Coded
by Jie Tang
on Nov. 29, 2006
The directory include
Index
|
This file is a manual of how to use the CRF training and test tool. This software provides a simple manual on how to train and test using the KEG_CRF tool, which can be downloaded as follows. A running example: train.txt and test.txt You can also select to download an all-in-one file by ZIP or RAR. The tool was written by Jie Tang, jery.tang@gmail.com Knowledge Engineering Group, This software is available for non-commercial use only. It must not be modified and distributed without prior permission of the author. The author is not responsible for implications from the use of this software. usage: CRF_train [options] datafile modelfile Arguments: datafile: training data modelfile: for storing the training model Options: -? help -d string dictionary file, default value [dict.txt] -i int maximal number of iterations for L-BFGS, default value [60] -x int number of the threads (default value: 2) -b bool indicate whether bigram edge features are used, i.e. y(i-1,i,X), false indicates that no edge features will be used, true indicates bigram edge features will be used [true] -j bool indicate if we use bigram state features, false indicates unigram state features (e.g. yi, xi), true indicates bigram state features (e.g. yi, yi-1, xi) will also be used [false] -t string test file name. If this option is set, the program will apply the trained model to the test file in each iteration -o int penalty method, 1 denotes L1-norm, 2 denotes L2-norm (default) Other options, please refer to the "help". usage: CRF_apply [options] testfile outputfile Arguments: testfile: test data outputfile: the tagging result For options, please use "CRF_apply -?" to get help Format of Training and Testing data <data> = a list of <sequence> <sequence> = a list of <observation> <observation> = <tag> + <context predicate> <context predicate> = a list of string # feature <tag> = a string Please refer to the ./example/train.txt or ./example/test.txt for the training and test data. Output in command window during training: Step 1. Parsing parameter... Running with 3 threads Step 2. Reading training data.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................elapsed: 32seconds Step 3. Starting training the model... 1) Building dictionary...Total 745357 context predictions 2) Performing feature extraction...Total 116267 features generated 3) Pruning feature set...108409 context predictions after pruning 4) Creating state feature caching for each observation..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 5) Creating edge feature caching... 6) Building model... Iteration: 1 Log-likelihood=-673469 L2 ||grad||=456493 L2 ||¦Ë||=0 (new_logliklihood - old)/old = 673469 compute_logli_gradient: 5422 ms LBFGS function: 16 ms Iteration elapsed: 5 seconds Iteration: 2 Log-likelihood=-270812 L2 ||grad||=302588 L2 ||¦Ë||=1 (new_logliklihood - old)/old = 0.597885 compute_logli_gradient: 5687 ms LBFGS function: 16 ms Iteration elapsed: 6 seconds When you type this command "CRF_train -t test.txt train.txt model.txt", you'll see the output in command window like this: Step 1. Parsing parameter... Running with 3 threads Step 2. Reading training data.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................elapsed: 32seconds Step 3. Starting training the model... 1) Building dictionary...Total 745357 context predictions 2) Performing feature extraction...Total 116267 features generated 3) Pruning feature set...108409 context predictions after pruning 4) Creating state feature caching for each observation..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 5) Creating edge feature caching... 6) Building model... Iteration: 1 Log-likelihood=-673469 L2 ||grad||=456493 L2 ||¦Ë||=0 (new_logliklihood - old)/old = 673469 compute_logli_gradient: 5422 ms LBFGS function: 16 ms Iteration elapsed: 5 seconds correct model manual prec. rec. F1-Measure a 0 0 182 0.00 0.00 0.00 b 0 0 604 0.00 0.00 0.00 other 51980 58059 51980 89.53 100.00 94.48 overall 0 0 786 0.00 0.00 0.00 Iteration: 2 Log-likelihood=-270812 L2 ||grad||=302588 L2 ||¦Ë||=1 (new_logliklihood - old)/old = 0.597885 compute_logli_gradient: 5687 ms LBFGS function: 16 ms Iteration elapsed: 6 seconds correct model manual prec. rec. F1-Measure a 0 0 182 0.00 0.00 0.00 b 0 0 604 0.00 0.00 0.00 other 51980 58059 51980 89.53 100.00 94.48 overall 0 0 786 0.00 0.00 0.00 Iteration: 3 Log-likelihood=-132609 L2 ||grad||=43142 L2 ||¦Ë||=3.19889 (new_logliklihood - old)/old = 0.510328 compute_logli_gradient: 5688 ms LBFGS function: 15 ms Iteration elapsed: 6 seconds when the option "-t" is set, it will perform "test" during training, and output evaluation result of each tag, it is useful for cross validation. In the evaluation result, the first line: "correct": the correct number of predictions "model": the number of tags found by the trained model "manual": the gold standard number of tags "prec.": precision, prec. = correct/model "rec.": recall, rec. = correct/maunal "F1-Measure": F1-score, F1-Measure = 2*(prec.*rec.)/(prec.+rec.) all the values above are computed on one tag, one tag corresponds to one line following. The last line "overall": the results of all the tags Any questions please feel free to contact: jery.tang@gmail.com, ylm@keg.cs.tsinghua.edu.cn. Thanks for your interests of our software. |