
NetSMF: Large-Scale Network Embedding as Sparse Matrix
Factorization

Jiezhong Qiu
†

qiujz16@mails.tsinghua.edu.cn

Tsinghua University

Yuxiao Dong

yuxdong@microsoft.com

Microsoft Research, Redmond

Hao Ma
∗

haom@fb.com

Facebook AI

Jian Li

lijian83@tsinghua.edu.cn

Tsinghua University

Chi Wang

wang.chi@microsoft.com

Microsoft Research, Redmond

Kuansan Wang

kuansanw@microsoft.com

Microsoft Research, Redmond

Jie Tang
†

jietang@tsinghua.edu.cn

Tsinghua University

ABSTRACT
We study the problem of large-scale network embedding, which

aims to learn latent representations for network mining applica-

tions. Previous research shows that 1) popular network embedding

benchmarks, such as DeepWalk, are in essence implicitly factorizing

a matrix with a closed form, and 2) the explicit factorization of such

matrix generates more powerful embeddings than existing methods.

However, directly constructing and factorizing this matrix—which

is dense—is prohibitively expensive in terms of both time and space,

making it not scalable for large networks.

In this work, we present the algorithm of large-scale network

embedding as sparse matrix factorization (NetSMF). NetSMF lever-

ages theories from spectral sparsification to efficiently sparsify the

aforementioned dense matrix, enabling significantly improved effi-

ciency in embedding learning. The sparsified matrix is spectrally

close to the original dense one with a theoretically bounded ap-

proximation error, which helps maintain the representation power

of the learned embeddings. We conduct experiments on networks

of various scales and types. Results show that among both popular

benchmarks and factorization based methods, NetSMF is the only

method that achieves both high efficiency and effectiveness. We

show that NetSMF requires only 24 hours to generate effective

embeddings for a large-scale academic collaboration network with

tens of millions of nodes, while it would cost DeepWalk months

and is computationally infeasible for the dense matrix factorization

solution. The source code of NetSMF is publicly available
1
.

∗
Work performed while at Microsoft Research.

†
Also with Beijing National Research Center for Information Science and Technol-

ogy (BNRist).

1
https://github.com/xptree/NetSMF

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313446

ACM Reference Format:
Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang,

and Jie Tang. 2019. NetSMF: Large-Scale Network Embedding as Sparse

Matrix Factorization . In Proceedings of the 2019 World Wide Web Conference
(WWW ’19), May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3308558.3313446

1 INTRODUCTION
Recent years have witnessed the emergence of network embedding,

which offers a revolutionary paradigm for modeling graphs and

networks [16]. The goal of network embedding is to automatically

learn latent representations for objects in networks, such as vertices

and edges. Significant lines of research have shown that the latent

representations are capable of capturing the structural properties

of networks, facilitating various downstream network applications,

such as vertex classification and link prediction [12, 14, 27, 33].

Over the course of its development, the DeepWalk [27], LINE [33],

and node2vec [14] models have been commonly considered as pow-

erful benchmark solutions for evaluating network embedding re-

search. The advantage of LINE lies in its scalability for large-scale

networks as it only models the first- and second-order proximities.

That is to say, its embeddings lose the multi-hop dependencies in

networks. DeepWalk and node2vec, on the other hand, leverage ran-

dom walks on graphs and skip-gram [24] with large context sizes to

model nodes further away (i.e., global structures). Consequently, it

is computationally more expensive for DeepWalk and node2vec to

handle large-scale networks. For example, with the default parame-

ter settings [27], DeepWalk requires months to embed an academic

collaboration network of 67 million vertices and 895 million edges
2
.

The node2vec model, which performs high-order random walks,

takes more time than DeepWalk to learn embeddings.

More recently, a study shows that both the DeepWalk and LINE

methods can be viewed as implicit factorization of a closed-form

matrix [28]. Building upon this theoretical foundation, the NetMF

method was instead proposed to explicitly factorize this matrix,

2
With the default DeepWalk parameters (walk length: 40 and #walk per node: 80), 214+

billion nodes (67M×40×80) with a vocabulary size of 67 million are fed into skip-gram.

As a reference, Mikolov et al. reported that training on Google News of 6 billion words

and a vocabulary size of only 1 million cost 2.5 days with 125 CPU cores [24].

https://github.com/xptree/NetSMF
https://doi.org/10.1145/3308558.3313446
https://doi.org/10.1145/3308558.3313446

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Qiu et al.

Table 1: The comparison betweenNetSMF and other popular
network embedding algorithms.

L
IN
E

D
e
e
p
W

a
lk

n
o
d
e
2
v
e
c

N
e
tM

F

N
e
tS
M

F

Efficiency

√ √

Global context

√ √ √ √

Theoretical guarantee

√ √

High-order proximity

√

achieving more effective embeddings than DeepWalk and LINE.

Unfortunately, it turns out that the matrix to be factorized is an

n×n dense one with n being the number of vertices in the network,

making it prohibitively expensive to directly construct and factorize

for large-scale networks.

In light of these limitations of existing methods (See the sum-

mary in Table 1), we propose to study representation learning for

large-scale networks with the goal of achieving efficiency, capturing

global structural contexts, and having theoretical guarantees. Our

idea is to find a sparse matrix that is spectrally close to the dense

NetMF matrix implicitly factorized by DeepWalk. The sparsified

matrix requires a lower cost for both construction and factoriza-

tion. Meanwhile, making it spectrally close to the original NetMF

matrix can guarantee that the spectral information of the network

is maintained, and the embeddings learned from the sparse matrix

is as powerful as those learned from the dense NetMF matrix.

In this work, we present the solution to network embedding

learning as sparse matrix factorization (NetSMF). NetSMF com-

prises three steps. First, it leverages the spectral graph sparsification

technique [7, 8] to find a sparsifier for a network’s random-walk

matrix-polynomial. Second, it uses this sparsifier to construct a ma-

trix with significantly fewer non-zeros than, but spectrally close to,

the original NetMF matrix. Finally, it performs randomized singular

value decomposition to efficiently factorize the sparsified NetSMF

matrix, yielding the embeddings for the network.

With this design, NetSMF offers both efficiency and effective-

ness with guarantees, as the approximation error of the sparsified

matrix is theoretically bounded. We conduct experiments in five

networks, which are representative of different scales and types.

Experimental results show that for million-scale or larger networks,

NetSMF achieves orders of magnitude speedup over NetMF, while

maintaining competitive performance for the vertex classification

task. In other words, both NetSMF and NetMF outperform well-

recognized network embedding benchmarks (i.e., DeepWalk, LINE,

and node2vec), but NetSMF addresses the computation challenge

faced by NetMF.

To summarize, we introduce the idea of network embedding

as sparse matrix factorization and present the NetSMF algorithm,

which makes the following contributions to network embedding:

Efficiency. NetSMF reaches significantly lower time and space

complexity than NetMF. Remarkably, NetSMF is able to generate

embeddings for a large-scale academic network of 67 million ver-

tices and 895 million edges on a single server in 24 hours, while it

would cost months for DeepWalk and node2vec, and is computa-

tionally infeasible for NetMF on the same hardware.

Table 2: Notations.

Notation Description
G input network

V vertex set of G with |V |=n
E edge set of G with |E | =m
A adjacency matrix of G
D degree matrix of G

vol (G) volume of G
b number of negative samples

T context window size

d embedding dimension

L random-walk molynomial of G (Eq. (4))

L̃ L’s sparsifier

M 1

T
∑T
r=1(D−1A)rD−1

M̃ M ’s sparsifier

trunc_log
◦
(
vol(G)
b M

)
NetMF matrix

trunc_log
◦
(
vol(G)
b M̃

)
NetMF matrix sparisifier

M number of non-zeros in L̃

ϵ approximation factor

[x] set {1, 2, · · · , x } for positive integer x

Effectiveness. NetSMF is capable of learning embeddings that

maintain the same representation power as the dense matrix factor-

ization solution, making it consistently outperform DeepWalk and

node2vec by up to 34% and LINE by up to 100% for the multi-label

vertex classification task in networks.

Theoretical Guarantee. NetSMF’s efficiency and effectiveness

are theoretically backed up. The sparse NetSMF matrix is spectrally

close to the exact NetMF matrix, and the approximation error can

be bounded, maintaining the representation power of its sparsely

learned embeddings.

2 PRELIMINARIES
Commonly, the problem of network embedding is formalized as

follows: Given an undirected and weighted network G = (V ,E,A)
with V as the vertex set of n vertices, E as the edge set ofm edges,

and A as the adjacency matrix, the goal is to learn a function V →
Rd that maps each vertex to a d-dimensional (d ≪ n) vector that
captures its structural properties, e.g., community structures. The

vector representation of each vertex can be fed into downstream

applications such as link prediction and vertex classification.

One of the pioneering work on network embedding is the Deep-

Walk model [27], which has been consistently considered as a pow-

erful benchmark over the past years [16]. In brief, DeepWalk is

coupled with two steps. First, it generates several vertex sequences

by random walks over a network; Second, it applies the skip-gram

model [25] on the generated vertex sequences to learn the latent

representations for each vertex. Commonly, skip-gram is parame-

terized with the context window sizeT and the number of negative

samples b. Recently, a theoretical study [28] reveals that DeepWalk

essentially factorizes a matrix derived from the random walk pro-

cess. More formally, it proves that when the length of randomwalks

goes to infinity, DeepWalk implicitly and asymptotically factorizes

NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization WWW ’19, May 13–17, 2019, San Francisco, CA, USA

the following matrix:

log
◦
(
vol(G)
b

M

)
, (1)

where vol (G) = ∑
i
∑
j Ai j denotes the volume of the graph, and

M =
1

T

T∑
r=1
(D−1A)rD−1, (2)

where D = diag (d1, · · · ,dn) is the degree matrix with di =
∑
j Ai j

as the generalized degree of the i-th vertex. Note that log
◦(·) rep-

resents the element-wise matrix logarithm [18], which is different

from the matrix logarithm. In other words, the matrix in Eq. (1)

can be characterized as the result of applying element-wise matrix

logarithm (i.e., log
◦
) to matrix

vol (G)
b M .

The matrix in Eq. (1) offers an alternative view of the skip-gram

based network embedding methods. Further, Qiu et al. provide

an explicit matrix factorization approach named NetMF to learn

the embeddings [28]. It shows that the accuracy for vertex classifi-

cation based on the embeddings from NetMF outperforms that

based on DeepWalk and LINE. Note that the matrix in Eq. (1)

would be ill-defined if there exist a pair of vertices unreachable

in T hops, because log(0) = −∞. So following Levy and Gold-

berg [22], NetMF uses the logarithm truncated at point one, that

is, trunc_log(x) = max(0, log(x)). Thus, NetMF targets to factorize

the matrix

trunc_log
◦
(
vol(G)
b

M

)
. (3)

In the rest of this work, we refer to the matrix in Eq. (3) as the
NetMF matrix.

However, there exist a couple of challenges when leveraging the

NetMF matrix in practice. First, almost every pair of vertices within

distance r ≤ T correspond to a non-zero entry in the NetMF matrix.

Recall that many social and information networks exhibit the small-

world property where most vertices can be reached from each other

in a small number of steps. For example, as of the year 2012, 92% of

the reachable pairs in Facebook are at distance five or less [2]. As a

consequence, even if setting a moderate context window size (e.g.,

the default settingT = 10 in DeepWalk), the NetMF matrix in Eq. (3)

would be a dense matrix withO(n2) number of non-zeros. The exact

construction and factorization of such a matrix is impractical for

large-scale networks. More concretely, computing the matrix power

in Eq. (2) involves dense matrix multiplication which costs O(n3)
time; factorizing a n × n dense matrix is also time consuming. To

reduce the construction cost, NetMF approximatesM with its top

eigen pairs. However, the approximatedmatrix is still dense, making

this strategy unable to handle large networks.

In this work, we aim to address the efficiency and scalability lim-

itation of NetMF, while maintaining its superiority in effectiveness.

We list necessary notations and their descriptions in Table 2.

3 NETWORK EMBEDDING AS SPARSE
MATRIX FACTORIZATION (NetSMF)

In this section, we develop network embedding as sparse matrix

factorization (NetSMF).We present the NetSMFmethod to construct

and factorize a sparse matrix that approximates the dense NetMF

matrix. The main technique we leverage is random-walk matrix-

polynomial (molynomial) sparsification.

3.1 Random-Walk Molynomial Sparsification
We first introduce the definition of spectral similarity and the theo-

rem of random-walk molynomial sparsification.

Definition 1. (Spectral Similarity of Networks) SupposeG = (V ,E,A)
and G̃ = (V , Ẽ, Ã) are two weighted undirected networks. Let L =
DG −A and L̃ = DG̃ − Ã be their Laplacian matrices, respectively.
We define G and G̃ are (1 + ϵ)-spectrally similar if

∀x ∈ Rn, (1 − ϵ) · x ⊤L̃x ≤ x ⊤Lx ≤ (1 + ϵ) · x ⊤L̃x .

Theorem 1. (Spectral Sparsifiers of Random-WalkMolynomials [7,
8]) For random-walk molynomial

L = D −
T∑
r=1

αrD
(
D−1A

)r
, (4)

where
∑T
r=1 αr = 1 and αr non-negative, one can construct, in time

O(T 2mϵ−2 log2 n), a (1+ ϵ)-spectral sparsifier, L̃, withO(n lognϵ−2)
non-zeros. For unweighted graphs, the time complexity can be reduced
to O(T 2mϵ−2 logn).

To achieve a sparsifier L̃ with O(ϵ−2n logn) non-zeros, the spar-
sification algorithm consists of two steps: The first step obtains an

initial sparsifier for L with O(Tmϵ−2 logn) non-zeros. The second
step then applies the standard spectral sparsification algorithm [30]

to further reduce the number of non-zeros to O(ϵ−2n logn). In
this work, we only adopt the first step because a sparsifier with

O(Tmϵ−2 logn) non-zeros is sparse enough for our task. Thus we

skip the second step that involves additional computations. From

now on, when referring to the random-walk molynomial sparsifi-

cation algorithm in this work, we mean its first step only.

One can immediately observe that, if we set αr =
1

T , r ∈ [T], the
matrix L in Eq. (4) has a strong connection with the desired matrix

M in Eq. (2). Formally, we have the following equation

M = D−1 (D − L)D−1 . (5)

Thm. 1 can help us construct a sparsifier L̃ for matrix L. Then

we define M̃ ≜ D−1(D − L̃)D−1 by replacing L in Eq. (5) with its

sparsifier L̃. One can observe that matrix M̃ is still a sparse one

with the same order of magnitude of non-zeros as L̃. Consequently,
instead of factorizing the dense NetMF matrix in Eq. (3), we can

factorize its sparse alternative, i.e.,

trunc_log
◦
(
vol(G)
b

M̃

)
. (6)

In the rest of this work, the matrix in Eq. (6) is referred to as the
NetMF matrix sparsifier.

3.2 The NetSMF Algorithm
In this section, we formally describe the NetSMF algorithm, which

consists of three steps: random-walk molynomial sparsification,

NetMF sparsifier construction, and truncated singular value decom-

position.

Step 1: Random-WalkMolynomial Sparsification. To achieve
the sparsifier L̃, we adopt the algorithm in Cheng et al. [8]. The

algorithm starts from creating a network G̃ that has the same vertex

set as G and an empty edge set (Alg. 1, Line 1). Next, the algorithm

constructs a sparsifier with O(M) non-zeros by repeating the Path-
Sampling algorithm forM times. In each iteration, it picks an edge

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Qiu et al.

Algorithm 1: NetSMF

Input :A social network G = (V , E, A) which we want to learn

network embedding; The number of non-zeros M in the

sparsifier; The dimension of embedding d .
Output :An embedding matrix of size n × d , each row corresponding

to a vertex.

1 G̃ ← (V , ∅, Ã = 0)
/* Create an empty network with E = ∅ and Ã = 0. */

2 for i ← 1 to M do
3 Uniformly pick an edge e = (u, v) ∈ E
4 Uniformly pick an integer r ∈ [T]
5 u′, v ′, Z ← PathSampling(e, r)
6 Add an edge

(
u′, v ′, 2rm

MZ
)
to G̃

/* Parallel edges will be merged into one edge, with

their weights summed up together. */

7 end
8 Compute L̃ to be the unnormalized graph Laplacian of G̃

9 Compute M̃ = D−1
(
D − L̃

)
D−1

10 Ud , Σd , Vd ← RandomizedSVD(trunc_log◦
(
vol(G)
b M̃

)
, d)

11 return Ud
√
Σd as network embeddings

Algorithm 2: PathSampling algorithm as described in [8].

1 Procedure PathSampling(e = (u, v), r)
2 Uniformly pick an integer k ∈ [r]
3 Perform (k − 1)-step random walk from u to u0
4 Perform (r − k)-step random walk from v to ur
5 Keep track of Z (p) along the length-r path p between u0 and ur

according to Eq. (7)

6 return u0, ur , Z (p)

e ∈ E and an integer r ∈ [T] uniformly (Alg. 1, Line 3-4). Then,

the algorithm uniformly draws an integer k ∈ [r] and performs

(k − 1)-step and (r − k)-step random walks starting from the two

endpoints of edge e respectively (Alg. 2, Line 3-4). The above pro-

cess samples a length-r path p = (u0,u1, · · · ,ur). At the same time,

the algorithm keeps track of Z (p), which is defined by

Z (p) =
r∑
i=1

2

Aui−1,ui
, (7)

and then adds a new edge (u0,ur) with weight
2rm

MZ (p) to G̃ (Alg. 1,

Line 6).
3
Parallel edges in G̃ will be merged into one single edge,

with their weights summed up together. Finally, the algorithm

computes the Laplacian of G̃, which is the sparsifier L̃ as we de-

sired (Alg. 1, Line 8). This step gives us a sparsifier with O(M)
non-zeros.

Step 2: Construct a NetMF Matrix Sparsifier. As we have dis-
cussed at the end of Section 3.1, after constructing a sparsifier L̃,
we can plug it into Eq. (5) to obtain a NetMF matrix sparsifier as

shown in Eq. (6) (Alg. 1, Line 9-10). This step does not change the

order of magnitude of non-zeros in the sparsifier.

3
Details about how the edge weight is derived can be found in Thm. 4 in Appendix.

Algorithm 3: Randomized SVD on NetMF Matrix Sparsifier

/* In this work, the matrix to be factorized (Eq. (6)) is
an n × n symmetric sparse matrix. We store this sparse
matrix in a row-major way and make use of its
symmetry to simplify the computation. */

1 Procedure RandomizedSVD(A, d)
2 Sampling Gaussian random matrix O // O ∈ Rn×d
3 Compute sample matrix Y = A⊤O = AO // Y ∈ Rn×d
4 Orthonormalize Y

5 Compute B = AY // B ∈ Rn×d
6 Sample another Gaussian random matrix P // P ∈ Rd×d
7 Compute sample matrix of Z = BP // Z ∈ Rn×d
8 Orthonormalize Z

9 Compute C = Z ⊤B // C ∈ Rd×d
10 Run Jacobi SVD on C = U ΣV ⊤

11 return ZU , Σ, Y V

/* Result matrices are of shape n × d, d × d, n × d resp. */

Table 3: Time and Space Complexity of NetSMF.

Time Space

Step 1
O (MT logn) for weighted networks

O (MT) for unweighted networks

O (M + n +m)

Step 2 O (M) O (M + n)
Step 3 O (Md + nd2 + d3) O (M + nd)

Step 3: Truncated Singular Value Decomposition. The final

step is to perform truncated singular value decomposition (SVD)

on the constructed NetMF matrix sparsifier (Eq. (6)). However, even

the sparsifier only hasO(M) number of non-zeros, performing exact

SVD is still time consuming. In this work, we leverage a modern

randomized matrix approximation technique—Randomized SVD—

developed by Halko et al. [15]. Due to space constraint, we cannot

include many details. Briefly speaking, the algorithm projects the

original matrix to a low-dimensional space through a Gaussian ran-

dom matrix. One only needs to perform traditional SVD (e.g. Jacobi

SVD) on a d × d small matrix. We list the pseudocode algorithm

in Alg. 3. Another advantage of SVD is that we can determine the

dimensionality of embeddings by using, for example, Cattell’s Scree

test [5]. In the test, we plot the singular values and select a rank

d such that there is a clear drop in the magnitudes or the singular

values start to even out. More details will be discussed in Section 4.

Complexity Analysis. Now we analyze the time and space com-

plexity of NetSMF, as summarized in Table 3. As for step 1, we call

the PathSampling algorithm forM times, during each of which it

performs O(T) steps of random walks over the network. For un-

weighted networks, sampling a neighbor requires O(1) time, while

for weighted networks, one can use roulette wheel selection to

choose a neighbor in O(logn). It taks O(M) space to store G̃ , while
the additional O(n +m) space comes from the storage of the input

network. As for step 2, it takes O(M) time to perform the trans-

formation in Eq. (5) and the element-wise truncated logarithm in

Eq. (6). The additionalO(n) space is spent in storing the degree ma-

trix. As for step 3, O(Md) time is required to compute the product

of a row-major sparse matrix and a dense matrix (Alg. 3, Lines 3 and

NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization WWW ’19, May 13–17, 2019, San Francisco, CA, USA

5);O(nd2) time is spent in Gram-Schmidt orthogonalization (Alg. 3,

Lines 4 and 8); O(d3) time is spent in Jacobi SVD (Alg. 3, Line 10).

Connection to NetMF. The major difference between NetMF and

NetSMF lies in the approximation strategy of the NetMF matrix in

Eq. (3). As we mentioned in Section 2, NetMF approximates it with a

dense matrix, which brings new space and computation challenges.

In this work, NetSMF aims to find a sparse approximator to the

NetMF matrix by leveraging theories and techniques from spectral

graph sparsification.

Example. We provide a running example to help understand the

NetSMF algorithm. Suppose we want to learn embeddings for a

network with n = 10
6
vertices,m = 10

7
edges, context window size

T = 10, and approximation factor ϵ = 0.1. The NetSMFmethod calls

the PathSampling algorithm forM = Tmϵ−2 logn ≈ 1.4×1011 times

and provides us with a NetMF matrix sparsifier with at most 1.4 ×
10

11
non-zeros (Notice that the reducer in Step 1 and trunc_log

◦
in

Step 2 will further sparsify the matrix, making 1.4 × 1011 an upper

bound). The density of the sparsifier is at most
M
n2
≈ 14%. Then,

when computing the sparse-dense matrix product in randomized

SVD (Alg. 3, Lines 3 and 5), the sparseness of the factorized matrix

can greatly accelerate the calculation. In comparison, NetMF must

construct a dense matrix with n2 = 10
12

non-zeros, which is an

order of magnitude larger in terms of density. Also, the density of

the sparsifier in NetSMF can be further reduced by using a larger ϵ ,
while NetMF does not have this flexibility.

3.3 Approximation Error Analysis
In this section, we analyze the approximation error of the sparsifi-

cation. We assume that we choose an approximation factor ϵ < 0.5.

We first see how the constructed M̃ approximatesM and then com-

pare the NetMF matrix (Eq. (3)) against the NetMF matrix sparsi-

fier (Eq. (6)). We use σi to denote the i-th descending-order singular

value of a matrix. We also assume the vertices’ degrees are sorted

in ascending order, that is, dmin = d1 ≤ d2 · · · ≤ dn .

Theorem 2. The singular value of M̃ −M satisfies σi (M̃ −M) ≤
4ϵ√

didmin

,∀i ∈ [n].

Theorem 3. Let ∥·∥F be the matrix Frobenius norm. Thentrunc_log◦ (vol(G)b
M̃

)
− trunc_log◦

(
vol(G)
b

M

)
F
≤ 4ϵ vol(G)

b
√
dmin

√√ n∑
i=1

1

di
.

Proof. See Appendix. □

Discussion on the Approximation Error. The above bound is

achieved without making assumptions about the input network. If

we introduce some assumptions, say a bounded lowest degree dmin

or a specific random graph model (e.g., Planted Partition Model

or Extended Planted Partition Model), it is promising to explore

tighter bounds by leveraging theorems in literature [6, 11].

3.4 Parallelization
Each step of NetSMF can be parallelized, enabling it to scale to very

large networks. The parallelization design of NetSMF is introduced

in Figure 1. Below we discuss the parallelization of each step in

Table 4: Statistics of Datasets.

Dataset BlogCatalog PPI Flickr YouTube OAG
|V | 10,312 3,890 80,513 1,138,499 67,768,244

|E | 333,983 76,584 5,899,882 2,990,443 895,368,962

#labels 39 50 195 47 19

detail. At the first step, the paths in the PathSampling algorithm

are sampled independently with each other. Thus we can launch

multiple PathSampling workers simultaneously. Each worker han-

dles a subset of the samples. Herein, we require that each worker

is able to access the network data G = (V ,E,A) efficiently. There

are many options to meet this requirement. The easiest one is to

load a copy of the network data to each worker’s memory. When

the network is extremely large (e.g., trillion scale) or workers have

memory constraints, the graph engine should be designed to expose

efficient graph query APIs to support graph operations such as ran-

dom walks. At the end of this step, a reducer is designed to merge

parallel edges and sum up their weights. If this step is implemented

in a big data system such as Spark [45], the reduction step can be

simply achieved by running a reduceByKey(_+_)4 function. After
the reduction, the sparsifier L̃ is organized as a collection of triplets,

a.k.a, COOrdinate format, with each indicating an entry of the spar-

sifier. The second step is the most straightforward step to scale

up. When processing a triplet (u,v,w), we can simply query the

degree of vertices u and v and perform the transformation defined

in Eq. (5) as well as the truncated logarithm in Eq. (6), which can

be well parallelized. For the last step, we organize the sparsifier

into row-major format. This format allows efficient multiplication

between a sparse and a dense matrix (Alg. 3, Line 3 and 5). Other

dense matrix operators (e.g., Gaussian random matrix generation,

Gram-Schmidt orthogonalization and Jacobi SVD) can be easily

accelerated by using multi-threading or common linear algebra

libraries. In this work, we adopt a single-machine shared-memory

implementation. We use OpenMP [10] to parallelize NetSMF in our

implementation
5
.

4 EXPERIMENTS
In this section, we evaluate the proposed NetSMF method on the

multi-label vertex classification task, which has been commonly

used to evaluate previous network embedding techniques [14, 27,

28, 33]. We introduce our datasets and baselines in Section 4.1 and

Section 4.2. We report experimental results and parameter analysis

in Section 4.3 and Section 4.4, respectively.

4.1 Datasets
We employ five datasets for the prediction task, four of which are

in relatively small scale but have been widely used in network em-

bedding literature, including BlogCatalog, PPI, Flickr, and YouTube.

The remaining one is a large-scale academic co-authorship network,

which is at least two orders of magnitude larger than the largest one

(YouTube) used in most network embedding studies. The statistics

of these datasets are listed in Table 4.

4
https://spark.apache.org/docs/latest/rdd-programming-guide.html

5
Code is publicly available at https://github.com/xptree/NetSMF

https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://github.com/xptree/NetSMF

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Qiu et al.

Figure 1: The System Design of NetSMF. The input comes from a graph engine which stores the network data and provides efficient APIs

to graph queries. In Step 1, the system launches several PathSampling workers. Each worker handles a subset of samples. Then, a reducer is

designed to aggregate the output of the PathSampling algorithm. In Step 2, the system distributes data to several sparsifier constructors to

perform the transformation defined in Eq. (5) and the truncated element-wise matrix logarithm in Eq. (6). In the final step, the system applies

truncated randomized SVD on the constructed sparsifier and dumps the resulted embeddings to storage.

20

25

30

35

40

45

50

M
ic

ro
-F

1
(%

)

BlogCatalog

0

5

10

15

20

25

30
PPI

15

20

25

30

35

40

45
Flickr

20

25

30

35

40

45

50
YouTube

20

25

30

35

40

45

50
OAG

25 50 75
10

15

20

25

30

35

40

M
ac

ro
-F

1
(%

)

25 50 75
0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10
Training Ratio (%)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10
15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

DeepWalk LINE node2vec NetMF NetSMF

Figure 2: Predictive performance w.r.t. the ratio of training data. The x-axis represents the ratio of labeled data (%), and the y-axis in
the top and bottom rows denote the Micro-F1 and Macro-F1 scores (%) respectively. For methods which fail to finish computation in one

week or cannot handle the computation, their results are not available and thus not plotted in this figure.

NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization WWW ’19, May 13–17, 2019, San Francisco, CA, USA

BlogCatalog [1, 35] is a network of social relationships of online

bloggers. The vertex labels represent the interests of the bloggers.

Protein-Protein Interactions (PPI) [31] is a subgraph of the

PPI network for Homo Sapiens. The vertex labels are obtained from

the hallmark gene sets and represent biological states.

Flickr [35] is the user contact network in Flickr. The labels repre-

sent the interest groups of the users.

YouTube [36] is a video-sharing website that allows users to

upload, view, rate, share, add to their favorites, report, comment

on videos. The users are labeled by the video genres they liked.

Open Academic Graph (OAG)6 is an academic graph indexed

by Microsoft Academic [29] and AMiner.org [34]. We construct

an undirected co-authorship network from OAG, which contains

67,768,244 authors and 895,368,962 collaboration edges. The vertex

labels are defined to be the top-level fields of study of each author,

such as computer science, physics and psychology. In total, there

are 19 distinct fields (labels) and authors may publish in more than

one field, making the associated vertices have multiple labels.

4.2 Baseline Methods
We compare NetSMF with NetMF [28], LINE [33], DeepWalk [27],

and node2vec [14]. For NetSMF, NetMF, DeepWalk, and node2vec

that allow multi-hop structural dependencies, the context window

size T is set to be 10, which is also the default setting used in both

DeepWalk and node2vec. Across all datasets, we set the embedding

dimension d to be 128. We follow the common practice for the other

hyper-parameter settings, which are introduced below.

LINE. Weuse LINEwith the second order proximity (i.e., LINE (2nd)

[33]). We use the default setting of LINE’s hyper-parameters: the

number of edge samples to be 10 billion and the negative sample

size to be 5.

DeepWalk. We present DeepWalk’s results with the authors’ pre-

ferred parameters, that is, walk length to be 40, the number of walks

from each vertex to be 80, and the number of negative samples in

skip-gram to be 5.

node2vec. For the return parameter p and in-out parameter q in

node2vec, we adopt the default setting that was used by its authors

if available. Otherwise, we grid search p,q ∈ {0.25, 0.5, 1, 2, 4}. For
a fair comparison, we use the same walk length and the number of

walks per vertex as DeepWalk.

NetMF. In NetMF, the hyper-parameter h indicates the number

of eigen pairs used to approximate the NetMF matrix. We choose

h = 256 for the BlogCatalog, PPI and Flickr datasets.

NetSMF. In NetSMF, we set the number of samplesM = 10
3×T ×m

for the PPI, Flickr, and YouTube datasets, M = 10
4 × T ×m for

BlogCatalog, and M = 10 × T ×m for OAG in order to achieve

desired performance. For both NetMF and NetSMF, we have b = 1.

Prediction Setting. We follow the same experiment and evalua-

tion procedures that were performed in DeepWalk [27]. First, we

randomly sample a portion of labeled vertices for training and use

6
www.openacademic.ai/oag/

Table 5: Efficiency comparison. The running time includes

filesystem IO and computation time. “–” indicates that the cor-

responding algorithm fails to complete within one week. “×” in-
dicates that the corresponding algorithm is unable to handle the

computation due to excessive space and memory consumption.

LI
NE

De
ep
W
alk

no
de
2v
ec

Ne
tM
F

Ne
tSM

F

BlogCatalog 40 mins 12 mins 56 mins 2 mins 13 mins

PPI 41 mins 4 mins 4 mins 16 secs 10 secs

Flickr 42 mins 2.2 hours 21 hours 2 hours 48 mins

YouTube 46 mins 1 day 4 days × 4.1 hours

OAG 2.6 hours – – × 24 hours

the remaining for testing. For the BlogCatalog and PPI datasets, the

training ratio varies from 10% to 90%. For Flickr, YouTube and OAG,

the training ratio varies from 1% to 10%. We use the one-vs-rest

logistic regression model implemented by LIBLINEAR [13] for the

multi-label vertex classification task. In the test phase, the one-

vs-rest model yields a ranking of labels rather than an exact label

assignment. To avoid the thresholding effect, we take the assump-

tion that was made in DeepWalk, LINE, and node2vec, that is, the

number of labels for vertices in the test data is given [14, 27, 37]. We

repeat the prediction procedure ten times and evaluate the average

performance in terms of both Micro-F1 and Macro-F1 scores [41].

All the experiments are performed on a server with Intel Xeon

E7-8890 CPU (64 cores), 1.7TB memory, and 2TB SSD hard drive.

4.3 Experimental Results
We summarize the prediction performance in Figure 2. To compare

the efficiency of different algorithms, we also list the running time

of each algorithm across all datasets, if available, in Table 5.

NetSMF vs. NetMF. We first focus on the comparison between

NetSMF and NetMF, since the goal of NetSMF is to address the

efficiency and scalability issues of NetMF while maintaining its su-

periority in effectiveness. FromTable 5, we observe that for YouTube

and OAG, both of which contain more than one million vertices,

NetMF fails to complete because of the excessive space and memory

consumption, while NetSMF is able to finish in four hours and one

day, respectively. For the moderate-size network Flickr, both meth-

ods are able to complete within one week, though NetSMF is 2.5×
faster (i.e., 48 mins vs. 2 hours). For small-scale networks, NetMF is

faster than NetSMF in BlogCatalog and is comparable to NetSMF in

PPI in terms of running time. This is because when the input net-

works contain only thousands of vertices, the advantage of sparse

matrix construction and factorization over its dense alternative

could be marginalized by other components of the workflow.

In terms of prediction performance, Figure 2 suggests NetSMF

and NetMF yield consistently the best results among all compared

methods, empirically demonstrating the power of the matrix factor-

ization framework for network embedding. In BlogCatalog, NetSMF

has slightly worse performance than NetMF (on average less than

3.1% worse regarding both Micro- and Macro-F1). In PPI, the two

leading methods’ performance are relatively indistinguishable in

www.openacademic.ai/oag/

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Qiu et al.

terms of both metrics. In Flickr, NetSMF achieves significantly bet-

ter Macro-F1 than NetMF (by 3.6% on average), and also higher

Micro-F1 (by 5.3% on average). Recall that NetMF uses a dense ap-

proximation of the matrix to factorize. These results show that the

sparse spectral approximation used by NetSMF does not necessarily

yield worse performance than the dense approximation used by

NetMF.

Overall, not only NetSMF improves the scalability, and the running
time of NetMF by orders of magnitude for large-scale networks, it
also has competitive, and sometimes better, performance. This demon-
strates the effectiveness of our spectral sparsification based approxi-
mation algorithm.

NetSMF vs. DeepWalk, LINE & node2vec. We also compare

NetSMF against common graph embedding benchmarks—DeepWalk,

LINE, and node2vec. For the OAG dataset, DeepWalk and node2vec

fail to finish the computation within one week, while NetSMF re-

quires only 24 hours. Based on the publicly reported running time

of skip-gram [24], we estimate that DeepWalk and node2vec may

require months to generate embeddings for the OAG dataset. In

BlogCatalog, DeepWalk and NetSMF require similar computing

time, while in Flickr, YouTube, and PPI, NetSMF is 2.75×, 5.9×, and
24× faster than DeepWalk, respectively. In all the datasets, NetSMF

achieves 4–24× speedup over node2vec.

Moreover, the performance of NetSMF is significantly better than

DeepWalk in BlogCatalog, PPI, and Flickr, by 7–34% in terms of

Micro-F1 and 5–25% in terms of Macro-F1. In YouTube, NetSMF

achieves comparable results to DeepWalk. Comparedwith node2vec,

NetSMF achieves comparable performance in BlogCatalog and

YouTube, and significantly better performance in PPI and Flickr. In

summary, NetSMF consistently outperformsDeepWalk and node2vec

in terms of both efficiency and effectiveness.

LINE has the best efficiency among all the five methods and

together with NetSMF, they are the only methods that can generate

embeddings for OAG within one week (and both finish in one

day). However, it also has the worst prediction performance and

consistently loses to others by a large margin across all datasets. For

example, NetSMF beats LINE by 21% and 39% in Flickr, and by 30%

and 100% in OAG in terms of Micro-F1 and Macro-F1, respectively.

In summary, LINE achieves efficiency at the cost of ignoring

multi-hop dependencies in networks, which are supported by all

the other four methods—DeepWalk, node2vec, NetMF, and NetSMF,

demonstrating the importance of multi-hop dependencies for learn-

ing network representations.

More importantly, among these four methods, DeepWalk achieves
neither efficiency nor effectiveness superiority; node2vec achieves rel-
atively good performance at the cost of efficiency; NetMF achieves
effectiveness at the expense of significantly increased time and space
costs; NetSMF is the only method that achieves both high efficiency
and effectiveness, empowering it to learn effective embeddings for
billion-scale networks (e.g., the OAG network with 0.9 billion edges)
in one day on one modern server.

4.4 Parameter Analysis
In this section, we discuss how the hyper-parameters influence the

performance and efficiency of NetSMF. We report all the parameter

analyses on the Flickr dataset with training ratio set to be 10%.

How to Set the Embedding Dimension d . As mentioned in Sec-

tion 3.1, SVD allows us to determine a “good” embedding dimension

without supervised information. There are many methods available

such as captured energy and Cattell’s Scree test [5]. Here we pro-

pose to use Cattell’s Scree test. Cattell’s Scree test plots the singular

values and selects a rank d such that there is a clear drop in the

magnitudes or the singular values start to even out. In Flickr, if we

sort the singular values in decreasing order, we can observe that

the singular values approach 0 when the rank increases to around

100, as shown in Figure 3(b). In our experiments, by varying d form

2
4
to 2

8
, we reach the best performance at d = 128, as shown in Fig-

ure 3(a), demonstrating the ability of our matrix factorization based

NetSMF for automatically determining the embedding dimension.

The Number of Non-ZerosM . In theory,M =O(Tmϵ−2 logn) is
required to guarantee the approximation error (See Section 3.1).

Without loss of generality, we empirically set M to be k ×T ×m
where k is chosen from 1, 10, 100, 200, 500, 1000, 2000 and investi-

gate how the number of non-zeros influence the quality of learned

embeddings. As shown in Figure 3(c), when increasing the number

of non-zeros, NetSMF tends to have better prediction performance

because the original matrix is being approximated more accurately.

On the other hand, although increasing M has a positive effect

on the prediction performance, its marginal benefit diminishes

gradually. One can observe that setting M = 1000 × T ×m (the

second-to-the-right data point on each line in Figure 3(c)) is a good

choice that balances NetSMF’s efficiency and effectiveness.

The Number of Threads. In this work, we use a single-machine

shared memory implementation with multi-threading acceleration.

We report the running time of NetSMF when setting the number of

threads to be 1, 10, 20, 30, 60, respectively. As shown in Figure 3(d),

NetSMF takes 12 hours to embed the Flickr network with one thread

and 48 minutes to run with 30 threads, achieving a 15× speedup

ratio (with ideal being 30×). This relatively good sub-linear speedup
supports NetSMF to scale up to very large-scale networks.

5 RELATEDWORK
In this section, we review the related work of network embedding,

large-scale embedding algorithms, and spectral graph sparsification.

5.1 Network Embedding
Network embedding has been extensively studied over the past

years [16]. The success of network embedding has driven a lot of

downstream network applications, such as recommendation sys-

tems [44]. Briefly, recent work about network embedding can be

categorized into three genres: (1) Skip-gram based methods that

are inspired by word2vec [24], such as LINE [33], DeepWalk [27],

node2vec [14], metapath2vec [12], and VERSE [40]; (2) Deep learn-

ing based methods such as [21, 44]; (3) Matrix factorization based

methods such as GraRep [4] and NetMF [28]. Among them, NetMF

bridges the first and the third categories by unifying a collection

of skip-gram based network embedding methods into a matrix

factorization framework. In this work, we leverage the merit of

NetMF and address its limitation in efficiency. Among literature,

PinSage is notably a network embedding framework for billion-

scale networks [44]. The difference between NetSMF and PinSage

NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization WWW ’19, May 13–17, 2019, San Francisco, CA, USA

100 200
Embedding Dimension

10

20

30

40

F1
Sc

or
e

(%
)

Micro-F1
Macro-F1

(a)

0 100 200
Rank

0

5000

10000

15000

Si
ng

ul
ar

V
al

ue
s

(b)

108 109 1010 1011

Number of Non-zeros

10

20

30

40

50

F1
Sc

or
e

(%
)

Micro-F1
Macro-F1

(c)

0 20 40 60
Number of Threads

2.5

5.0

7.5

10.0

R
un

ni
ng

Ti
m

e
(h

ou
r)

(d)

Figure 3: Parameter analysis: (a) Prediction performance v.s. embedding dimension d; (b) Cattel’s Scree Test on singular values.
(c) Prediction performance v.s. the number of non-zerosM ; (d) Running time v.s. the number of threads.

lies in the following aspect. The goal of NetSMF is to pre-train

general network embeddings in an unsupervised manner, while

PinSage is a supervised graph convolutional method with both

the objective of recommender systems and existing node features

incorporated. That being said, the embeddings learned by NetSMF

can be consumed by PinSage for downstream network applications.

5.2 Large-Scale Embedding Learning
Studies have attempted to optimize embedding algorithms for large

datasets from different perspectives. Some focus on improving skip-

gram model, while others consider it as matrix factorization.

Distributed Skip-GramModel. Inspired by word2vec [25], most

of the modern embedding learning algorithms are based on the

skip-gram model. There is a sequence of work trying to acceler-

ate the skip-gram model in a distributed system. For example, Ji

et al. [19] replicate the embedding matrix on multiple workers and

synchronize them periodically; Ordentlich et al. [26] distribute the

columns (dimensions) of the embedding matrix to multiple execu-

tors and synchronize them with a parameter server [23]. Negative

sampling is a key step in skip-gram, which requires to draw sam-

ples from a noisy distribution. Stergiou et al. [32] focus on the

optimization of negative sampling by replacing the roulette wheel

selection with a hierarchical sampling algorithm based on the alias

method. More recently, Wang et al. [43] propose a billion-scale

network embedding framework by heuristically partitioning the

input graph to small subgraphs, and processing them separately in

parallel. However, the performance of their framework highly relies

on the quality of graph partition. The drawback for partition-based

embedding learning is that the embeddings learned in different

subgraphs do not share the same latent space, making it impossible

to compare nodes across subgraphs.

EfficientMatrix Factorization. Factorizing the NetMFmatrix, ei-

ther implicitly (e.g., LINE [33] and DeepWalk [27]) or explicitly (e.g.,

NetMF [28]), encounters two issues. First, the denseness of this ma-

trix makes computation expensive even for a moderate context win-

dow size (e.g., T = 10). Second, the non-linear transformation, i.e.,

element-wise matrix logarithm, is hard to approximate. LINE [33]

solves this problem by setting T = 1. With such simplification,

it achieves good scalability at the cost of prediction performance.

NetSMF addresses these issues by efficiently sparsifying the dense

NetMF matrix with a theoretically-bounded approximation error.

5.3 Spectral Graph Sparsification
Spectral graph sparsification has been studied for decades in graph

theory [38]. The task of graph sparsification is to approximate a

“dense” graph by a “sparse” one that can be effectively used in place

of the dense one [38], which arises in many applications such as

scientific computing [17], machine learning [3, 7] and data min-

ing [46]. Our NetSMF model is the first work that incorporates

spectral sparsification algorithms [7, 8] into network embedding,

which offers a powerful and efficient way to approximate and ana-

lyze the random-walk matrix-polynomial in the NetMF matrix.

6 CONCLUSION
In this work, we study network embedding with the goal of achiev-

ing both efficiency and effectiveness. To address the scalability chal-

lenges faced by the NetMF model, we propose to study large-scale

network embedding as sparse matrix factorization. We present the

NetSMF algorithm, which achieves a sparsification of the (dense)

NetMF matrix. Both the construction and factorization of the spar-

sified matrix are fast enough to support very large-scale network

embedding learning. For example, it empowers NetSMF to effi-

ciently embed the Open Academic Graph in 24 hours, whose size is

computationally intractable for the dense matrix factorization solu-

tion (NetMF). Theoretically, the sparsified matrix is spectrally close

to the original NetMF matrix with an approximation bound. Em-

pirically, our extensive experimental results show that the sparsely

learned embeddings by NetSMF are as effective as those from

the factorization of the NetMF matrix, leaving it outperform the

common network embedding benchmarks—DeepWalk, LINE, and

node2vec. In other words, among both matrix factorization based

methods (NetMF and NetSMF) and common skip-gram based bench-

marks (DeepWalk, LINE, and node2vec), NetSMF is the only model

that achieves both efficiency and performance superiority.

Future Work. NetSMF brings an efficient, effective, and guaran-

teed solution to network embedding learning. There are multiple

tangible research fronts we can pursue. First, our current single-

machine implementation limits the number of samples we can take

for large networks. We plan to develop a multi-machine solution in

the future to further scale NetSMF. Second, building upon NetSMF,

we would like to efficiently and accurately learn embeddings for

large-scale directed [9], dynamic [20], and/or heterogeneous net-

works. Third, as the advantage of matrix factorization methods

demonstrated, we are also interested in exploring the other matrix

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Qiu et al.

definitions that may be effective in capturing different structural

properties in networks. Last, it would be also interesting to bridge

matrix factorization based network embedding methods with graph

convolutional networks.

Acknowledgements. We would like to thank Dehua Cheng and

Youwei Zhuo from USC for helpful discussions. Jian Li is supported

in part by the National Basic Research Program of China Grant

2015CB358700, the National Natural Science Foundation of China

Grant 61822203, 61772297, 61632016, 61761146003, and a grant from

Microsoft Research Asia. Jie Tang is the corresponding author.

APPENDIX
We first prove Thm. 2 and Thm. 3 in Section 3.3. The following

lemmas will be useful in our proof.

Lemma 1. ([39]) Singular values of a real symmetric matrix are the
absolute values of its eigenvalues.

Lemma 2. (Courant-Fisher Theorem) LetA ∈ Rn×n be a symmetric
matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn , then for i ∈ [n],

λi = min

dim (U)=i
max

x ∈U , ∥x ∥
2
=1
x ⊤Ax .

Lemma 3. ([18]) Let B,C be two n × n symmetric matrices. Then
for the decreasingly-ordered singular values σ of B,C and BC ,

σi+j−1(BC) ≤ σi (B) × σj (C)

holds for any 1 ≤ i, j ≤ n and i + j ≤ n + 1.

Lemma 4. LetL = D−1/2LD−1/2 and similarly L̃ = D−1/2L̃D−1/2.
Then all the singular values of L̃−L are smaller than 2ϵ , i.e., ∀i ∈ [n],
σi (L̃ −L) < 4ϵ .

Proof. Notice that

L = D−1/2LD−1/2 = I −
T∑
r=1

αr
(
D−1/2AD−1/2

)r
which is a normalized graph Laplacian whose eigenvalues lie in

the interval [0, 2), i.e., for i ∈ [n], λi (L) ∈ [0, 2) [42]. Since L̃ is a

(1 + ϵ)-spectral sparsifier of L, we know that for ∀x ∈ Rn ,
1

1 + ϵ
x ⊤Lx ≤ x ⊤L̃x ≤ 1

1 − ϵ x
⊤Lx .

Let x = D−1/2y which is bijective, we have

1

1 + ϵ
y⊤Ly ≤ y⊤ L̃y ≤ 1

1 − ϵ y
⊤Ly

=⇒
���y⊤(L̃ − L)y

��� ≤ ϵ
1 − ϵ y

⊤Ly < 2ϵy⊤Ly .

The last inequality is because we assume ϵ < 0.5. Then, by Courant-
Fisher Theorem (Lemma 2), we can immediately get, ∀i ∈ [n],���λi (L̃ − L)

��� ≤ 2ϵλi (L) < 4ϵ .

Then, by Lemma 1, σi (L̃ −L) < 4ϵ,∀i ∈ [n]. □

Given the above lemmas, we can see how the constructed M̃
approximates M and how the constructed NetMF matrix sparsi-

fier (Eq. (6)) approximates the NetMF matrix (Eq. (3)).

Theorem 2. The singular value of M̃ −M satisfies σi (M̃ −M) ≤
4ϵ√

didmin

,∀i ∈ [n].

Proof. First notice that M̃−M = D−1
(
L̃ − L

)
D−1 = D−1/2(L̃−

L)D−1/2. Apply Lemma 3 twice and use the result from Lemma 4,

we have

σi
(
M̃ −M

)
≤ σi

(
D−1/2

)
× σ1

(
L̃ − L

)
× σ1

(
D−1/2

)
≤ 1

√
di
× 4ϵ × 1

√
dmin

=
4ϵ

√
didmin

.

□

Theorem 3. Let ∥·∥F be the matrix Frobenius norm. Thentrunc_log◦ (vol(G)b
M̃

)
− trunc_log◦

(
vol(G)
b

M

)
F
≤ 4ϵ vol(G)

b
√
dmin

√√ n∑
i=1

1

di
.

Proof. It is easy to observe that trunc_log
◦
is 1-Lipchitz w.r.t.

Frobenius norm. So we havetrunc_log◦ (vol(G)b
M̃

)
− trunc_log◦

(
vol(G)
b

M

)
F

≤
 vol(G)b

M̃ − vol(G)
b

M

F
=

vol(G)
b

M̃ −M
F

=
vol(G)
b

√ ∑
i∈[n]

σ 2

i (M̃ −M) ≤
4ϵ vol(G)
b
√
dmin

√√ n∑
i=1

1

di
.

□

We finally explain the remaining question in Step 1 of NetSMF:

After sampling a length-r path p = (u0, · · · ,ur), why does the

algorithm add a new edge to the sparsifier with weight
rm

MZ (p) ? Our
proof relies on two lemmas from [8].

Lemma 5. (Lemma 3.3 in [8]) Given the path length r , the proba-
bility for the PathSampling algorithm to sample a path p is τ (p) =
w (p)Z (p)

2rm , where Z (p) is defined in Eq. (7) and

w (p) =
∏r
i=1Aui−1,ui∏r−1
i=1 Dui

.

Lemma 6. (Theorem 2.2 in [8]) After sampling a length-r path p =
(u0,u1, · · · ,ur), the weight corresponding to the new edge (u0,ur)
added to the sparsifier should be w (p)

τ (p)M .

Theorem 4. After sampling a length-r path p = (u0,u1, · · · ,ur)
using the PathSampling algorithm (Alg. 2). The weight of the new
edge added to the sparsifier L̃ is 2rm

MZ (p) .

Proof. The proof is to plug the definition of Z (p), w(p), and
τ (p) from Lemma 5 into Lemma 6, that is,

w (p)
τ (p)M =

w (p)
w (p)Z (p)

2rm ×M
=

2rm
MZ (p) .

For unweighted networks, this weight can be simplified to
m
M , since

Z (p) = 2r for unweighted networks. □

NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization WWW ’19, May 13–17, 2019, San Francisco, CA, USA

REFERENCES
[1] Nitin Agarwal, Huan Liu, Sudheendra Murthy, Arunabha Sen, and Xufei Wang.

2009. A Social Identity Approach to Identify Familiar Strangers in a Social

Network.. In ICWSM ’09.
[2] Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna.

2012. Four degrees of separation. In WebSci ’12. ACM, 33–42.

[3] Daniele Calandriello, Ioannis Koutis, Alessandro Lazaric, and Michal Valko. 2018.

Improved large-scale graph learning through ridge spectral sparsification. In

ICML ’18. 687âĂŞ696.
[4] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning graph repre-

sentations with global structural information. In CIKM ’15. ACM, 891–900.

[5] Raymond B Cattell. 1966. The scree test for the number of factors. Multivariate
behavioral research 1, 2 (1966), 245–276.

[6] Kamalika Chaudhuri, Fan Chung, and Alexander Tsiatas. 2012. Spectral clustering

of graphs with general degrees in the extended planted partition model. In COLT
’12. 35–1.

[7] Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. 2015.

Efficient sampling for Gaussian graphical models via spectral sparsification. In

COLT ’15. 364–390.
[8] Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. 2015.

Spectral sparsification of random-walk matrix polynomials. arXiv preprint
arXiv:1502.03496 (2015).

[9] Michael B Cohen, Jonathan Kelner, John Peebles, Richard Peng, Aaron Sidford,

and Adrian Vladu. 2016. Faster algorithms for computing the stationary distribu-

tion, simulating random walks, and more. In FOCS ’16. IEEE, 583–592.
[10] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API

for shared-memory programming. IEEE computational science and engineering 5,

1 (1998), 46–55.

[11] Anirban Dasgupta, John E Hopcroft, and Frank McSherry. 2004. Spectral analysis

of random graphs with skewed degree distributions. In FOCS ’04. 602–610.
[12] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:

Scalable Representation Learning for Heterogeneous Networks. In KDD ’17.
[13] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen

Lin. 2008. LIBLINEAR: A library for large linear classification. JMLR ’08 9, Aug
(2008), 1871–1874.

[14] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In KDD ’16. ACM, 855–864.

[15] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. 2011. Finding structure

with randomness: Probabilistic algorithms for constructing approximate matrix

decompositions. SIAM review 53, 2 (2011), 217–288.

[16] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning

on Graphs: Methods and Applications. IEEE Data(base) Engineering Bulletin 40

(2017), 52–74.

[17] Nicholas J Higham and Lijing Lin. 2011. On p th roots of stochastic matrices.

Linear Algebra Appl. 435, 3 (2011), 448–463.
[18] Roger A. Horn and Charles R. Johnson. 1991. Topics in Matrix Analysis. Cambridge

University Press. https://doi.org/10.1017/CBO9780511840371

[19] Shihao Ji, Nadathur Satish, Sheng Li, and Pradeep Dubey. 2016. Parallelizing

word2vec in shared and distributed memory. arXiv preprint arXiv:1604.04661
(2016).

[20] Michael Kapralov, Yin Tat Lee, CN Musco, CP Musco, and Aaron Sidford. 2017.

Single pass spectral sparsification in dynamic streams. SIAM J. Comput. 46, 1
(2017), 456–477.

[21] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR ’17.
[22] Omer Levy and Yoav Goldberg. 2014. Neural Word Embedding as Implicit Matrix

Factorization. In NIPS ’14. 2177–2185.
[23] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,

Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling

Distributed Machine Learning with the Parameter Server.. In OSDI ’14, Vol. 14.

583–598.

[24] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

Estimation of Word Representations in Vector Space. In ICLR Workshop ’13.
[25] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed Representations of Words and Phrases and their Compositionality.

In NIPS’ 13. 3111–3119.
[26] Erik Ordentlich, Lee Yang, Andy Feng, Peter Cnudde, Mihajlo Grbovic, Nemanja

Djuric, Vladan Radosavljevic, and Gavin Owens. 2016. Network-efficient dis-

tributed word2vec training system for large vocabularies. In CIKM ’16. ACM,

1139–1148.

[27] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In KDD ’14. ACM, 701–710.

[28] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE,

and node2vec. In WSDM ’18. ACM, 459–467.

[29] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-june Paul Hsu,

and Kuansan Wang. 2015. An overview of microsoft academic service (mas) and

applications. In WWW ’15. ACM, 243–246.

[30] Daniel A Spielman and Nikhil Srivastava. 2011. Graph sparsification by effective

resistances. SIAM J. Comput. 40, 6 (2011), 1913–1926.
[31] Chris Stark, Bobby-Joe Breitkreutz, Andrew Chatr-Aryamontri, Lorrie Boucher,

Rose Oughtred, Michael S Livstone, Julie Nixon, Kimberly Van Auken, Xiaodong

Wang, Xiaoqi Shi, et al. 2010. The BioGRID interaction database: 2011 update.

Nucleic acids research 39, suppl_1 (2010), D698–D704.

[32] Stergios Stergiou, Zygimantas Straznickas, RolinaWu, and Kostas Tsioutsiouliklis.

2017. Distributed Negative Sampling for Word Embeddings.. In AAAI ’17. 2569–
2575.

[33] Jian Tang,MengQu,MingzheWang,Ming Zhang, Jun Yan, andQiaozhuMei. 2015.

Line: Large-scale information network embedding. In WWW ’15. 1067–1077.
[34] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-

miner: extraction and mining of academic social networks. In KDD ’08. 990–998.
[35] Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions. In

KDD ’09. ACM, 817–826.

[36] Lei Tang and Huan Liu. 2009. Scalable learning of collective behavior based on

sparse social dimensions. In CIKM ’09. ACM, 1107–1116.

[37] Lei Tang, Suju Rajan, and Vijay K Narayanan. 2009. Large scale multi-label

classification via metalabeler. In WWW ’09. ACM, 211–220.

[38] Shang-Hua Teng et al. 2016. Scalable algorithms for data and network analysis.

Foundations and Trends® in Theoretical Computer Science 12, 1–2 (2016), 1–274.
[39] Lloyd N Trefethen and David Bau III. 1997. Numerical linear algebra. Vol. 50.

Siam.

[40] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.

VERSE: Versatile Graph Embeddings from Similarity Measures. In WWW ’18.
539–548.

[41] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. 2009. Mining

multi-label data. In Data mining and knowledge discovery handbook. Springer,
667–685.

[42] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and
computing 17, 4 (2007), 395–416.

[43] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun

Lee. 2018. Billion-scale Commodity Embedding for E-commerce Recommendation

in Alibaba. In KDD ’18. ACM.

[44] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale

Recommender Systems. KDD ’18.
[45] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion

Stoica. 2010. Spark: Cluster computing with working sets. HotCloud ’10 10, 10-10
(2010), 95.

[46] Peixiang Zhao. 2015. gSparsify: Graph Motif Based Sparsification for Graph

Clustering. In CIKM ’15. ACM, 373–382.

https://doi.org/10.1017/CBO9780511840371

	Abstract
	1 Introduction
	2 Preliminaries
	3 Network Embedding as Sparse Matrix Factorization (NetSMF)
	3.1 Random-Walk Molynomial Sparsification
	3.2 The NetSMF Algorithm
	3.3 Approximation Error Analysis
	3.4 Parallelization

	4 Experiments
	4.1 Datasets
	4.2 Baseline Methods
	4.3 Experimental Results
	4.4 Parameter Analysis

	5 Related Work
	5.1 Network Embedding
	5.2 Large-Scale Embedding Learning
	5.3 Spectral Graph Sparsification

	6 Conclusion
	References

