

LightNE: A Lightweight Graph Processing System for Network Embedding

Jiezhong Qiu, Laxman Dhulipala, Jie Tang, Richard Peng, Chi Wang https://github.com/xptree/LightNE.

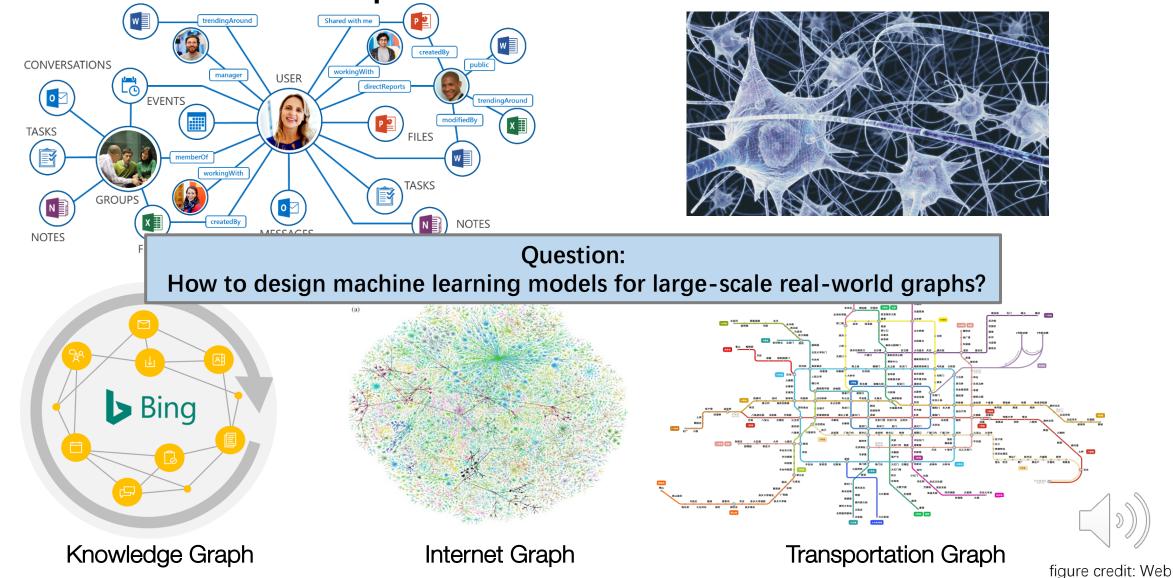
Roadmap

Introduction to Network Embedding

LightNE: Co-design of Algorithm and System

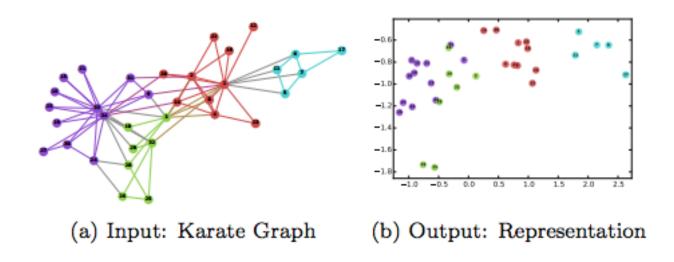
Experiments on graphs with billions of edges.

Real-world Graphs



Background: Network Embedding

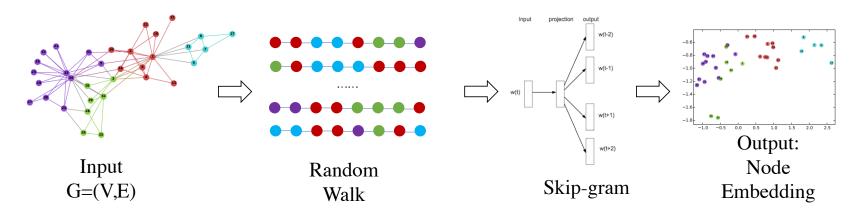
• Given a graph G = (V, E), aim to learn a function $f: V \to \mathbb{R}^d$ to capture neighborhood similarity and community membership.



A toy example from DeepWalk [1]

Background: DeepWalk

- Sampling random walk sequences on the input graph
- Train a skip-graph model (word2vec) on the sampled sequences



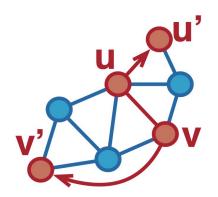
- Scalability issue:
 - Alibaba embeds a 600-billion-node commodity graph by first partitioning it into 50-million-node subgraphs, and then embedding each subgraph separately with 100 GPUs running DeepWalk [1]

Background: Network Embedding as Matrix Factorization

• NetMF[1]: DeepWalk is implicitly and asymptotically factorizing:

$$M \triangleq \text{trunc_log}^{\circ} \left(\frac{\text{vol}(G)}{b} \frac{1}{T} \sum_{r=1}^{T} (D^{-1}A)^r D^{-1} \right)$$

- NetSMF[2]:
 - Sparisify r-step random walk matrix $(D^{-1}A)^r$ with PathSampling.
 - Need O(mlogn) samples



Algorithm 1: PathSampling.

- 1 **Procedure** PathSample(G, u, v, r)
- Let a random edge (u, v) be given.
- Sample a random number s uniformly in [0, r-1].
- $u' \leftarrow \text{random walk } u \text{ for } s \text{ steps on graph } G$
- $v' \leftarrow \text{random walk } v \text{ for } r 1 s \text{ steps on graph } G.$
- 6 **return** edge (u', v')

[1] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018. Network embedding as matrix factorization: Unifying deepuline, pte, and node2vec. In WSDM '18.

[2] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang. 2019. Netsmf: Large-scale network embedding as sparse matrix factorization. WWW' 19.

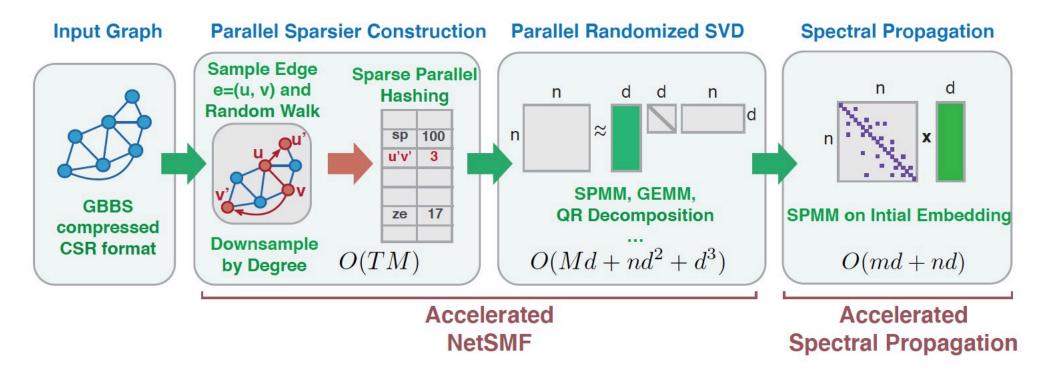
Roadmap

Introduction to Network Embedding

LightNE: Co-design of Algorithm and System

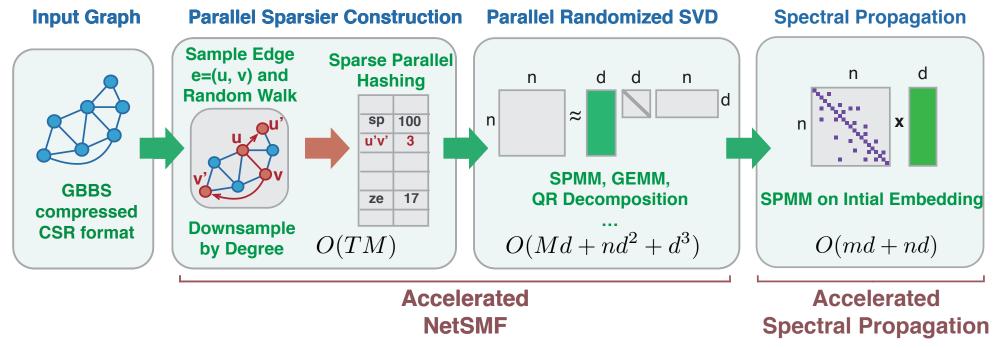
Experiments on graphs with billions of edges.

LightNE: Design Goal



- Scalable: Embed graphs with 1B edges within 1.5 hours.
- Lightweight: Occupy hardware costs below 100 dollars measured by cloud rent to process 1B to 100B edges.
- **Accurate:** Achieve the highest accuracy in downstream tasks under the same time budget and similar resources.

LightNE: Algorithm and System Co-design



- Store input graph in GBB6441eIPaths relieve in parallel implemented by Intel Mindbedding by $X \leftarrow \sum_{r=0}^k c_r (I-D^{-1}A)^r X$
- Highly optimized paralleDowapsample edge (u, v) with processing prob. $P_e = 1/d_u + 1/d_v$.
 - Reduce #samples *M* from

• c_r 's are chosen to be coefficients of Chebyshev polynomials

[2] Liezzmanop, Divulia de izounoping in the one particular, Can de montant de izounoping in the construction of the construct

Roadmap

Introduction to Network Embedding

LightNE: Co-design of Algorithm and System

- Experiments on graphs with billions of edges.
 - Baselines: GraphVite, Pytorch-Big-Graph, NetSMF, ProNE

Comparison to NetSMF and ProNE

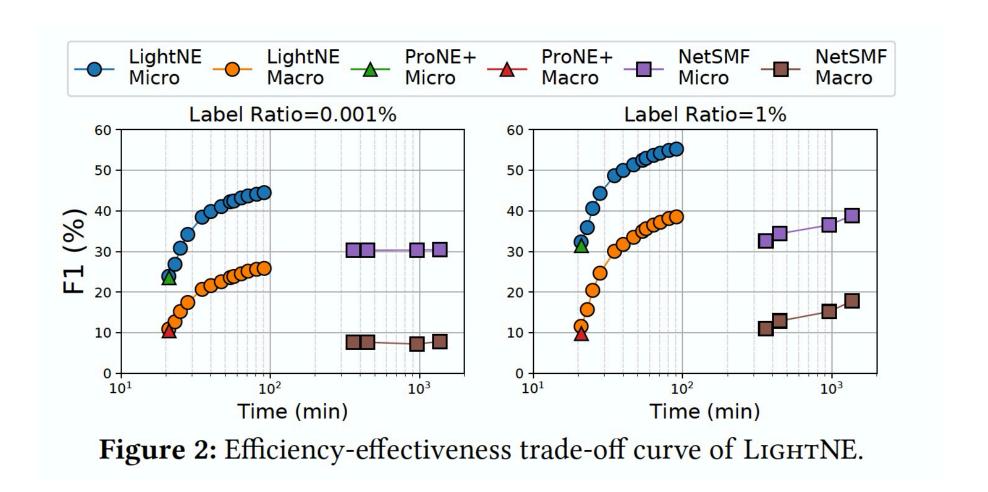
- Open Academic Graph (67,768,244 nodes, 895,368,962 edges)
- LightNE-small (#samples=m) and LightNE-large (#samples=200m)

Table 4: Comparison on OAG with label ratio 0.001%, 0.01%, 0.1% and 1%.

Metric	Method	Time	0.001%	0.01%	0.1%	1%
Micro	NetSMF (M=8Tm) ProNE+	22.4 h 21 min		31.66 29.32	35.77 31.17	38.88 31.46
	LIGHTNE-Small	20.9 min		30.23	32.16	32.35
	LIGHTNE-Large	1.53 h	44.50	52.89	54.98	55.23

- LightNE-Large achieves **15x speedup** (1.53h v.s. 22.4h) and **significant performance gain**, comparing to NetSMF.
- Not only does LightNE-Small run **faster** than ProNE+ (20.9 min v.s. 21 min), but also **outperforms ProNE+ significantly.**
- Estimated price of LightNE-Large: 1.53h * 13\$/h = 20\$

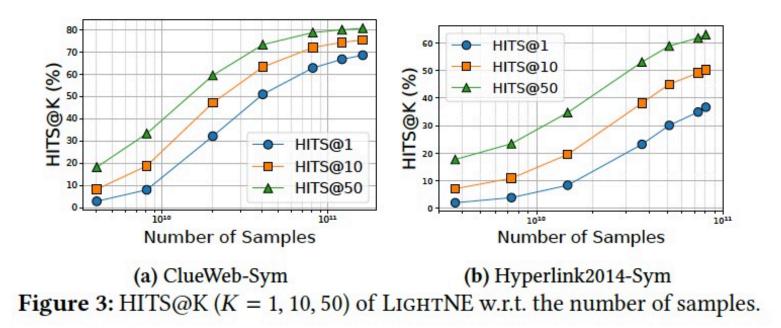
Comparison to NetSMF and ProNE



None of the existing network embedding systems can handle such large graphs in a single machine!

Very Large Graphs

	ClueWeb-Sym	Hyperlink2014-Sym
n	978,408,098	1,724,573,718
m	74,744,358,622	124,141,874,032



Conclusion

- Propose LightNE, a cost-effective, scalable, and high quality network embedding system that scales to graphs with hundreds of billions of edges on a single machine.
- Introduce 4 techniques to network embedding for the first time:
 - 1. A new downsampling method to reduce the sample complexity of NetSMF.
 - 2. A parallel graph processing stack GBBS for memory efficiency and scalability;
 - 3. Sparse parallel hash table to maintain the matrix sparsifier in memory
 - 4. Intel MKL for efficient randomized SVD and spectral propagation.

Thanks!

LightNE: A Lightweight Graph Processing System for Network Embedding

Jiezhong Qiu, Laxman Dhulipala, Jie Tang, Richard Peng, Chi Wang https://github.com/xptree/LightNE.

