

Inferring Social Ties across Heterogeneous Networks

Jie Tang*, Tiancheng Lou*, and Jon Kleinberg+

*Tsinghua University +Cornell University

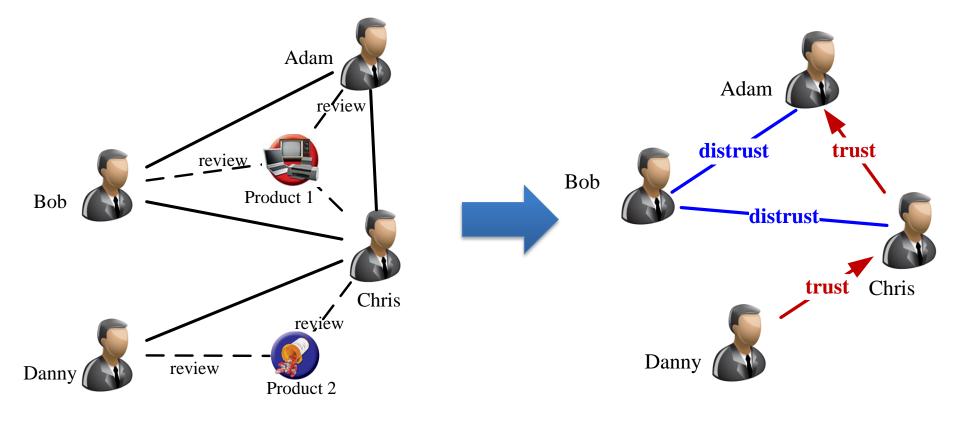
Real social networks are complex..

- Different social ties have different influence on people
 - Close friends vs. Acquaintances
 - Colleagues vs. Family members
- However, existing networks (e.g., Facebook and Twitter) are trying to lump everyone into one big network
 - FB tries to solve this problem via lists/groups
 - However...
- Google+

Example 1. Advisor-advisee relationship Social Graph Colour Network 0 O Relation: AI B&W Network Ability **Umeshwar** Dayal X. Jasmine Zhou Qiming Chen Petre Tzvetkov Qiaozl en Yin Nebojsa Stefanovic Ost Yixin Chen Martin Matheline Kantlerco Ling Liu Social Graph Colour Network Zheng Shac Latifur Khan **Q Q** Relation: AI Zhiiun Yin B&W Network Laks Laks ny K. H. Tung Ability L. J. Hensch ...J. Henschen Krzysztof, Koperski Kevin Chen-Ch**ler, Wang**, Stan I Lawrencesentanischen h Zhaonui Xie M. Thuraisingham nzad, Mortazavi-Asl Jiong Yang Wa Chao Liu, Hongvan Liu ChengXialabathaAggarwal Guozhu Dono Yong in. 111 Kevin Chen-Chuan (Cang Micheline Kamber in Lu Feida Zhu Jenny Cl Magillee Hongyan Liu Xiaoxin Xin Cindy Xide Lin **Jeffrey Xu** Stude Nick Cercone Wei Wang mar R. Zaiane Wei Fan Arnetminer Distille C Raymond T. Ng Tianyi Wu aotei He Sangkyum Kir Yizhou Sun Qiaoznu Mei aks V. S. ony K. H. Tung Ch Krzyszto Kejensztingyong Wang StudentStuting Gaotudent tude Student ector nzalez Student Zhu ChengXiang Zhai Student o Yu Student Lee Student

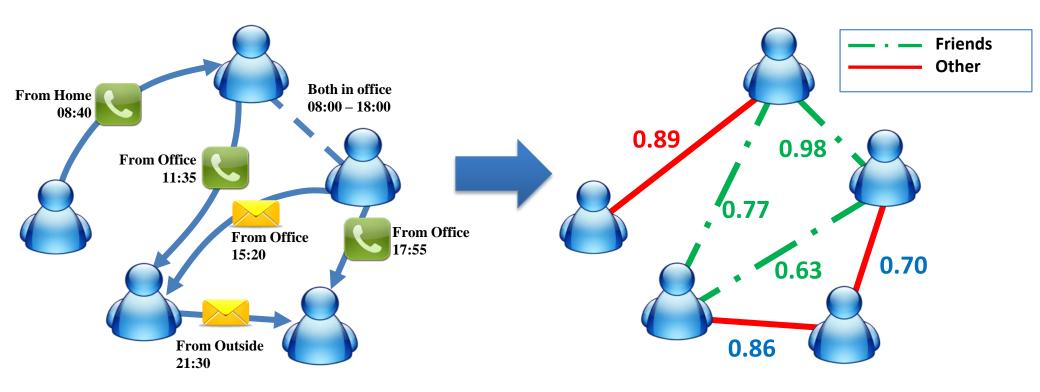
NGI

Example 2. Trustful relationship



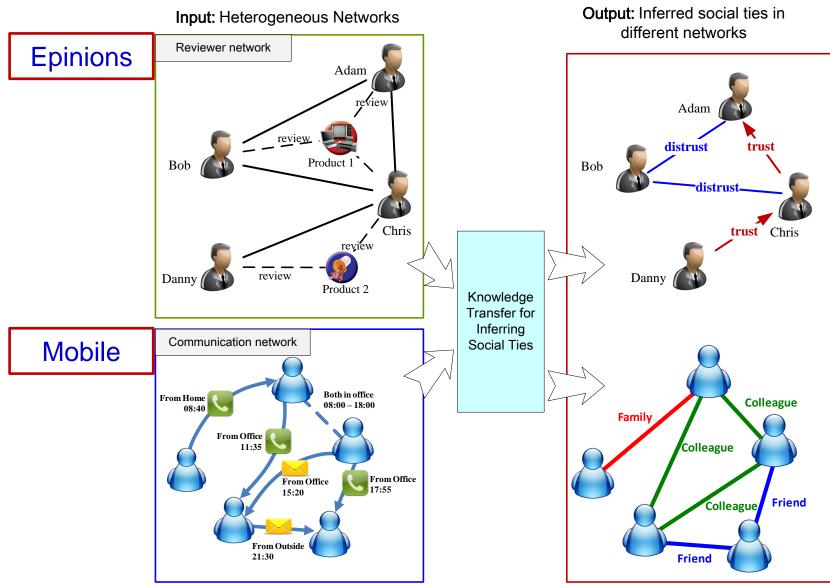
Epinions

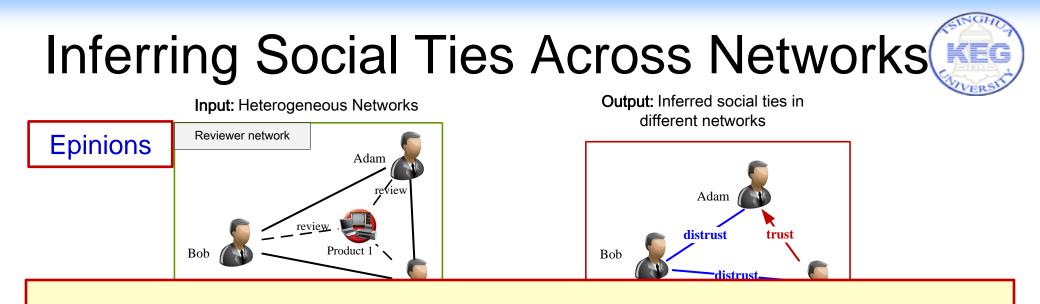
Example 3: Friendship in mobile network



Mobile

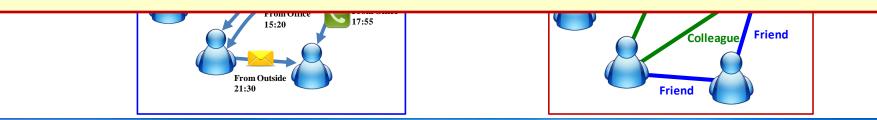
Inferring Social Ties Across Networks



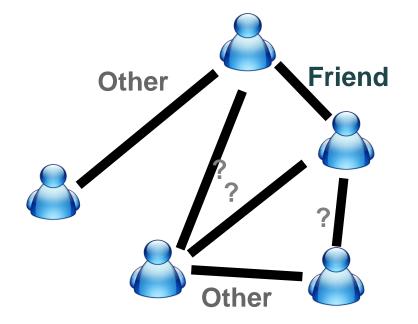


Questions:

- What are the fundamental forces behind?
- A generalized framework for inferring social ties?
- How to connect the different networks?



Problem Formulation in a Single Network

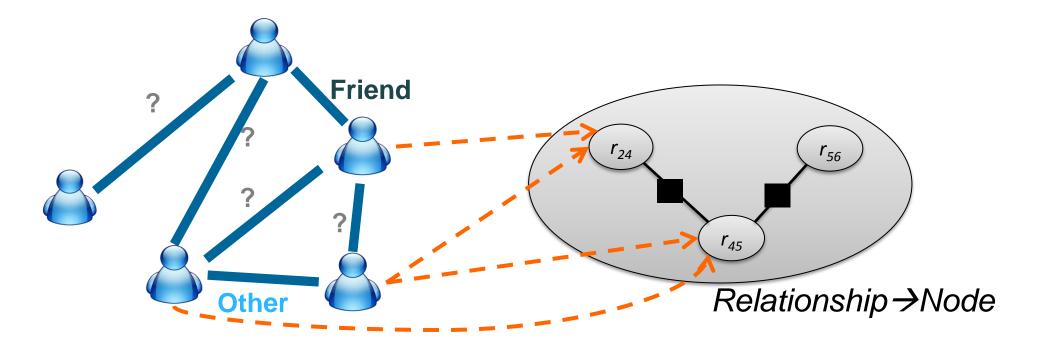


V: Set of Users

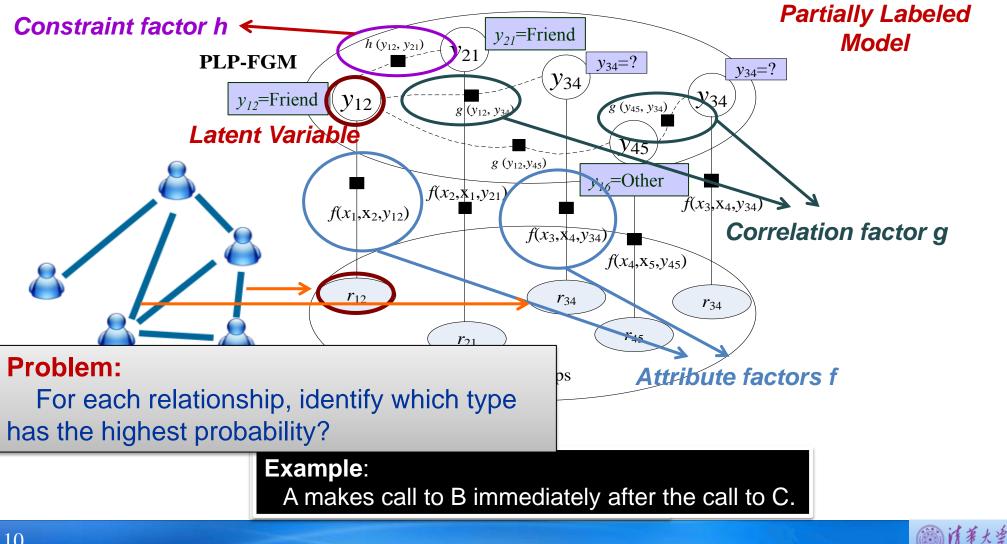
E^L,*R^L*: Labeled relationships

E^U: Unlabeled relationships

Basic Idea



Partially Labeled Pairwise Factor Graph Model (PLP-FGM)



Solutions_(con't)

- Different ways to instantiate factors
 - We use exponential-linear functions
 - Attribute Factor:

$$f(y_i, \mathbf{x}_i) = \frac{1}{Z_{\lambda}} \exp\{\lambda^T \Phi(y_i, \mathbf{x}_i)\}$$

Correlation / Constraint Factor:

$$g(y_i, G(y_i)) = \frac{1}{Z_{\alpha}} \exp\{\sum_{y_j \in G(y_i)} \alpha^T \mathbf{g}(y_i, y_j)\}$$
$$h(y_i, H(y_i)) = \frac{1}{Z_{\beta}} \exp\{\sum_{y_j \in H(y_i)} \beta^T \mathbf{h}(y_i, y_j)\}$$

Log-Likelihood of labeled Data:

$$\mathcal{O}(\theta) = \log \sum_{Y|Y^L} \exp\{\theta^T \mathbf{S}\} - \log \sum_{Y} \exp\{\theta^T \mathbf{S}\}$$

Parameters to estimate $\theta = [\lambda, \alpha, \beta], s = [\Phi^T, g^T, h^T]^T$

Learning Algorithm

• Maximize the log-likelihood of labeled relationships

Input: learning rate η Output: learned parameters θ Initialize θ ; repeat Calculate $\mathbb{E}_{p_{\theta}(Y|Y^{L},G)}\mathbf{S}$ using LBP; Calculate $\mathbb{E}_{p_{\theta}(Y|G)}\mathbf{S}$ using LBP; Calculate the gradient of θ according to Eq. 7: $\nabla_{\theta} = \mathbb{E}_{p_{\theta}(Y|Y^{L},G)}\mathbf{S} - \mathbb{E}_{p_{\theta}(Y|G)}\mathbf{S}$ Update parameter θ with the learning rate η : Expectation Computing $\theta_{\text{new}} = \theta_{\text{old}} - \eta \cdot \nabla_{\theta}$ Loopy Belief Propagation until Convergence;

Algorithm 1: Learning PLP-FGM.

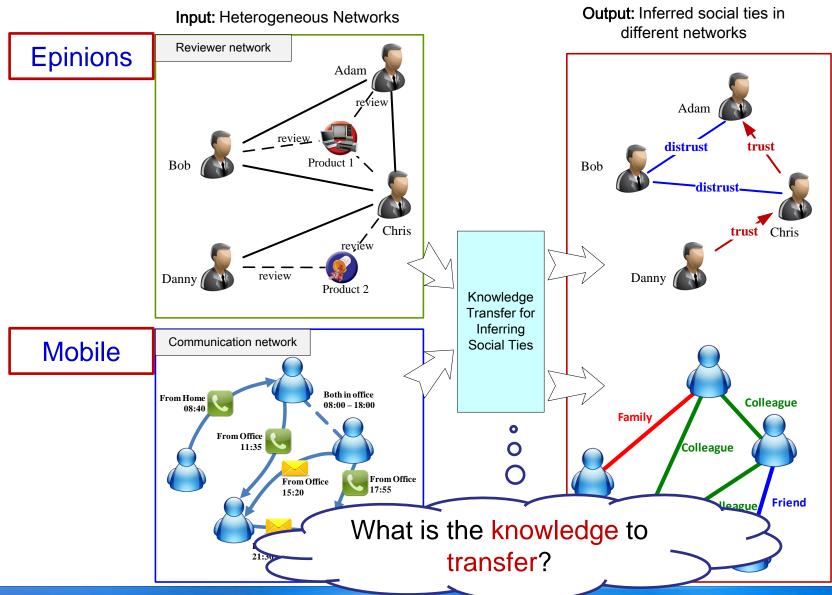
Gradient Ascent Method

Still Challenges?

Questions:

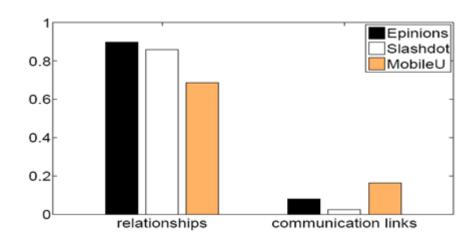
- How to obtain sufficiently training data?
- Can we leverage knowledge from other network?

Inferring Social Ties Across Networks



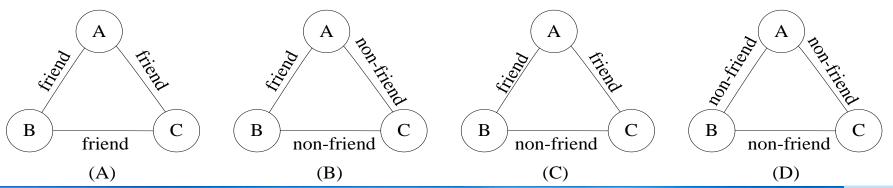
Social Theories

- Social balance theory
- Structural hole theory
- Social status theory
- Two-step-flow theory



Observations:

(1) The underlying networks are unbalanced;(2) While the friendship networks are balanced.



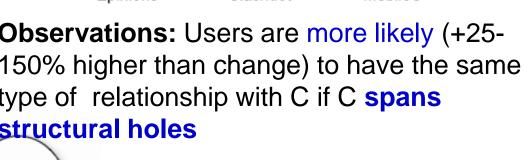
Social Theories—Structural hole

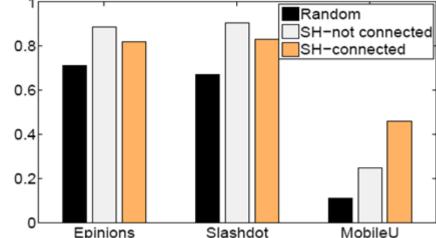
- Social balance theory
- Structural hole theory
- Social status theory
- Two-step-flow theory

Broker

Structural hole

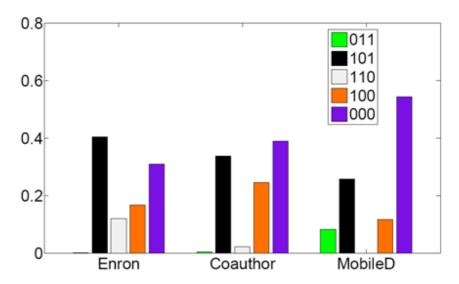
Observations: Users are more likely (+25-150% higher than change) to have the same type of relationship with C if C spans structural holes

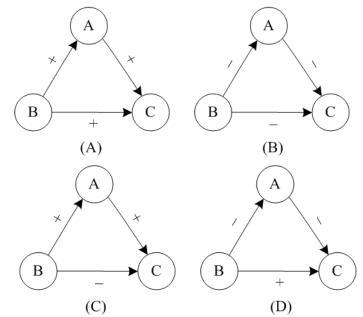




Social Theories—Social status

- Social balance theory
- Structural hole theory
- Social status theory
- Two-step-flow theory



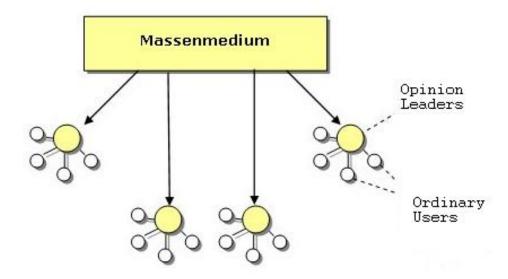


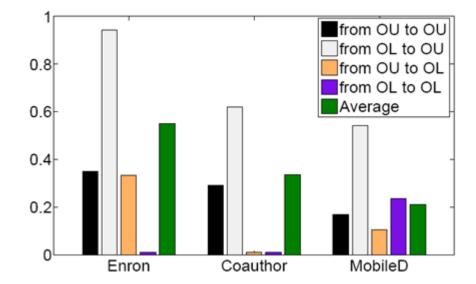
Observations: 99% of triads in the networks satisfy the social status theory

Note: Given a triad (A,B,C), let us use 1 to denote the advisor-advisee relationship and 0 colleague relationship. Thus the number 011 to denote A and B are colleagues, B is C's advisor and A is C's advisor.

Social Theories—Two-step-flow

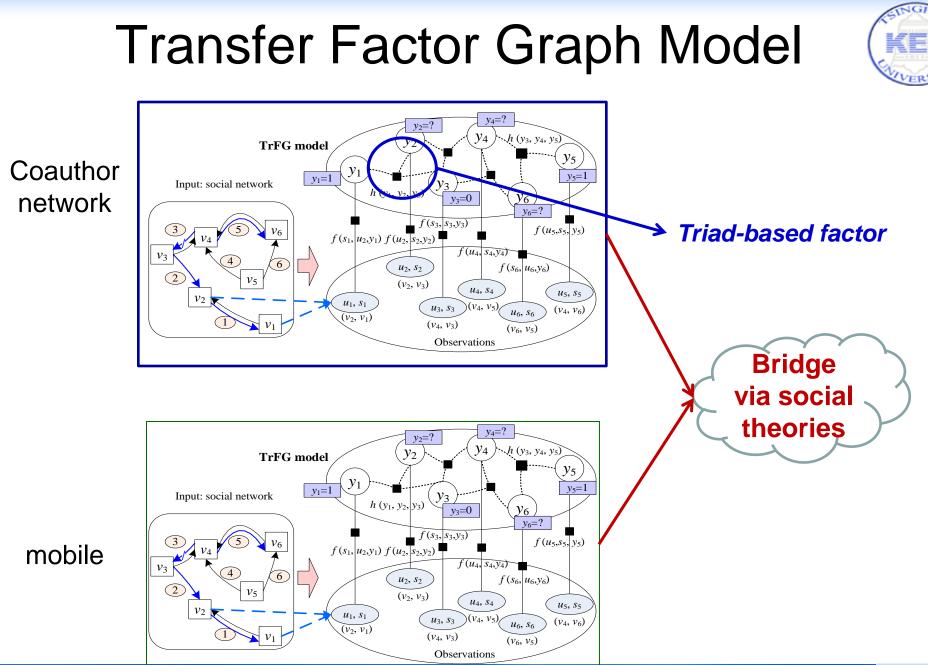
- Social balance theory
- Structural hole theory
- Social status theory
- Two-step-flow theory



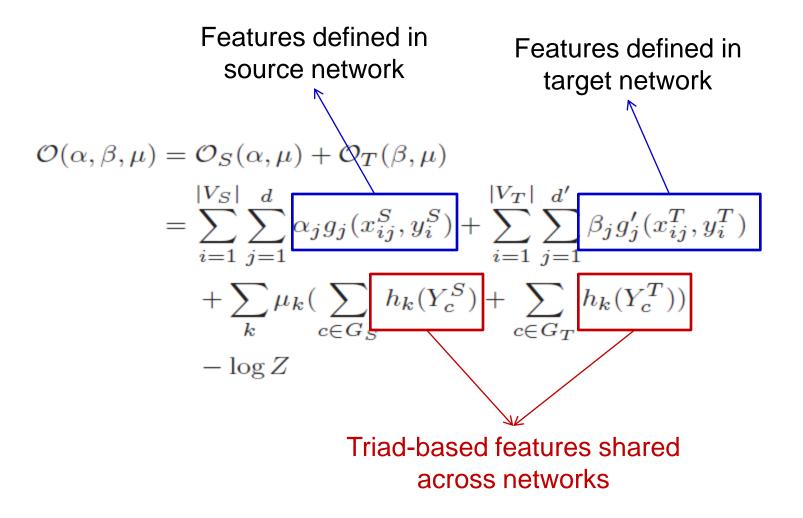


OL : Opinion leader; **OU** : Ordinary user.

Observations: Opinion leaders are more likely (+71%-84% higher than chance) to have a higher social-status than ordinary users.



Mathematical Formulation



Data Sets

•	Epinions a network of product reviewers: 131,828 nodes (users) and 841,372 edges						
	 trust relationships between users 						
•	Slashdot: 82,144 users and 59,202 edges						
	 "friend" relationships between users 						
•	Mobile: 107 mobile users and 5,436 edges						
	 to infer friendships between users 	Undirected network					
•	Coauthor: 815,946 authors and 2,792,833 coauthor relationships						
	 to infer advisor-advisee relationships between coauthors 						
•	Enron: 151 Enron employees and 3572 edges						
	 to infer manager-subordinate relationships between users 						
		Directed network					

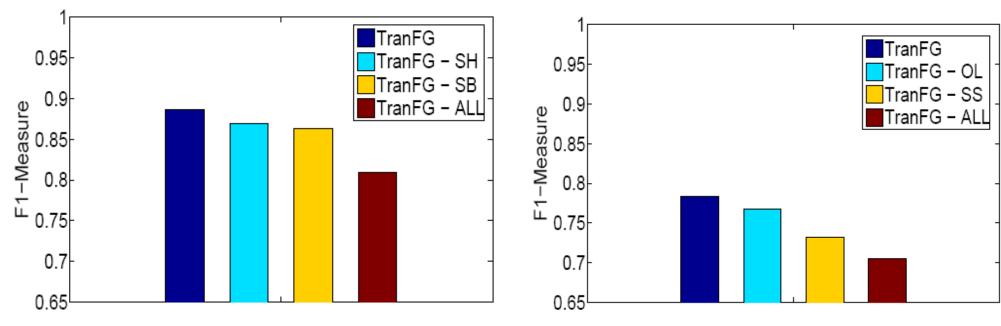
Results – undirected networks

	Data Set	Method	Prec.	Rec.	F1-score
SVM and CRF are	Epinions (S) to Slashdot (T) (40%)	SVM	0.7157	0.9733	0.8249
two baseline methods		CRF	0.8919	0.6710	0.7658
		PFG	0.9300	0.6436	0.7607
PFG is the proposed		TranFG	0.9414	0.9446	0.9430
partially-labeled	Slachdat (S) to	SVM	0.9132	0.9925	0.9512
factor graph	Slashdot (S) to Epinions (T)	CRF	0.8923	0.9911	0.9393
model		PFG	0.9954	0.9787	0.9870
TranFG is the	(40%)	TranFG	0.9954	0.9787	0.9870
proposed	Epinions (S) to Mobile (T) (40%)	SVM	0.8983	0.5955	0.7162
transfer-based		CRF	0.9455	0.5417	0.6887
factor graph		PFG	1.0000	0.5924	0.7440
model.		TranFG	0.8239	0.8344	0.8291
	Slashdot (S) to Mobile (T) (40%)	SVM	0.8983	0.5955	0.7162
		CRF	0.9455	0.5417	0.6887
		PFG	1.0000	0.5924	0.7440
		TranFG	0.7258	0.8599	0.7872

Results – directed networks

SVM and CRF are	Data Set	Method	Prec.	Rec.	F1-score
two baseline	Coauthor (S) to Enron (T) (40%)	SVM	0.9524	0.5556	0.7018
methods		CRF	0.9565	0.5366	0.6875
PFG is the proposed		PFG	0.9730	0.6545	0.7826
partially-labeled		TranFG	0.9556	0.7818	0.8600
factor graph		SVM	0.6910	0.3727	0.4842
model	Enron (S) to	CRF	1.0000	0.3043	0.4666
TranFG is the	Coauthor (T)	PFG	0.9916	0.4591	0.6277
proposed	(40%)	TPFG	0.5936	0.7611	0.6669
transfer-based		TranFG	0.9793	0.5525	0.7065
factor graph model.					

Factor Contribution Analysis



SH-Structural hole; **SB**-Social balance.

Undirected Network

OL-Opinion leader; **SS**-Social status.

Directed Network

Conclusions and Future Work

Conclusions

- different types of social ties have essentially different structural patterns in social networks;
- By incorporating social theories, our proposed model can significantly improve (+4-14%) the inferring accuracy.

Future work

- Inferring complex relationships between users, e.g., family, colleague, manager-subordinate;
- Active learning for inferring social ties.

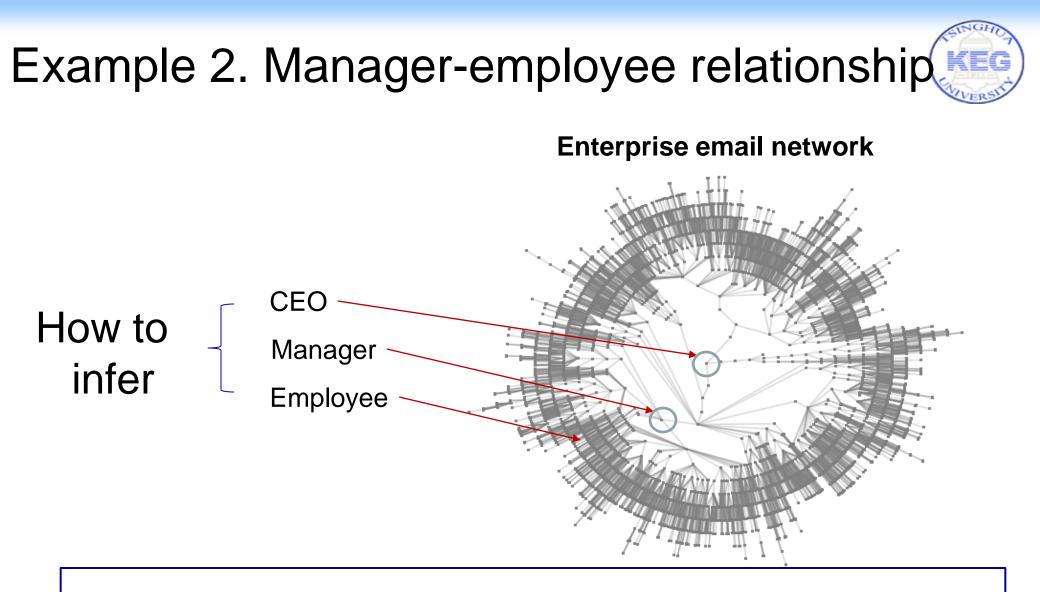
Thanks!

HP: <u>http://keg.cs.tsinghua.edu.cn/jietang/</u> System: <u>http://arnetminer.org</u>

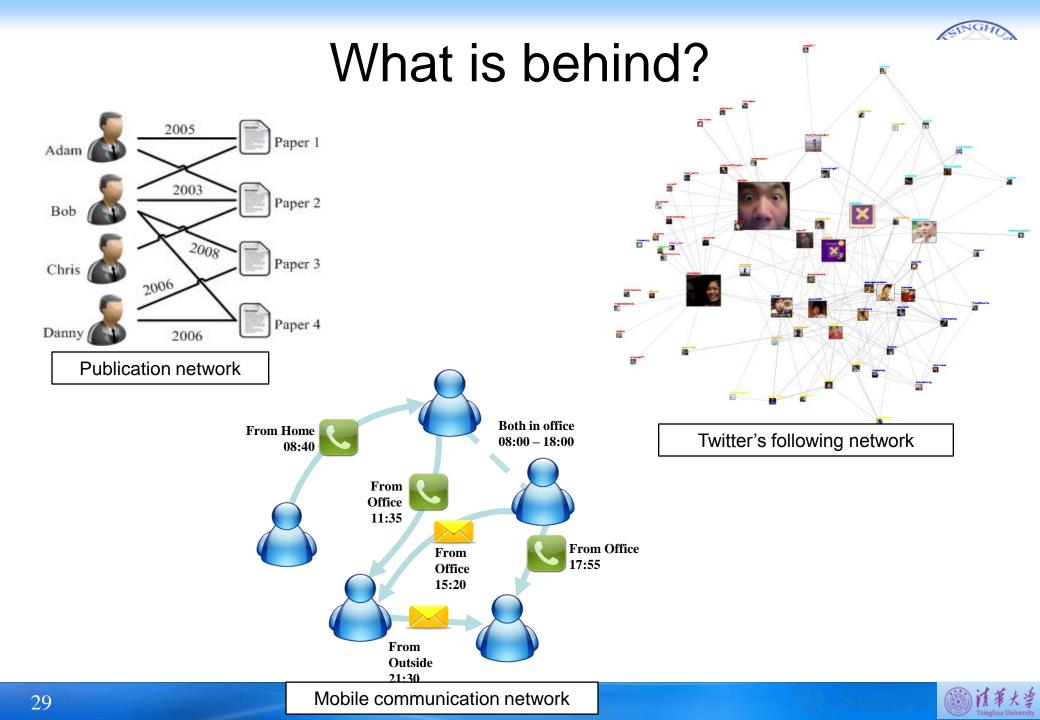
Even complex than we imaged!

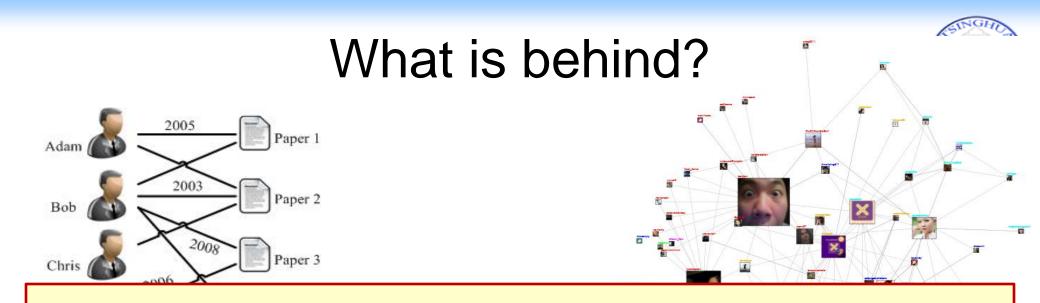
- Only 16% of mobile phone users in Europe have created custom contact groups
 - users do not take the time to create it
 - users do not know how to circle their friends

• The fact is that our social network is blackwhite...



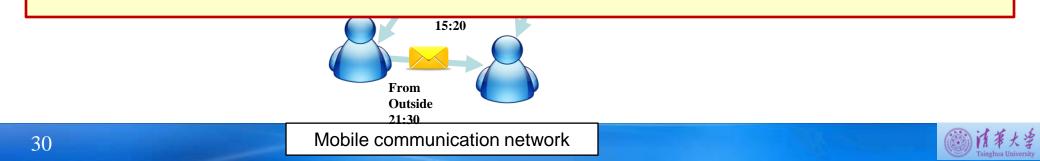
User interactions may form *implicit groups*

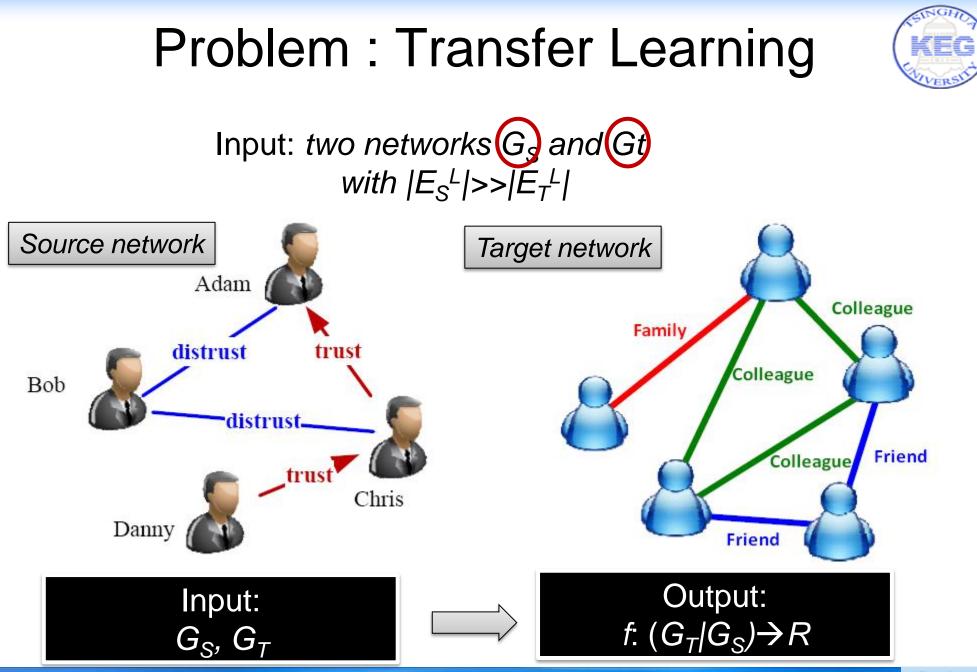




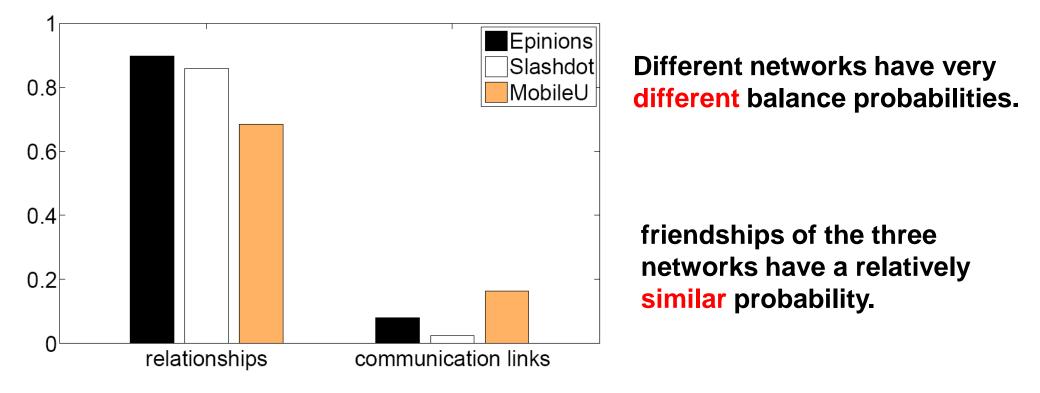
Questions:

- What are the fundamental forces behind?
- A generalized framework for inferring social ties?
- How to connect the different networks?

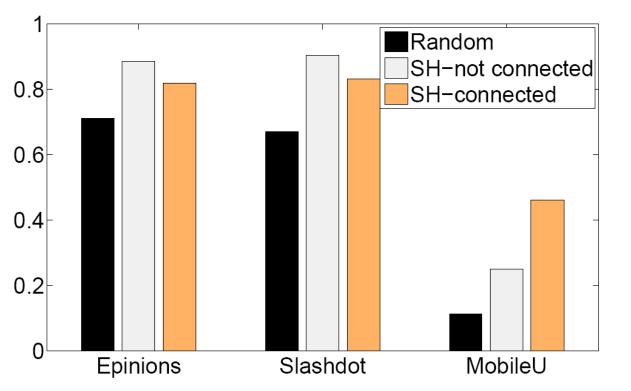




Observation – Social balance

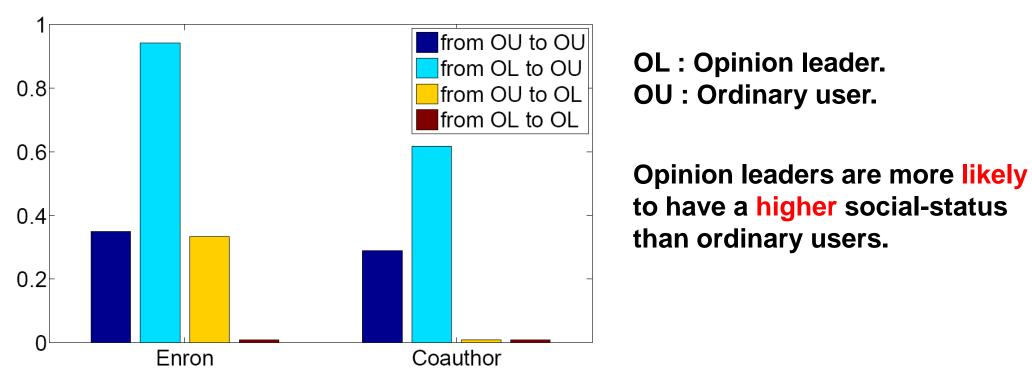


Observation—Structural hole

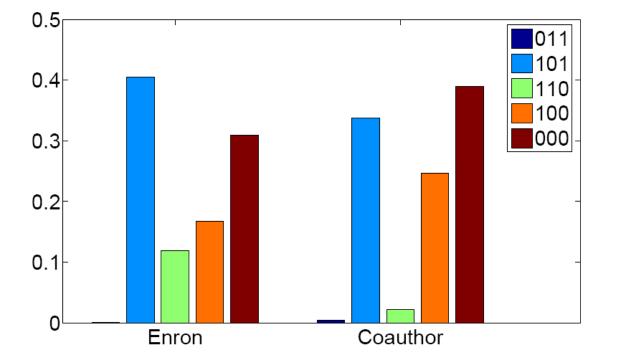


Users are more likely (average +70% higher than change) to have the same type of relationship with C if C spans a structural hole

Observation—Two-step-flow



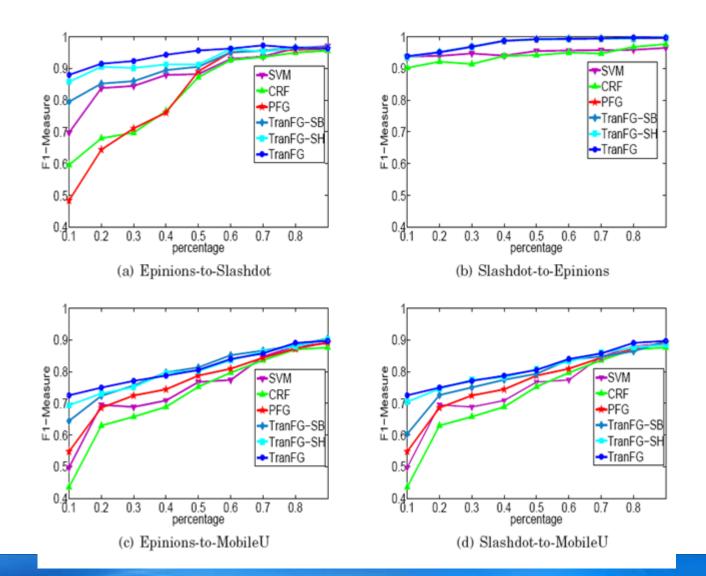
Observation—Social status



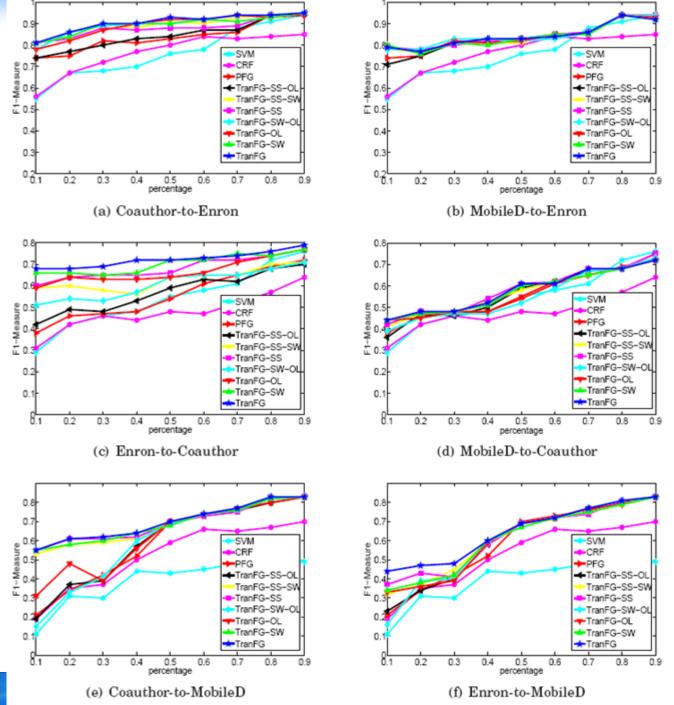
99% of triads in the two networks satisfy the social status theory

The two networks share a similar distribution on the five frequent forms of triads.

Undirected networks



Directed network



INGHI

VER