
Verification of Web Service Conversations Specified

in WSCL

Zhifeng Gu∗, Juanzi Li∗, Jie Tang∗, Bin Xu∗, Ruobo Huang†

∗DCST, Tsinghua Univ., Beijing, 100084, China

Email: {gzf, ljz, tangjie, xubin}@keg.cs.tsinghua.edu.cn
†CSDL, IBM, Beijing, 100085, China

Email: huangrb@cn.ibm.com

Abstract— This paper studies one of the standards about web
service conversations, the WSCL specification. We propose a
method to verify conversations in WSCL. In this method we
first propose using a translator to convert WSCL documents
into promela, the modeling language of the model checker SPIN.
Then, we run SPIN to check the conversation model against the
correctness properties specified by the designer. A toolkit for
WSCL verification is introduced at the end of this paper.

I. INTRODUCTION

Web service has gained a lot of attention since 2000. Many

standards have been proposed to enrich the web services

stack [1], among which WSDL is one of the most influential

standards.

WSDL defines the basic elements of a service, including

operations, input/output messages and exceptions. In WSDL,

there are four patterns defined for message exchanges; how-

ever, these patterns are too primitive to support complicated

applications directly. The service interfaces specified in WSDL

are unsustainable when the conversation participants are going

to tailor their needs and offers according to the prevailing

context or to coordinate multiple services in open and realistic

environments [2]. Therefore, the complexities in open and real-

istic environments call for sustainable conversation protocols.

WSCL, a conversation definition language, is a W3C sub-

mission from the Hewlett-Packard Company. We adopt the

model checker SPIN to verify the conversations specified in

WSCL. We first give a scheme for translation from WSCL

documents to promela, the modeling language of SPIN. Then,

we write properties (temporal claim) and run SPIN to verify

the correctness of the conversation. In real world design, the

conversation specification and properties should be written

independently, which will be helpful to find potential bugs.

The rest of this paper is organized as follows. In section

II we review some existing standards and works about web

service conversations, and give some comparisons with our

work. Section III defines the scheme for translation from

WSCL to promela, and discusses how to use SPIN to verify

the correctness of a conversation. A toolkit implementing the

translator and providing some other features is introduced in

section IV. Finally, in section V we draw a conclusion and

discuss the future work.

II. RELATED WORK

The web service community has partially acknowledged that

the interface description of WSDL is too simple to describe

complex e-commerce services in real world applications [3].

Bultan [4] and Fu [5] study the conversation protocol from

the perspective of the global behaviors. In their model, the

message exchanges between different peers (services) are

listened and recorded by a global watcher. The message queue

recorded by the global watcher is called a conversation. The

correctness of the conversation can be verified using LTL

(Linear Temporal Logic) formulas.

More works focus on the local behaviors of an interface.

Beyer [6] describes web service with the concept of action,

which is a pair of a method and its outcome. Three kinds

of interface constrains are defined within his work, which

are signature constrains, consistency constrains and protocol

constrains. For each type of the constrains, the author gives the

algorithm for compatibility checking and substitutivity check-

ing. In the traditional research area of software components,

there are a lot of works on interface enhancement, one of

which is the protocol specification of component interfaces

[7].

Conversational issues have also been tackled in the area of

multi-agent system. In fact, we think web service conversation

and agent interaction share the same essentials, although their

focuses on high level goals are different. Endriss introduces

different levels of conformance as basic notions to check and

enforce that the behavior of an agent is adopted to a public

protocol regulating the interaction in a multi-agent system [8].

Generally speaking, a conversation protocol is part of ser-

vice choreography. A choreography is a abstract specification

of how a set of services works, while a conversation protocol

specified in WSCL defines the interactions between two ser-

vices. In the web services stack, there are two specifications

for service choreography, WSCI and WS-CDL. WSCI is a

W3C submission from BEA, BPMI, Oracle, SAP and etc. As

the successor of WSCI, WS-CDL is a W3C working draft,

and it may become a recommendation in the near future.

Service choreography is now a hot topic in the web service

research community. Baldoni [9] studies how to check if

the interactive behavior of a service respects the interaction

schema (e.g. a choreography or an interaction protocol) that

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

the services should follow. Zhao [10] proposes a small lan-

guage CDL as a formal model of the simplified WS-CDL. In

his work, he also uses SPIN to verify the correctness of a

given choreography.

As a more powerful standard, WS-CDL can be applied

to more situations than WSCL; however, like most standards

in the web services stack, WS-CDL is verbose and complex

[11], so it is not suitable to specify simple choreography with

WS-CDL. A light weighted choreography standard may be

needed to meet simple needs. WSCL is definitely one of the

candidates.

As a summary, conversation protocol is usually modeled

in a FSM-like style, and model checking is widely used to

check the correctness of conversation protocols. Compared

with existing works, our work is, as far as we know, the first

attempt to verify the conversations specified in WSCL.

SPIN is a very popular model checker for the formal

verification of distributed software systems. Many works adopt

SPIN as the verification tool. For example, Kazhamiakin [12]

describes a novel approach for the formal specification and

verification of distributed processes in a web service frame-

work, and exploits SPIN to perform V&V tasks. WSAT [13]

uses SPIN to verify LTL properties against process models

specified in BPEL4WS. Ankolekar [14] translates OWL-S

process model into promela, and then uses SPIN to verify

the process model.

III. OUR APPROACH

A. Introduction to WSCL

A WSCL conversation specification consists of two lists:

the interaction list and the transition list. The two lists contain

definitions of interactions and transition rules respectively. An

interaction may be one of the following five types:

• Receive: contains one InboundXMLDocument

• Send: contains one OutboundXMLDocument

• ReceiveSend: contains one InboundXMLDocument, one

or more OutboundXMLDocument

• SendReceive: contains one OutboundXMLDocument, one

or more InboundXMLDocument

• Empty: does not contain any document exchanged, but is

used only for modeling the start and end of a conversa-

tion.

A transition contains one source interaction, one destination

interaction, and optionally, a conditional message of this tran-

sition rule. The initialInteraction and finalInteraction attributes

must be specified for a conversation. Section 2.6 of the WSCL

specification talks about what a well-formed WSCL document

should be.

Before introducing our translation scheme, we give a simple

example, illustrated in figure 1. In the figure, each node (rect-

angle or circle) represents an interaction; and each directed

edge represents a transition. The double circle nodes are initial

and final interaction; the circle node is Empty interaction; and

the rectangle nodes are ReceiveSend interaction.

In the conversation in figure 1, the client first initiates the

login request. If the login request is valid, the conversation

enters a normal request-response cycle. Finally, the conversa-

tion will be terminated by a logout request. This is the most

widely used conversation pattern in today’s web applications.

The WSCL source code of this sample can be found in our

WSCL toolkit.

NextReq

Biz1 Biz2 BizN Logout

Start

Login

End

ValidLoginRS

InvalidLoginAbortRS

InvalidLoginRetryRS

Fig. 1. A WSCL Sample

We need note that, in this sample, the NextReq interaction

is Empty, which is not valid according to the WSCL specifi-

cation. However, it is indeed helpful here to use the Empty

interaction, because if the NextReq interaction is removed,

we would have to define transition rules for each pair of all

the interactions: Biz1, Biz2, . . . , BizN. This becomes horrible

when N gets large.

B. Translation from WSCL to Promela

WSCL defines the message exchange sequences between

two and only two participants, so a natural idea is that, in

the promela model, we could use two processes to represent

the service provider and the service consumer, as shown in

figure 2(a). Then, the conversation can be simulated through

communications between these two processes. However, this

simple model gets unsustainable when the participants cannot

independently determine which transition to take (this will be

explained in detail below). To solve this problem, we add

a coordinator process. As shown in figure 2(b), the Client

process and the Server process execute the conversation. When

they cannot independently select a transition, they will ask the

Coordinator process for coordination.

Our translation scheme is designed to handle any WSCL

document that satisfies:

• It conforms to the WSCL schema.

• There is no transition whose destination is the initialIn-

teraction.

• There is no transition whose source is the finalInteraction.

• There are no duplicated transitions (transitions that have

the same source interactions and destination interactions).

• There are no duplicated IDs (e.g. message ID, interaction

ID).

• All the IDs referred to in the document must be defined.

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

(a) (b)

Fig. 2. The process model in promela

In fact. these restrictions are very loose. According to our

experiences, nearly any well-formed WSDL document can be

accepted by our translator.

In our scheme, each interaction is translated into a promela

code block labeled with the ID of this interaction. Figure 3

gives the view of an interaction from the perspective of our

translator. In the figure, the rectangle nodes are regular Receive

and Send interactions; and the circle nodes are Empty interac-

tions. The label on each node is the ID of the interaction. The

directed edges represent the transitions associated with these

interactions. An edge may have a label associated with it if it

connects to a rectangle node or the finalInteraction. The label

has three possible forms: S:M, R:M and T, which means the

transition will send a message M , receive a message M and

terminate the conversation respectively. These elements form

a directed graph that the translator needs to deal with.

SendReceive and ReceiveSend interactions are not consid-

ered here, since they can be decomposed into several Send and

Receive interactions as shown in figure 4. Note that transitions

associated with a ReceiveSend (or SendReceive) interaction

may have an optional element, SourceInteractionCondition.

According to the value of this element, the transitions can be

aggregated into several sets. For example, in figure 4, C=M1 is

a set of transitions whose SourceInteractionCondition is M1.

A special set is C=null, which contains the transitions that do

not have SourceInteractionCondition specified. The transitions

in C=null are shared by all the decomposed Send nodes whose

OutboundXMLDocument is not in the SourceInteractionCon-

dition list; and this is done by adding an empty node.

Fig. 3. The view of an interaction

In figure 3, the top interaction is the interaction to be

translated. The interactions that connect to the top interaction

Fig. 4. Decompose a ReceiveSend interaction

directly are called direct successors. Correspondingly, the

interactions introduced through the Empty interactions are

called indirect successors. When the conversation runs into

interaction N , the Server process and the Client process should

make an identical selection among the direct and indirect

successors of interaction N , and then they jump into the code

block of the selected interaction.

1) Transition Ambiguity Elimination: To make the conver-

sation executable, two problems need to be solved. One is, as

mentioned above, the coordination of the Client and Server

processes; the other is the ambiguity of transitions. First, we

will talk about the second problem.

As shown in figure 5, the top interaction has two direct

Receive successors and one indirect Receive successor. All of

these successors have M as their inbound messages. Then,

when a message M arrives, which transition should be se-

lected? The WSCL specification does not address this problem

clearly. Neither such condition is forbidden, nor it gives a

solution. We can say such a conversation design is ambiguous

and need to be revised; however, we think, on the other side,

this problem is very common when we try to re-use existing

conversation designs as sub-conversations. If we define some

rules that can eliminate the ambiguity, it would become a

mechanism to modularize and re-use conversation designs. In

our work, we define the following rules to uniquely select an

effective transition from a set of transitions that conflict with

each other.

1) The type of the destination interaction. Transitions lead-

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

ing to non-Empty interaction will be processed first.

2) The literal order of transitions in WSCL document. The

first specified transition will be processed first.

3) Indirect successors will be expanded in a deep first order.

According to these rules, the transition processed first will

be selected as the effective transition. Regarding the case in

figure 5, the transitions leading to the direct successors will

be processed first. If the left most transition is specified before

the other one, then it is the effective transition.

Fig. 5. The ambiguity of transitions

2) Execution Coordination: Next, we will discuss the co-

ordination between the Client process and the Server process.

The goal of the coordination task is to make these two

processes always making the same selection when multiple

transitions are available. Back to figure 3, if all the direct and

indirect successors have the same type, i.e. Send or Receive,

then the coordination task gets easy. The transition for next

step can be selected independently by one of the participants

whose successors are all Send. In our transition scheme,

the sender will select a message randomly from all possible

messages and select the transition according to the outgoing

message. Correspondingly, the receiver should wait for an

message and select the transition according to the incoming

message. We say a WSCL conversation is self-contained, if,

for each interaction in the conversation, all the successors of

the interaction have the same type.

When the types of the successors become mixed, which

means the successors contains both Send and Receive inter-

actions, the coordination task gets a little complex. None of

the participants can make a selection independently now. It

must be determined first that who is the sender and who is the

receiver. In real world application, this might be determined

by the semantics carried by the payloads. However, in the

conversation itself, there is no such information, so we add a

coordinator process to solve the problem. When the Client and

the Server process find its subsequent interactions containing

both Send and Receive interactions, they will send a message

to the Coordinator process. The Coordinator will then assign

an action to the Client process and the Service process, which

guarantees that one is send, and the other is receive. Then the

process, which has been assigned the send action, will decide

which message to send as discussed in the previous paragraph.

We say such a WSCL design is not self-contained.

Comparing these two different types of WSCL design, we

think the self-contained design is better, since its execution

does not depend on any semantics outside the design itself.

In real world applications, there will not be a coordinator

that always gives consistent decisions. Regarding non-self-

contained design, if the conversation participants have different

understanding on the data semantics carried by the payloads,

it is likely to cause a failure on the conversation layer due to

the mismatched selection of transitions.

Another problem needs to be concerned is the termination of

the conversation. A conversation is terminated when it reaches

the finalInteraction. When the execution of a conversation runs

into an interaction that has finalInteraction as its direct or

indirect successor, the Client process and the Server process

must agree on whether they should continue the conversation

or not. This is also a coordination issue. To solve this problem,

the Coordinator process must be able to support another action:

terminate. As a summary, the Coordinator may give three

possible instructions:

• Server process: send, Client process: receive

• Server process: receive, Client process: send

• Server process: terminate, Client process: terminate

3) The Code Skeletons: Here we will have a look at the

code skeletons used in our translator. The code skeleton

for sender and receiver is shown in listing 1 and listing 2

respectively. As discussed above, the sender will first pick up

a message randomly and send it to the receiver. The rest of the

code is to select a transition according to the message ID. This

part of the sender and the receiver is completely the same.

These two code snippets are for self-contained WSCL

designs only. Due to the limitation of the space, the code

skeletons for non-self-contained WSCL designs are not listed

here. Please refer to the output of our toolkit.

I n t e r a c t i o n I d :
i f

: : v a r = v a l u e 1 ;
: : v a r = v a l u e 2 ;
: : . . .
: : v a r = valueN ;

f i ;
OUT ! v a r ;
i f

: : v a r == v a l u e 1 −> go to d i r e c t s u c c e s s o r 1 ;
: : v a r == v a l u e 2 −> go to d i r e c t s u c c e s s o r 2 ;
: : . . .
: : v a r == v a l u e 1 1 | |

v a r == v a l u e 1 2 | | . . . −>

go to e m p t y s u c c e s s o r 1 ;
: : v a r == v a l u e 2 1 | |

v a r == v a l u e 2 2 | | . . . −>

go to e m p t y s u c c e s s o r 2 ;
f i ;

Listing 1. Code skeleton for sender

4) Counterpart Generation: The last step is to generate

the counterpart document from the original conversation doc-

ument. WSCL specifies the conversation from the viewpoint

of one of the participants (usually the service provider), so

we need to generate the conversation document of the coun-

terpart process. It is easy to derive the counterpart document

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

I n t e r a c t i o n I d :
IN ? v a r ;
i f

: : v a r == v a l u e 1 −> go to d i r e c t s u c c e s s o r 1 ;
: : v a r == v a l u e 2 −> go to d i r e c t s u c c e s s o r 2 ;
: : . . .
: : v a r == v a l u e 1 1 | |

v a r == v a l u e 1 2 | | . . . −>

go to e m p t y s u c c e s s o r 1 ;
: : v a r == v a l u e 2 1 | |

v a r == v a l u e 2 2 | | . . . −>

go to e m p t y s u c c e s s o r 2 ;
f i ;

Listing 2. Code skeleton for receiver

from an existing WSCL document by inverting the message

directions. In detail, the counterpart can be generated through

the following steps.

1) Change Send to Receive, and accordingly revert the

message direction from outbound to inbound.

2) Change Receive to Send, and revert the message direc-

tion as well.

3) Change SendReceive to ReceiveSend, and revert the

message directions as well.

4) Change ReceiveSend to SendReceive, and revert the

message directions as well.

C. Verification of the Conversation Model

So far, we have got the promela model for WSCL document.

In this section, we will discuss how to verify the correctness

of the model against a given set of properties using SPIN.

SPIN provides several ways to specify correctness prop-

erties, including basic assertion statements, end-state labels,

progress-state labels, accept-state labels, never claims and

trace assertions. In our work, we use two methods to ex-

press correctness properties. The fisrt one is LTL formulas.

LTL formulas are not natively supported by the grammar of

promela, but they can be translated into never claims by SPIN

with the command line option “-f”. The second is the trace

assertions. A trace assertion expresses properties of message

channels, and in particular it formalizes statements about valid

or invalid sequences of operations that processes can perform

on message channels [15]. Since WSCL is a specification

all about message sequence, trace assertion is suitable for

expressing properties of WSCL.

d e f i n e a t L o g i n Server@Login
d e f i n e i L o g i n P a s s e d (iLogin PAS CNT > 0)
. . .
d e f i n e mLoginRQ Sent (mLoginRQ SND CNT > 0)
d e f i n e mLoginRQ Received (mLoginRQ RCV CNT > 0)
. . .
b i t iLogin PAS CNT = 0 ;
. . .
b i t mLoginRQ SND CNT = 0 ;
b i t mLoginRQ RCV CNT = 0 ;

Listing 3. Predefined Expressions

In order to write LTL properties against the conversation,
we predefine some expressions in the generated code. Listing
3 gives an example definition for interaction “Login” and
message “LoginRQ”. For each interaction, we define a bit
variable “i + InteractionId + PAS CNT”, and for each mes-
sage, we define two variables “m + MessageId + SND CNT”
and “m + MessageId + RCV CNT”. The meaning of these
predefined variables are self-explained by their names. Further,
for convenience, we also define several macros as shown in
listing 3. The special macro, “at + InteractionId”, means
the conversation is currently running within the interaction
whose ID is “InteractionId”. With these assistant variables and
macros, we can write LTL formulas like:

[] ! iNextReq_Passed ||

(! iNextReq_Passed U mValidLoginRS_Sent)

which means NextReq will never be entered if ValidLoginRS

has not been sent. Anyway, writing LTL formula is a very

skillful job. Matthew introduces many patterns for temporal

properties in [16]. This is very helpful to specify complex

properties.

Writing trace assertions is more straightforward than writing

LTL formulas. In a trace assertion, the sending and receiving

action does not actually send or receive a message. They just

specify an action to be matched on the channel, so they are

called events in a trace assertion. The control structures (if...fi

and do...od) can also be used within trace assertions. They

can describe branches and cycles in the message sequence.

Using events and control structures, the designer can write

the message sequence to be matched. An example of trace

assertion can be found in our toolkit (see section IV).

As well as the properties specific to a conversation design,

SPIN can also check some generic properties, such as deadlock

freedom, termination, etc. In every WSDL design, unreachable

interactions and termination of the conversation are two basic

properties. They are usually violated by the absence of some

necessary transitions. In our method, running SPIN on the

bare model will check these two properties efficiently. SPIN

will report the line numbers of unreachable states in promela

code. Using these line numbers, we could trace back to the

unreachable and pending interactions easily.

In principle, running SPIN on the bare model will also

check the deadlock freedom property of the WSCL design,

but, in our method, it is impossible to have deadlocks in

the model. As explained in previous sub-section, the Server

process and the Client process are completely symmetric in

the generated model. As the channel never discards messages,

the message sequence will always match between these two

processes. Deadlock detection might be useful if the designer

is going to make a sub-conversation of the original design.

In this case, the Server process and the Client process are all

human-designed, and may contain deadlocks.

IV. IMPLEMENTATION: A TOOLKIT FOR WSCL

According to the content in the previous section, we have

developed a toolkit 1 for the verification of WSCL documents.

1http://keg.cs.tsinghua.edu.cn/persons/gzf/

download/WSCL-toolkit-20061218-bin.tar.gz

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

The toolkit consists of four parts:

• A WSCL-to-promela translator written in Java

• A WSCL-to-dot translator written in Java

• Several shell scripts wrapping functions of the Java

routines

• Several examples for demonstration

First we will introduce wscl2pml.sh and genpml.sh. The
usage of these two scripts is shown as follows:

$ wscl2pml.sh <wscl-file>

[promela-file]

$ genpml.sh <wscl-file> <property-file>

[promela-file]

wscl2pml translates a WSCL document into a promela model

by calling the java routine. genpml is an extended version

of wscl2pml. Besides translating the WSCL document on

command line by calling wscl2pml, it will append a property

file to the output. The property file must have either .ltl or

.never or .trace or .notrace as its extension. This script will

take different actions according to the extension.

By executing these two scripts, we can get a promela

file that can be fed into SPIN to be verified. It is highly

recommended to use XSpin instead of running SPIN on the

command line. XSpin is a GUI for SPIN written in Tcl/Tk.

Not only can it hide many details about the command line

options of SPIN, but also it can give a visualized view of the

error trail if the property is violated.
Another shell script in our toolkit is wscl2dot.sh. This is a

visualization tool for WSCL documents. Before using this tool,
graphviz 2 should be installed first. wscl2dot can generate a
description file in the format of the input language of graphviz,
the DOT language. The usage of wscl2dot is the same as
wscl2pml.

$ wscl2dot.sh <wscl-file> [dot-file]

It would be very helpful to obtain an overview of a WSCL

document before analyzing it.

V. CONCLUSION AND FUTURE WORK

In this paper, we present our work on the verification of

conversations specified in WSCL. We study the verification

tool SPIN, and try several methods to specify properties for

WSCL documents. As a result, we have developed a toolkit

to implement our ideas and methods.

We think the design of conversation protocol is essential

to the future development of web services. With standardized

conversation protocols, we can develop automation for code

skeleton generation, runtime monitoring, transaction manage-

ment and etc. As a result, the IT developers can concentrate

more on the high level business logics. This will greatly reduce

the development cycle and improve adaptability of IT systems.

We have also noticed the defects of WSCL. WSCL is a very

simple specification. It specifies message sequence between

two and only two participants. Paurobally has tried to extend

it to support multi-parts conversation [2]. Additionally, WSCL

is not an industry level specification, due to the lack of

2http://www.graphviz.org

error handling, transaction management, etc. Many problems

need to be solved before WSCL can be used in real-world

applications. According to our work, we think WSCL may be

extended to natively support properties; thus, properties can

be published as a part of the conversation and be neutral to

different model checkers.

ACKNOWLEDGMENT

This paper is supported by the IBM SUR project (Service

Science and Technology).

REFERENCES

[1] S. Vinoski, “Ws-nonexistent standards,” Internet Computing, IEEE,
vol. 8, no. 6, p. 94, 2004, 1089-7801.

[2] S. Paurobally and N. R. Jennings, “Protocol engineering for web ser-
vices conversations,” Engineering Applications of Artificial Intelligence,
vol. 18, March 2005.

[3] R. J. Hall and A. Zisman, “Behavioral models as service descriptions,” in
ICSOC ’04: Proceedings of the 2nd international conference on Service

oriented computing. New York, NY, USA: ACM Press, 2004, pp. 163–
172.

[4] T. Bultan, X. Fu, R. Hull, and J. Su, “Conversation specification a new
approach to design and analysis of e-service composition.” in WWW

’03: Proceedings of the 12th international conference on World Wide

Web, 2003, pp. 403–410.
[5] X. Fu, T. Bultan, and J. W. Su, “Conversation protocols: A formalism

for specification and verification of reactive electronic services,” in Pro-

ceedings of Implementation And Application Of Automata, ser. Lecture
Notes In Computer Science. Springer-Verlag Berlin, 2003, vol. 2759,
pp. 188–200.

[6] D. Beyer, A. Chakrabarti, and T. A. Henzinger, “Web service interfaces,”
in WWW ’05: Proceedings of the 14th international conference on World

Wide Web. New York, NY, USA: ACM Press, 2005, pp. 148–159.
[7] M. Y. Daniel and E. S. Robert, “Protocol specifications and component

adaptors,” ACM Trans. Program. Lang. Syst., vol. 19, no. 2, pp. 292–333,
1997.

[8] U. Endriss, N. Maudet, F. Sadri, and F. Toni, “Protocol conformance
for logic-based agents,” in Proceedings of the 18th International Joint

Conference on Artificial Intelligence (IJCAI-2003). Morgan Kaufmann
Publishers, 2003.

[9] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “A priori
conformance verification for guaranteeing interoperability in open
environments,” in Proceedings of 4th International Conference on

Service Oriented Computing, Chicago, USA (4th–7th December 2006),
ser. LNCS, vol. 4294, 2006, pp. 339–351. [Online]. Available:
http://rewerse.net/publications/download/REWERSE-RP-2006-162.pdf

[10] Z. Xiangpeng, Y. Hongli, and Q. Zongyan, “Towards the formal model
and verification of web service choreography description language,” in
Proc. of WS-FM 2006, ser. LNCS 4184, Vienna, Austria, 2006. [Online].
Available: http://www.is.pku.edu.cn/∼fmows/papers/cdl verification.pdf

[11] W. van der Aalst, M. Dumas, A. ter Hofstede, N. Russell, H. Verbeek,
and P. Wohed, “Life after bpel?” BPM Center Report BPM-05-
23, BPMcenter.org, Tech. Rep., 2005. [Online]. Available: http:
//is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2005/BPM-05-23.pdf

[12] R. Kazhamiakin, M. Pistore, and M. Roveri, “Formal verification of
requirements using spin: A case study on web services,” in SEFM ’04:

Proceedings of the Software Engineering and Formal Methods, Second

International Conference on (SEFM’04). Washington, DC, USA: IEEE
Computer Society, 2004, pp. 406–415.

[13] X. Fu, T. Bultan, and J. Su, “Wsat: A tool for formal analysis of web ser-
vices,” in LECTURE NOTES IN COMPUTER SCIENCE. SPRINGER-
VERLAG BERLIN, 2004, vol. 3114, pp. 510–514.

[14] A. Ankolekar, M. Paolucci, and K. Sycara, “Towards a formal verifica-
tion of owl-s process models,” in LNCS 3729. Springer-Verlag Berlin
Heidelberg, 2005, p. 37.

[15] G. J. Holzmann, The Spin Model Checker: Primer and Reference

Manual. Addison Wesley, Sep. 2003.
[16] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property

specifications for finite-state verification,” in ICSE ’99: Proceedings

of the 21st international conference on Software engineering. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1999, pp. 411–420.

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

