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Abstract  This paper is concerned with the matchmaker for ranking web services by using semantics. So far several
methods of semantic matchmaker have been proposed. Most of them, however, focus on classifying the services into
predefined categories rather than providing a ranking result.
proposed for ranking web services. It is proposed to use the semantic distance for estimating the matching degree between a
service and a user request. Four types of semantic distances are defined and four algorithms are implemented respectively to
calculate them. Experimental results show that the proposed semantic matchmaker significantly outperforms the keyword-

In this paper, a new method of semantic matchmaker is

based baseline method.

Keywords
1 Introduction
Web services!!! are self-contained, self-describing,
modular applications that can be published, located
and invoked across the web. Supporting standards
like UDDI2!, WSDL[P! and SOAP make web services
widely adopted by many Internet applications, such as
peer-to-peerl®=7 So far, service discovery is becoming
one of the challenges in web services. The goal of ser-
vice discovery is to find feasible services accurately and
efficiently according to the user request.

By using UDDI and WSDL, web service discovery
is conducted by keyword matching on the properties of
the services (e.g., name, key, and category, etc.). This
method cannot achieve high accuracy.

Semantic web service technology is aimed at improv-
ing the accuracy of service discovery by providing se-
mantics for web services. The discovery of semantic web
services is usually done by using semantic matchmaker.
The matchmaker evaluates the matching degree between
a request and the services.

Several approaches for semantic matchmaker have
been proposed. For example, Paolucci et al.l®! proposed
a basic matchmaker to match the capability of services.
Based on the hierarchical relation of concepts in input
and output, matched web services are classified into sev-
eral categories: exact, subsume, plugin and fail. This
approach, however, is not sufficient to distinguish two
web services which are classified into the same category.
For instance, it is difficult to say that service A is more
related to the request than service B when they are all in
subsume category. The category classification is rough
for a requestor to choose an optimal service.

This paper proposes a semantic matchmaker to rank
web services according to the semantic information in
service description. Two challenges arise in the match-
maker: 1) how to propose a principled approach for
measuring the semantic distance between concepts in

semantic web services, semantic distance, services ranking

the ontology; 2) how to estimate the matching degree
of the service to the request by making use of the se-
mantic distances. A baseline matchmaker based on key-
word match is firstly proposed to quantify the matching
degree of service. Semantic distance is a quantitative
value in this paper to measure the distance between
concepts in the ontology. Four types of semantic dis-
tances are defined and four algorithms are implemented
respectively to calculate them. We propose the seman-
tic matchmaker algorithm based on semantic distance,
similarity function and output weight. We performed
experiments for evaluating the proposed matchmaker.
Web services descriptions of WSDL are collected and
transformed into semantic descriptions of OWL-SI! as
test data. Experimental results show that the proposed
semantic matchmaker algorithm has better performance
than the baseline matchmaker algorithm.

The rest of this paper is organized as follows. Section
2 presents the related work. In Section 3, we propose
a baseline matchmaker. In Section 4, we present the
definition of semantic distance. In Section 5, we pro-
pose a semantic matchmaker algorithm using the idea
of semantic distance. In Section 6, we provide the exper-
imental results. Finally Section 7 gives the concluding
remarks.

2 Related Work

Recently, many research efforts have been made on
Sivashanmugan
et al.l'% provided a semantic extension approach for
WSDL by mapping elements in WSDL to concepts of
ontology. Ogbuji'!l substituted the XML in WSDL
as RDF to add semantics. Peer!'? used MDL (Mean-
ing Definition Language)[l?’] as a bridge to link WSDL
and semantics together. Sriharee et al.'* added the
ontology-based behavior information to WSDL. Sirin et
al.%] proposed a manual tool to translate WSDL into

providing semantics for web services.
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OWL-S, in which the user must map ontology class to
WSDL schema type manually. Patil et al.['8] mapped
the XML Schema in WSDL into concepts in ontology,
and transformed WSDL to WSDL-S semi-automatically.
Unfortunately, none of them are automatic, and the ef-
ficiency of getting semantic description is not high.

Several matchmaker algorithms have also been pro-
posed. Paolucci et al.l¥l proposed the basic matchmaker
to discover web services in four categories as described
in Section 1. Bansal et al.l7 separated the Compos-
ite Process in Process Model into an atomic process
tree, and then matched the leaf atomic process recur-
sively. Klein et al.['®] used process ontology in match-
maker to match the Process Model. Jaeger et al.l'”
proposed a ranked matchmaker with more categories ac-
cording to the inputs, outputs and the service categories.
Verma et al.l?! adopted service template to match ser-
vices of WSDL-S. Bentallah et al.[?!l used description
logic (DL) in service matchmaking. Gonzalez-Castillo
et al.l?2l used DAML4OIL as semantic description of
web service and matched services based on DL. Caragea
et al.?® used a semantic schema matching of the 1/O
descriptions of services. Syeda-Mahmood et al.[?4 used
domain-independent and domain-specific ontologies to
find matching service descriptions. Although so many
matchmaker algorithms are proposed, they cannot give
quantitative rank of services according to the user re-
quest.

3 Baseline Matchmaker

In this section, we give a baseline matchmaker to
quantify the matching degree between a service and
a user request. The matchmaker gives each service a
quantitatively ranked value to represent the matching
degree, and compares those ranked values to find a bet-
ter service. This makes requestor much easier to identify
services.

For instance, if a requestor wants to choose an opti-
mal service from a large set of services that might meet
the requirements, the basic matchmaker(® returns the
services of several categories. But if matchmaker pro-
vides ranked results instead of the conclusion that all
services are subsume, the optimal service is given by the
ranking.

Here we explain how to rank services using the base-
line matchmaker. Suppose that a requestor wants to
find a web service about weather forecasting shown in
Fig.1.

(profile xmlns=http://keg.cs.tsinghua.edu.cn/
ontology /travel#- - -)

(profile:hasInput rdfiresource=“#Date” /)
(profile:hasInput rdf:resource=“#City” /)
(profile:hasOutput rdfiresource=“#Weather” /)

Fig.1. Request for weather forecasting service.

This request is an OWL-S Profile. The inputs are
Date and City, and the output is Weather. Date, City
and Weather are classes in the travel ontology?®!. It
means that the requestor wants to find a web service
which can provide weather information of specific date
and city. The baseline matchmaker proposed in this pa-
per uses all the web service descriptions in repository
to match the request. The match results are shown in
Fig.2.

Web service 1 ranked value = 1.0

Web service 2 ranked value = 0.88
Web service 3 ranked value = 0.67
Web service 4 ranked value = 0.33

Web service 5 ranked value = 0

Fig.2. Match results.

Every ranked value in Fig.2 represents the matching
degree between the service and the request. These ser-
vices are ranked in a descendent order according to the
ranked values and the top-ranked services can be chosen
as the best services.

Input: request_inputs| |, request_outputs| |, services]| [;
Output: rank] [;

Step 1: get each service’s rank value.
for each service[i] in service [ |{
rank[¢] = 0; //initial rank value of service[t]
for each atomicProcess[j] in services[i] {
tempRank[j] = 0;
for each service_inputs[k] in atomicProcess[j]
{for each request_inputs[m] {
if equals(service_inputs[k], request_inputs[m])

{tempRank[j]++; break;}

}

for each request_outputs [n]{
for each service_outputs[k] in atomicProcess[j] {
if equals(service_outputs[k], request_output|n])
{tempRank[j]++; break;}
}

rank_of_atomicProcess[j] = tempRank[j]/
(atomicProcess[j].service_inputs.size()
+request_output.size())

rank[i]=Max(rank_of_atomicProcess| ]);
}

Step 2: sort and return.
sort(rank| ]);
return rank] |;

Fig.3. Baseline matchmaker algorithm.

The baseline matchmaker algorithm is shown in
Fig.3. The algorithm calculates the ranked value for
each service according to input/output matching ratio
between the request and the service. There are many
atomic processes in one service. Each atomic process
has its input/output matching ratio to the request. We
choose the highest matching ratio as the ranked value
of the service.
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The advantage of the baseline matchmaker is giv-
ing a ranked result with numeric value instead of rough
categories. But the matching of input/output is based
on string comparison, which cannot achieve high accu-
racy. We improve the matching of input/output by us-
ing semantic information in service description, which is
discussed in Section 4.

4 Semantic Distance (SD)

The input/output matching in the baseline match-
maker is a keyword-based matching, which does not uti-
lize the semantic information in service description. In
semantic description of services, all inputs and outputs
are represented by the concepts of ontology. Hence the
input/output matching can be based on the concepts,
which is implemented by the distance between these con-
cepts.

In this section, we first define ontology model and
then define semantic distance to measure the distance
between concepts in ontology. Four types of semantic
distances are discussed and four algorithms are imple-
mented respectively to calculate them.

Definition 4.1 (Ontology Model). Ontology
model is a tri-tuple model, which can be represented as
O =(T,H,X), and briefly called ontology.

T is the set of terminologies. The term in T is called
atomic term, including atomic class C' and atomic prop-
erty P. It is represented as T = (C,P). There are
two kinds of properties, including ObjectProperty and
DatatypeProperty. ObjectProperty represents the rela-
tion between classes; while DatatypeProperty represents
that the property of the class is a value of certain data
type. H is the hierarchical set of classes, including sub-
ClassOf and subPropertyOf. X is the rule set, or can be
called constraint set. It is represented by FOL (First-
Order Logic) or DL (Description Logic).

Definition 4.2 (Semantic Distance). [t is de-
fined as the minimum length of relation path between
two classes in ontology. The relation path is composed
of relations defined in ontology, such as subClassOf or
ObjectProperty. When constructing a relation path, Ob-
jectProperty is a one-way relation, and subClassOf is a
two-way relation, because superClassOf is also a relation
between two classes.

We can consider the basic categories of exact, sub-
sume, plugin and fail as a rough representation of the
distance between two classes in ontology. It only takes
subClassOf relation into account to compute the dis-
tance of two classes. If two classes have no hierarchical
relation, they will have an infinite distance, and will be
classified in fail category. But other relations between
classes are useful since they lead to a deeper semantic
understanding.

In short, semantic distance is actually the extension
to the relations of the four categories of exact, subsume,
plugin and fail.
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There are several algorithms which can compute se-
mantic distance using the relations defined in ontology.
We introduce four algorithms in the following subsec-
tions.

4.1 TUnweighted Relation Distance

As illustrated in Fig.4, C1 to C7 are classes in ontol-
ogy. Now we want to get the SD between C6 and C7.
There are two relation paths between C6 and C7. One
is C6—C3—C1—C2—C5—C7, which is formed by the
relation subClassOf. The other path is C6—C7, which
is formed by the relation ObjectProperty.

Lo |

g — subClassOf
——- ObjectProperty

Fig.4. Two kinds of relations in ontology.

The assumption of Unweighted Relation Distance
(URD) is that all relations linking two classes have the
same weights, no matter what kinds of relations they
are.

In this case, obviously, the Ilength of path
C6—C3—C1—-C2—C5—C7 is 5, while the length of
path C6—C7 is 1. The shortest relation path is C6—C7.
So the SD between C6 and C7 is the length of C6—C7.
That is, URD(C6, C7) = 1.

Input: uril, uri2;

Output: URD;

depthl=getDepth(uril, uri2); //one way depth
depth2=getDepth(uri2, uril); //other way depth
URD=Min(depth1, depth2);
return URD;
}
getDepth(uril, uri2) {
depth=0;
Set S=null; List A=null; Set R1=null;
S.add (uril);
while (true) do {
for each uri in (S-A) {
R1.add (uri.superClass());
R1.add (uri.subClasses()); //all sub classes
R1.add (uri.objectPropertyClasses());
/#add classes linked by class uri through
ObjectProperty relationx/

}
if (uri2 € R1) //link to uri2

return(depth+1); //get depth
depth=depth+1, A = AUS, S=R1, R1 =null;

}

}

Fig.5. URD algorithm.

The URD algorithm is illustrated in Fig.5. Since the
ObjectProperty is a one-way relation, it is necessary to
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use method getDepth() to get two depths and choose
the smaller one as URD.

4.2 Weighted Relation Distance

Weighted Relation Distance (WRD) is the extension
of Unweighted Relation Distance, which gives different
weights to different relation paths. This idea is inspired
by [26], which gives a computation of semantic distance
between classes. We extend this work by taking Object-
Property relation into account. The weight of path is
illustrated in Table 1.

Table 1. Weight of Path in WRD

g s o
g 2 1 3(=1+2)
s 1 2 3(=142)
o 3(=2+1) 3(=2+41) 4(=2+2)

In this table, g stands for generalization, s stands
for specialization (inverse of generalization), o stands
for ObjectProperty. As a matter of fact, g is like super-
ClassOf, s is like subClassOf.

—
Directed edge

Fig.6. Weight of the paths gs and sg.

In Table 1, the value in the second row and the third
column is 1, which indicates that the weight of the path
gs is 1. As Fig.6(a) illustrated, uril is subClass of uri,
and uri is superClass of uri2. So the path from uril
to uri2 is gs, and its weight is 1, which is less than the
weight of g plus s, and less than the weight of the path gg
in Fig.6(b). This is because one class’s two subClasses
are more similar. Then we can add a directed edge gs
from uril to uri2 like Fig.6(c). We can also add another
directed edge gs from uri2 to uril. Fig.6(d) represents
the path sg, then a directed edge sg is added as shown
in Fig.6(e).

Fig.7(a) illustrates an ontology, which is converted
to a directed graph shown in Fig.7(b). The subClassOf
relation in ontology is represented as a two-way directed
edge, while the ObjectProperty relation is represented
as one-way directed edge directly. If any two classes

have the relation like Fig.6(a) or 6(d), a two-way di-
rected edge is added between them, such as the edges
between A and B, and between B and C in Fig.7(b).

The WRD from uril to uri2 is the shortest path be-
tween uril and uri2. We use Dijkstra algorithm?”! to

find the shortest path and get WRD.

uril
(][] [¢]
E
~ A
~
~
2N
uri2

—» subClassOf
— — ¥ ObjectProperty

(a) ()

—» Directed edge

Fig.7. From ontology to directed graph.

4.3 Depth First Distance

WRD does not take the depth of hierarchy into ac-
count, which is a problem to compute SD. Let us see
Fig.8 bellow.

If we use WRD and ignore the ObjectProperty re-
lation, we can obtain WRD(People, Building) = 1,
WRD(Male, Female) = 1, and WRD(Girl, Lady) = 1.
Thus, these semantic distances are equal. The result
may not be consistent with our intuition. The fact is
that, the deeper the relation between two entities is in
one hierarchy, the higher the similarity between them
is. That is to say, Girl and Lady should be more similar
than Male and Female. As a result, the SD between
Male and Female should be smaller than the one be-
tween People and Building.

Building

—» subClassOf

Fig.8. Hierarchical structure in ontology.

To solve this problem, we propose Depth First Dis-
tance (DFD) by inversing the formula of GCSM (Gen-
eralized Cosine-Similarity Measure)[?*]. DFD formula is
as follows:

) ) depth(uril) + depth(uri2)
DFD(uril, uri2) = .
(wril, uri2) 2 x depth(LCA (uril, uri2))
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LCA (Lowest Common Ancestor)[?®! is the node of
greatest depth that is an ancestor of both uril and uri2.
Note that the depth is accumulated from the beginning.
For example in Fig.8, depth(People) = 1, depth(Lady)
= 3. So DFD(Girl, Lady) = (3+3)/(2x2) =6/4 = 1.5,
DFD(Male, Female) = (2+2)/(2 x 1) =4/2 = 2.

This implies that the distance between Male and Fe-
male is greater than the distance between Girl and Lady,
which is consistent with our intuition.

4.4 Synthetized Relation Distance

Since DFD does not concern the ObjectProperty re-
lations between two classes, we propose Synthetized Re-
lation Distance (SRD) to take both WRD and DFD into
account.

The original implementation of SRD is to get the
minimum distance between WRD and DFD. The idea
is that, although two classes have a long hierarchical dis-
tance (computed by DFD), they may also have some Ob-
jectProperty relations linking them directly, so the dis-
tance between them should be shorter. WRD is some-
times smaller than DFD, so to get the minimum between
them may realize this idea.

We find that in WRD, the hierarchical relation’s
weight is 1 and ObjectProperty relation’s weight is 2,
while in DFD the hierarchical relation’s weight is usually
greater than 1. These two algorithms are not consistent
in the hierarchical relation’s weight.

The solution to this problem is to take the middle
layer in the hierarchy tree as standard value 1; and the
rest layers will change the distance proportionally.

For example, we can take the Male and Female layer
as standard 1. Let SD(Male, Female) =1 =DFD (Male,
Female) X coefficient. Since DFD(Male, Female) = 2,
coefficient is 0.5. This coefficient is applied to other dis-
tances, such as SD(Girl, Lady) will be 1.5 x 0.5 = 0.75.

This solution makes WRD and DFD have the same
hierarchical relation’s weight at some layers. Then the
WRD can take the advantage of hierarchical relation’s
weight from DFD, and DFD can take the advantage of
ObjectProperty relation’s weight from WRD.

According to the above discussion, the final form of
SRD is Min(WRD, DFD xcoefficient). The general form
of coefficient would be (n — 1)/n, if the nodes in depth
n have an ancestor in depth n —1. The experiments will
take the coefficient as a constant 0.5.

5 Semantic Matchmaker

In baseline matchmaker, similarity is calculated by
simply using keywords matching between the request
and the services. If the words are matched, the simi-
larity is 1, otherwise, the similarity is 0. In this paper,
we use the four semantic distance algorithms proposed
above to get a more flexible similarity other than 0 or 1.
The similarity is a value between 0 and 1. The semantic
matchmaker algorithm is shown in Fig.9.
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The bold italic characters in Fig.9 are two exten-
sions to the baseline matchmaker algorithm. One ex-
tension is using computeRank() method to compute
the similarity between service_input/output and re-
quest_input/output. The other extension is output
weight.

Input: request_inputs]], request_outputs]],
services|];
Output: rank][;

Step 1: get each service’s rank value.
for each service[i] in service[] {
rank[i] = 0; //initial rank value of service[:]
for each atomicProcess[j] in services[i] {
tempRank[j] = 0;
for each service_inputs[k] in atomicProcess[j] {
for each request_inputs[m] {
sRank[m] =compute Rank(service_inputs[k],
request_inputs[m]);

}
tempRank[j]+ =Maz(sRank[]);
}

for each request_outputs[n] {
for each service_output[k] in atomicProcess[j] {
sRank[k] =computeRank(service_outputsk],
request_outputs[n));

tempRank[j]+ =Maz(sRank]])*outputweight;

rank_of_atomicProcess[j] =tempRak][j]/
(atomicProcess[j].service_inputs.size()
+request_output.size()* outputweight);

rank[i] =Max(rank_of_atomicProcess][]);

}

Step 2: sort and return.
sort(rank]]);
return rank(][;

Fig.9. Semantic matchmaker algorithm.

The computeRank() method is shown in Fig.10.

Input: service_message, request_message;
Output: similarity;
{
//get message’s type uri
uril = service_message.get TypeURI(); //get uril
uri2 = request_message.get TypeURI(); //get uri2
if uril.typlIsString() //uri is string XSD type
{ //get string name of service_message
messageName = service_message.getStringName();
uril = getClosestClass(messageName);
}
distance = //try to get distance from cache
SemanticDistanceCache.getValue(uril, uri2);
if (distance < 0) //no value in cache
distance = computeSD(uril, uri2); //compute online
similarity = 1/ (edistance);
return similarity;

}

Fig.10. ComputeRank method.

The method is to compute the similarity between
service_input/output and request_input/output. Ser-
vice_message stands for service_input/output and re-
quest_message stands for request_input/output. The
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main idea of this method is to get the cached value
from semantic distance cache. If it does not exist, then
compute the SD online. The computeSD() method can
choose one of the SD algorithms within URD, WRD,
DFD or SRD. Semantic distance cache can improve
the performance of semantic matchmaker algorithm, be-
cause SD between any two classes of ontology can be
pre-computed and pre-cached. Additionally, there are
some special cases we should handle.

First, to convert the distance to similarity, we use a
similarity function (SF) of 1/(edistance) Intuitively, the
longer the distance, the lower the similarity. We will
discuss SF in Subsection 6.3.

Second, getTypeURI() method should return an on-
tology class uri, such as http://keg.cs.tsinghua.edu.cn/
ontology/travel#City, which can be used to compute
SD in SD algorithms. But the method may re-
turn a simple XSD type, such as http://www.w3.
org/2001/XMLSchema#string, which cannot be used in
SD algorithms. In this case, we can regard the name
of service_message as messageName, and use getClos-
estClass method to get a class uri which is the closest
to this messageName. The getClosestClass method is
to get the class which contains the messageName in its
string pattern with the shortest string length. Thus the
returned class can be used in SD algorithms.

We use output weight to enhance the semantic
matchmaker algorithm. We observe that when a re-
questor needs a web service, he may concern more about
outputs of the service rather than inputs. For exam-
ple, if all inputs of a request and a web service are
matched perfectly, and output of request is not satis-
fied by the service, then the service is useless for the
requestor. Consequently, the ranked value between this
request and this service should be very low. The results
in the following experiment are proved to be significantly
enhanced by output weight.

6 Performance Evaluation

6.1 Experimental Data
We collected WSDL files from the Internet, and

transform them into OWL-S as web services repository.
There are four sources to obtain WSDL files.
1) Web services collecting site, such as xMethods
(http://www.xmethods.com/).
2) Web services search engine, such as SalCentral
(http://www.salcentral.com/).
3) Web search engine, such as Google (http://
www.google.com).
4) UDDI server, such as http://www.uddi.ibm.com.
We obtain more than one thousand WSDL from
these sources, which are all real web services and can
be invoked through the web. In this paper, we choose
290 WSDL files in travel domain as experimental data,
and transform them into OWL-S by using rules??!.

6.2 Evaluation Criterion

There are three factors which affect the semantic
matchmaker algorithm. They are similarity function,
output weight and SD algorithms (URD, WRD, DFD
and SRD).

In order to evaluate the proposed matchmaker algo-
rithms, we have to obtain the right answer for a specified
request. The request is shown in Fig.1. There are 290
OWL-S files in the web services repository, so we need
to get 290 ranked values as answers.

First, the answer has to be given manually. We re-
quire a person to give a value between 0 and 1 for each
service, indicating the matching degree between the ser-
vice and the request.

Second, only one person is not adequate to deter-
mine the answer, because everyone can make mistake,
such as missing information, looking across to another
web service and so on. We gathered 10 persons to give
answers independently.

Third, we propose an algorithm which can determine
the final answer from the ten answers. This algorithm
assumes that only 70% people will make a right deci-
sion for each web service. For each web service, we only
choose 7 answers and eliminate other 3 answers.

In order to quantify the evaluation, we define an eval-
uation function (EF) to compute the comparative dis-
tance to the answer. The formula is shown as follows:

1

EF =

290
:Zl(values [i] — answer][i])?

There are 290 web services in the repository. We give
each web service a service ID. Answer[s] is the ranked
value given by person for service i. Values[i] is the
ranked value computed by semantic matchmaker algo-
rithm for service i. The larger of EF the better.

6.3 Comparison Between Similarity Functions

There are many choices of SF's, we define three SFs
as follows:

SF; = 1/(distance + 1),
SF, = 1/(distance® + 1),
SF3 _ 1/(edistance)'

These three SFs have the same features as follows:

e when distance = 0, SF = 1;

e SF is decreased when the distance is increased;

e SF is always a real number between 0 and 1.

The difference between them is that the decreas-
ing rates with the increasing of distance are different.
The sequence of the decreasing rate from slow to fast is
SF; <SF, <SF;.

We use URD to compute SD, and show compari-
son between different SFs’ effect in the semantic match-
maker algorithm. The reason to choose URD is that
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other more sophisticated SD algorithms may affect the
comparison between SFs. We set output weight to 1 in
the algorithm.

To make a concrete comparison, we use evaluation
function and get the results as follows:

EF (baseline) = 0.751473133,
EF(SF,) = 0.673793516,
EF(SF,) = 0.796402303,
EF(SF,) = 0.902797892.

We can see that SF3 is the best one among all simi-
larity functions. The following experiments will use SF3
as similarity function.

6.4 Comparison Between SDs

The four semantic distance algorithms are compared
to evaluate their effects in the semantic matchmaker al-
gorithm. They are URD, WRD, DFD and SRD. We
used SF3 as similarity function. And we set output
weight to 1.

By applying the EF defined above, we can get the
following results:

EF(URD) = 0.902797892,
EF(WRD) = 0.961250775,
EF(DFD) = 0.898888934,

( = 1.106136137,
EF(DFD x 0.5) = 0.947407142.

The EF sequence from high to low is:
SRD>WRD>DFDx0.5 >URD>DFD.

DFD has the worst performance. The major reason
is that DFD is usually greater than 1; and URD has
smaller distance than DFD. So the ranked value com-
puted by DFD is usually smaller than that by URD.
Consequently, when the similarity between request and
service is high, the ranked value computed by DFD will
be lower and make larger error.

We introduce the coefficient 0.5 to reduce the DFD
distance, and compare the DFDx0.5 with other algo-
rithms. The result of DFDx0.5 is better than URD, but
not as good as WRD. And when WRD and DFDx0.5
are mixed together to make the SRD, the result is the
best of all.

6.5 Comparison Between SDs Plus OW

To evaluate the effect of output weight in the se-
mantic matchmaker algorithm, we set output weight to
5. URD_OW represents the semantic matchmaker algo-
rithm using URD as semantic distance, and using SF3
as similarity function. WRD_OW, DFD_OW, SRD_ OW
and DFDx0.5_OW are the same way like URD_OW.

By applying the EF, we can get the following results:

EF(URD_OW) = 1.553116947,
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EF(WRD_OW) = 3.340367447,
EF(DFD_OW) = 3.195993154,
EF(SRD_OW) = 3.656443513,
EF(DFD x 0.5.0W) = 2.542732149.

All the performances are better than the results in
Subsection 6.4. It proves that the output weight can
enhance the performance of the semantic matchmaker
algorithm.

The evaluation sequence from high to low is:
SRD_OW>WRD_OW>DFD_OW>DFDx0.5_OW >
URD_OW.

We see that SRD_OW has the best performance. If
we contract the evaluations in Subsections 6.3-6.5, the
whole evaluation sequence is as follows:

SRD_OW>WRD_OW>DFD_OW>DFDx0.5_0W>
OW>URD_OW>SRD>WRD>DFDx0.5>URD(SF3)
>DFD>URD(SF;) >baseline>URD(SF; ).

Most of the algorithms in the semantic matchmaker
are better than the baseline matchmaker algorithm.
And SRD_OW still has the best performance.

In summary, when the semantic matchmaker algo-
rithm uses SRD, SF3 and output weight together, the
performance is the best. And the proposed seman-
tic matchmaker has much better performance than the
baseline matchmaker.

7 Conclusions and Future Work

The contribution of this paper is proposing a new
method of semantic matchmaker to give ranking result
instead of classifying for service matching, which can
help the service requestor to choose the best web service
during service discovery process. To estimate the match-
ing degree of input/output in semantic description, we
define semantic distance and give four algorithms to
calculate it. We propose the semantic matchmaker for
ranking web services by using semantic distance, simi-
larity function and output weight. Experimental results
show that the proposed semantic matchmaker algorithm
significantly outperforms the baseline matchmaker.

As future work, we plan to use precondition and ef-
fect (PE) of OWL-S in the matchmaker. The difficulty
to process PE is that the logic expression of PE is prema-
ture and does not have a sufficiently-standardized spec-
ification. Other future work may be the expression of
personal interest in the matchmaker, which is also re-
lated to the logic expression.
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