
Inheritance-Aware Document-Driven Service Composition

Zhifeng Gu, Bin Xu, Juanzi Li

Department of Computer Science and Technology

Tsinghua University Beijing, 100084, China

{gzf, xubin, ljz}@keg.cs.tsinghua.edu.cn

Abstract

In this paper, we proposed a fast service composition

method to solve the semantic composition problem defined

by WS-Challenge. We construct an inverted table to index

the services according to their output attributes. Based on

the index, we developed the algorithms for service discov-

ery and composition. Thanks to the high speed of service

lookup through the index, our algorithm gains a high per-

formance.

1 Introduction

Service Oriented Computing (SOC), which has been

widely accepted as the next generation programming

paradigm, defines promising technologies that enable future

computing models over the Internet. In the SOC paradigm,

services, being self-describing, open components that sup-

port rapid, low-cost composition of distributed applications,

are fundamental elements to the development of applica-

tions [5]. Web services are a typical SOC example [3],

and have been widely accepted and deployed in real world

applications. In this paper, the term “service” and “web

service” will be used interchangeably. There are many re-

search topics about services, including service description,

service discovery, service selection, service composition,

service execution and monitoring, etc. Among these top-

ics, service composition plays an central role.

It has become an acknowledgment in the research com-

munity that service composition could be classified into two

categories: service orchestration and service choreography,

which are shown in figure 1 respectively. The goal of ser-

vice orchestration is to construct new services or applica-

tions with existing services. It has a central controller that

invokes services exposed by different peers. The peers in

an orchestration are independent with each other. Further-

more, service orchestration is usually executable. Unlike

service orchestration, service choreography is usually un-

executable. It is the description of a system which consists

of several peers. The peers in a choreography are designed

to communicate with each other, and to make the system

run correctly. They can be implemented as service orches-

trations or some other technologies such as J2EE and .NET.

As most of the works about service orchestration are still

using the term “service composition”, we will also use “ser-

vice composition” to indicate service orchestration in the

following text.

In this paper, by service discovery, we mean a process

to find services that can produce a required document; by

service composition, we mean a process to construct a ser-

vice chain that finally produces the required documents (the

outputs) and can be satisfied with the available documents

(the inputs). We propose a quick algorithm to search ser-

vices and construct a service composition according to the

given input/output documents. Our focus is especially on

the efficiency of the algorithm.

2 Related Work

Input and output documents is an important feature of

services. Many works have been proposed based on the I/O

of services.

SWORD [6] models web services with conditional in-

put/output and data input/output. It uses a rule-based expert

system to automatically generate plan for service composi-

tion according to the I/O of services. Liang [2] proposed an

semi-automated method to construct service composition.

The key idea of her work is the service dependency graph

(SDG). SDG is a directed graph that shows all the pos-

sible input/output dependencies among different services.

Liang has given a algorithm to construct service compo-

sition templates by searching through an AND/OR graph

derived from SDG. This method is similar to the syntactic

composition defined by WS-Challenge 1, which is a purely

document-driven method for service composition. The dif-

ference is that Liang’s method allows user to specify the

services that must be invoked.

1http://www.ws-challenge.org/

The 9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services(CEC-EEE 2007)
0-7695-2913-5/07 $25.00 © 2007

(a) orchestration (b) choreography

Figure 1. Service composition

As well as the syntactic composition, WS-Challenge also

defines the semantic composition which is an enhanced,

inheritance-aware version of syntactic composition. Vari-

ous methods aiming at solving the syntactic composition

and semantic composition problem at a high speed have

been proposed, e.g. [1] [4]. Our work is one of the com-

petitors that try to solve the semantic composition problem.

Compared with our previous work in [7], the new version

has the following enhancements:

• fully support semantic composition, while the previous

version may crash when the data set is large.

• re-implemented with C++, while the previous version

is implemented with C#.

• many code level tuning have been done to improve the

performance.
It is expectable that the new version will get a higher score

than the old version.

3 Our Approach

3.1 Concepts and Definitions

Before introducing the composition algorithm, we first

formally define the concepts that will be referred to in the

following sections.

Figure 2 gives an illustration of the service model that is

used in this paper. In the service model, a service is consid-

ered as a black box. It consumes a message and produces

another message. A message consists of several attributes,

and each attribute has a data type associated with it. For

convenience, we will use a compact symbol, the one at the

bottom of figure 2, to represent services. Compared with

the underlying service model of WSDL, this model ignores

the concept of operation. However, as the interface defined

WSDL is stateless, this reduction does not reduce the ex-

pressiveness.

Figure 2. The service model

Thus, a service WS is formally defined as,

Definition 1 WS = {Din, Dout}, where

Din = {di | di is an attribute of the input data}
Dout = {di | di is an attribute of the output data}

Accordingly, a request RQ is defined as,

Definition 2 RQ = {Rin, Rout}, where

Rin = {di | di is an input attribute provided by the user}
Rout = {di | di is an output attribute required by the user}

The task to find services satisfying a given request RQ can

be formally described as to find the services that hold the

following formulas.

Din ⊆ Rin and Dout ⊇ Rout

3.2 Indexing

In our method, indexing is the key point to accelerate

the composition algorithm. The index of services is con-

2The 9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services(CEC-EEE 2007)
0-7695-2913-5/07 $25.00 © 2007

structed as an inverted table. As illustrated in figure 3, the

inverted table consists of two parts: the output “vocabulary”

and “occurrences”. The output “vocabulary” is a set of all

the output attributes of the services in a given set. Each at-

tribute is a key, and has an list of services associated with it.

The services in the list must hold the following conditions:

• Either the output set of the service contains the key

attribute: dkey ∈ Dout,

• or the output set of the service contains one of the at-

tributes that are directly or indirectly inherited from the

attribute associated with the list.
Simply speaking, the list contains all the services that can

produce the attribute associated with the list. Such a list

is so-called the “occurrences” in the inverted-table. In our

implementation, each attributes is mapped to an integer ID

to improve the performance.

d1 WSi ... WSj

d2 WSk

.
.
.

.
.
.

dn WSi WSm WSn

Figure 3. The inverted table for indexing

3.3 Algorithms

The composition task is to find a service chain that can

fulfill the user request. In the chain illustrated in figure 4,

the input attributes of each service should be fulfilled by

the output attributes of the precedent service or the input at-

tributes of the request. Obviously, the input attributes of the

first service of the chain must be in the input attributes of

the request; and output attributes of last service must con-

tain the output attributes of the request.

Input WS1 WS2 WSn

Output

Figure 4. A service chain

A service chain is constructed from the output set

of the request. Firstly we find the last service WSn,

whose output set contains the output set of the request,

i.e. Dout(WSn) ⊇ Rout. Secondly we will find service

WSn−1 that can produce the attributes belonging to the set

difference Din(WSn) \ Rin. Then, do the second step re-

peatedly until the input set of the service can be covered by

the input set of the request, i.e. Din(WSi) ⊆ Rin. Since

we have encoded the inheritance relationships in the index,

the composition algorithm does not need to deal with the in-

heritance issue again, which makes it nearly the same as the

algorithm for syntactic composition. The algorithm for ser-

vice discovery and service composition is formally given in

algorithm 1 and 2 respectively. In the service composition

algorithm, “getServices” is a method that finds all the ser-

vices whose outputs can cover the set difference of the given

output set and the input set of the request. As the internal

logic of “getServices” is quite similar to the service discov-

ery algorithm, we do not describe it in detail. “TraceChain”

is a function that will trace all the service chains recursively.

It will generate the output in the required XML format.

Algorithm 1 Algorithm for Service Discovery

Input: The request RQ = {Rin, Rout}
Output: A list of services that hold Din ⊆ Rin and

Dout ⊇ Rout

1: // step1: create and load index

2: if index exists then

3: index = loadIndex();

4: else

5: index = createIndex();

6: end if

7: // step2: match output attributes

8: candidates = null;

9: for each attribute d in Rout do

10: slist = index.find(d);

11: if candidates == null then

12: candidates = slist;

13: else

14: candidates = candidates ∩ slist

15: end if

16: end for

17: // step3: match input attributes

18: result = ∅;

19: for each service s in candidates do

20: if Din(s) ⊆ Rin then

21: result.add(s);

22: end if

23: end for

24: return result;

3.4 Discussion

Using the composition algorithm introduced above, we

can quickly construct a service chain that can fulfill the user

request. However, we think there are still many problems

to put the algorithm into practical use. We will discuss two

3The 9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services(CEC-EEE 2007)
0-7695-2913-5/07 $25.00 © 2007

Algorithm 2 Algorithm for Service Composition

Input: The request RQ = {Rin, Rout}
Output: All the service chains that can satisfy the request

1: for each s in S do // S is the set of all the services

2: s.isVisited = false; // to avoid infinite loop

3: end for

4: // find services producing Rout \ Rin

5: slist1 = getServices(Rout, Rin);

6: while not completed do

7: completed = true;

8: slist2 = ∅;

9: for each s in slist1 do

10: if not s.isVisited then

11: s.isVisited = true; // set the flag

12: // find services producing Din(s) \ Rin

13: slist3 = getServices(Din(s), Rin);

14: if slist3 is not empty then

15: // some new predecessors are founded,

16: // so it is not the right time to quit.

17: completed = false;

18: slist2 = slist2 ∪ slist3;

19: for each ss in slist3 do

20: ss.successor.add(s);

21: end for

22: end if

23: end if

24: end for

25: slist1 = slist2; // begin next loop

26: end while

27: for each s in S do

28: if s.isVisted && Din(s) ⊆ Rin then

29: // found a chain header

30: // trace the chain with the recorded successors re-

cursively

31: traceChain(s);

32: end if

33: end for

fundamental problems here.

The first problem is that the functional semantics of ser-

vices are completely ignored in such a document-driven

composition method. It is possible that two services have

the same I/O, while the functional semantics and side-

effects of these two services are totally different. For ex-

ample, both service A and service B consume two integers

and produce another integer, while the output of service A

is the sum, and the output of service B is the product. As

a result, the execution of the constructed service chain is

very likely to generate an unexpected result. Formalization

of functional semantics is a hard problem. It is a still big

challenge in the research of automated service composition

and, more generally, automated software engineering.

The second problem is that the composition algorithm

does not support flow control, one of the most important

aspects of service composition. This limits the applicable

area of the algorithm, as most of the real world applications

need control structures like if-then, do-until and etc. With-

out control structures, it is even impossible to express a sim-

ple business logic such as if the return message indicates an

error, then stop and report the error.

Anyway, in spite of the problems discuss above, the

quick composition algorithm can be applied in some spe-

cific applications. And the acceleration technologies can be

used to speed up the applications in service-oriented archi-

tecture (SOA).

4 Conclusion

In this paper, we proposed a fast composition method

to solve the semantic composition problem defined by WS-

Challenge. By making use of the indexing technology, we

significantly improved the speed of service lookup, which is

a key factor to the efficiency of the composition algorithm.

We notice that indexing is very important for services

discovery and composition. In practical applications, re-

quests for retrieving services might be frequent, and index-

ing can significantly reduce the response time.

References

[1] M. Aiello, C. Platzer, F. Rosenberg, H. Tran, M. Vasko, and

S. Dustdar. Web service indexing for efficient retrieval and

composition. In CEC/EEE’06, page 63, Los Alamitos, CA,

USA, 2006. IEEE Computer Society.

[2] Q. A. Liang and S. Y. W. Su. AND/OR graph and search algo-

rithm for discovering composite web services. International

Journal of Web Services Research, 2(4):48 – 67, 2005.

[3] N. Milanovic and M. Malek. Current solutions for web ser-

vice composition. IEEE INTERNET COMPUTING, 8(6):51–

59, 2004.

[4] S.-C. Oh, H. Kil, D. Lee, and S. R. T. Kumara. Algorithms for

web services discovery and composition based on syntactic

and semantic service descriptions. In CEC/EEE’06, page 66,

Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[5] M. P. Papazoglou and D. Georgakopoulos. Service-oriented

computing. Communications of the ACM, 46(10):24–28,

2003.

[6] S. R. Ponnekanti and A. Fox. SWORD: A developer toolkit

for web service composition. In the Eleventh International

World Wide Web Conference, Honolulu, HI, 2002.

[7] B. Xu, T. Li, Z. Gu, and G. Wu. SWSDS: Quick web ser-

vice discovery and composition in SEWSIP. In CEC/EEE’06,

page 71, Los Alamitos, CA, USA, 2006. IEEE Computer So-

ciety.

4The 9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services(CEC-EEE 2007)
0-7695-2913-5/07 $25.00 © 2007

