theorem: Let *P* be a regular Markov chain with state space [n], stationary distribution π and mixing time τ . Let (v_1, \dots, v_L) be a *L*-step random walk on *P* starting from a distribution ϕ . Given $\epsilon \in (0, 1)$, the probability that the co-occurrence matrix *C* deviates from its asymptotic expectation $\mathbb{AE}[C]$ (in 2-norm) is bounded by:

$$\mathbb{P}(\|C - \mathbb{A}\mathbb{E}[C]\|_2 \ge \epsilon) \le 2(\tau + T) \|\phi\|_{\pi} n^2 \exp\left(-\frac{\epsilon^2(L - T)}{576(\tau + T)}\right)$$

Roughly, one needs $L = O(\tau(\log n + \log \tau)/\epsilon^2)$ samples to guarantee good estimation to the co-occurrence matrix.

Comparison

	X	f(X)	Tail Prob.
Chernoff `52	i.i.d scalars	X	$\exp(-\Omega(k\epsilon^{-2}))$
Tropp`12	i.i.d matrices	X	$d\exp(-\Omega(k\epsilon^{-2}))$
GLSS`18	Stationary random walk on an undirected regular graph with spectral expansion λ	d × d matrix	$d\exp(-\Omega(k(1-\lambda)\epsilon^{-2}))$
Ours	Non-stationary random walk on a regular Markov chain with spectral expansion λ	d×d matrix	$d\exp(-\Omega(k(1-\lambda)\epsilon^{-2}))$
HKS`15	Size-1 sliding windows on a reversible Markov chain on $[n]$ with mixing time $ au$	Co-occurrence matrix within window	$\tau n \exp(-\Omega(L\epsilon^{-2}/\tau))$
Ours	Size- T sliding windows on a regular Markov chain on $[n]$ with mixing time $ au$	Co-occurrence matrix within window	$(\tau + T)n\exp(-\Omega(L\epsilon^{-2}/(\tau + T)))$

Numerical Experiments

Figure 1: The convergence rate of co-occurrence matrices on Barbell graph, winning streak chain, BlogCatalog graph, and random graph (in log-log scale). The x-axis is the trajectory length L and the y-axis is the approximation error $\|C - \mathbb{AE}[C]\|_2$. Each experiment contains 64 trials, and the error bar is presented.

Thanks!

https://arxiv.org/abs/2008.02464