
PAS: Prediction-based Adaptive Sleeping for Environment Monitoring in
Sensor Networks

Zheng Yang1, Bin Xu2, Jingyao Dai1, Tao Gu3

1Hong Kong University of Science and Technology, Hong Kong
2Tsinghua University, China

3Institute for Infocomm Research, Singapore
{yangzh, daijy}@cse.ust.hk, xubin@tsinghua.edu.cn, tgu@i2r.a-star.edu.sg

Abstract

Energy efficiency has proven to be an important
factor dominating the working period of WSN
surveillance systems. Intensive studies have been done
to provide energy efficient power management
mechanisms. In this paper, we present PAS, a
Prediction-based Adaptive Sleeping mechanism for
environment monitoring sensor networks to conserve
energy. PAS focuses on the diffusion stimulus (DS)
scenario, which is very common and important in the
application of environment monitoring. Different with
most of previous works, PAS explores the features of
DS spreading process to obtain higher energy
efficiency. In PAS, sensors determine their sleeping
schedules based on the observed emergency of DS
spreading. While sensors near the DS boundary stay
awake to accurately capture the possible stimulus
arrival, the far away sensors turn into sleeping mode
to conserve energy. Simulation experiment shows that
PAS largely reduces the energy cost without
decreasing system performance.

1. Introduction

Wireless Sensor Networks (WSNs) are composed
of a large number of sensor nodes that are densely
deployed either inside the physical phenomenon or
very close to it [1]. The distributed sensor nodes
organize themselves into a multi-hop wireless network
and typically collaborate to perform a common task,
such as environment monitoring [6], object tracking [2]
and scientific observing [13] etc.

A wireless sensor node, being a microelectronic
device, can only be equipped with limited power
sources, e.g., batteries. Since wireless sensors are
usually intended to be deployed in unattended or even
hostile environments, it is almost impossible to

recharge or replace their batteries. The lifetime of a
sensor node is much dependent on its power
consumption. Hence, energy efficiency is of highly
concern to the WSN design.

In this paper, we focus on the problem of stimulus
detection, which is a common task in an environment
monitoring application. In this problem, the stimulus,
i.e., a liquid pollutant spreads from the source over a
continuously enlarging area. The objective of the
monitoring system is to detect the diffused area of
stimulus. The applications under this circumstance are
usually time sensitive; and the detection delay is a
crucial metric to evaluate the performance, especially
for emergent events. In addition, to achieve a longer
surveillance lifetime, an efficient power management
scheme is required. This paper proposes the
Prediction-based Adaptive Sleeping (PAS) mechanism,
which estimates the process of stimulus diffusion and
develops adaptive sensor sleep/wakeup schedules
based on the diffusion prediction.

Many existing solutions use the redundancy
provided by a high-density deployment of sensors to
prolong the lifetime of a WSN. Different from those
approaches, PAS shows special suitability to the
monitoring of diffusion stimulus (DS) which is
characterized by its continuously spreading outward.
PAS is based on the idea that the sensors near the
stimulus boundary work actively to capture possible
spreading events, and the far away sensors can be
switched to sleep mode to conserve energy. In PAS,
the diffusion process of the stimulus is estimated by
sensors near the DS boundary. Each sensor predicts the
arrival time of the stimulus based on estimation and
adjusts its state adaptively. If it takes a long time for
the stimulus to reach a sensor, the sensor can safely
sleep longer to get higher energy efficiency. Compared
with existing power management approaches, PAS
explores the characteristics of such application and is

2007 International Conference on Parallel Processing Workshops (ICPPW 2007)
0-7695-2934-8/07 $25.00 © 2007

able to achieve higher energy efficiency with tolerable
detection delay.

The core idea of PAS is to predict arrival time of
stimulus for each sensor node, similar to the SAS
approach proposed in [9], which, to the best of our
knowledge, is the only existing work that shares
similarities with our method. While both approaches
aim to reduce energy consumptions by applying the
adaptive sleeping mechanism on sensor nodes, PAS
makes more accurate prediction on the spreading
velocity of the stimulus and by adjusting the parameter
of alert time, PAS can get a better tradeoff between
detection delay and energy consumption. Our analysis
shows that SAS is actually a degenerated case of PAS
when the alert time is remarkably decreased. We have
conducted extensive experiments to evaluate the
efficacy and efficiency of PAS. Our comparative study
shows that PAS achieves a good balance between
detection delay and energy efficiency.

The rest of the paper is organized as follows.
Section 2 discusses related works on power
management mechanisms. Section 3 describes the
principle and design of PAS. Section 4 presents our
evaluation results. Finally, we conclude this paper and
discuss future work in Section 5.

2. Related Work

In recent years, many WSN systems have been
developed to support environment monitoring
applications [3, 6-8, 12]. However, these systems aim
to provide real-world implementation experiences, and
they do not focus on the efficient usage of WSNs,
neither power efficiency nor monitoring efficacy.

Many algorithms have been proposed to exploit
efficient sleep/wakeup schemes for prolonging the
surveillance lifetime of a WSN. While most of the
algorithms [5, 11, 14, 17] maintain a small set of active
sensors without losing connectivity, some algorithms
[4, 16] provide adequate terrain by expanding sensor
coverage for different application scenarios.

Chen et al. [5] propose Span, a power saving
topology maintenance algorithm, which adaptively
elects coordinators from all nodes to form a routing
backbone and turn off other nodes’ radio receivers
most of the time to conserve power. Nodes can elect
coordinators locally and change their operating role
adaptively between coordinator and non-coordinator,
hence, Span achieves good network connectivity under
a balanced usage of sensor nodes in the network.
Without a significant loss of network capacity, Span
aims to minimize the number of elected coordinators.
Hence, it can achieve a long lifetime.

Ye et al. [16] propose PEAS, which extends the
lifetime of a WSN by keeping only a necessary set of
sensors working when the density of node deployment
is much higher than the necessary density. The key
objective of PEAS is to preserve the network sensing
coverage, and node failures are considered norms
rather than exceptions. In PEAS, sleeping nodes wake
up once in a while to probe their neighbors and replace
any failed node as needed.

SAS [9] proposes similar ideas to our approach for
the DS detection application. It employs a simple
method for the local velocity estimation. Our analysis
shows that SAS is actually a degenerated case of PAS.

PAS differs with the above approaches in that we
aim to explore the spreading process of DS and
develop an effective and energy-efficient sleep/wakeup
scheme for environment monitoring applications. It
provides complements to existing systems.

3. Prediction-based Adaptive Sleeping

This section presents the details of PAS. We first
provide an overview of the system, and then we
explain the sensor operations, the estimation algorithm
and the PAS algorithm.

3.1 System Overview

For DS monitoring, it would be the ideal case if we
can control sensors sleeping time so they wake up at
the right moment, just before the arrival of stimulus. In
this case, the sensors can capture the arrival of the
stimulus accurately while minimizing energy
consumption. However, in practice, it is impossible to
get the ideal case. A simple intuition is that we can
keep the sensors near the stimulus boundary active and
make the sensors which are far from stimulus inactive.
Based on this idea, in PAS, the sensors along the
stimulus boundary cooperate to estimate the spreading
velocity, and each sensor predicts the arrival time of
stimulus based on the estimations. A sensor can then
adjust its state based on the predicted value. A sensor
will turn to sleep mode if the predicted arrival time is
larger than a threshold to conserve power; otherwise, it
should stay active for the upcoming stimulus.

An important task in PAS is to determine how far
the stimulus is from a sensor node. We use the arrival
time of stimulus as the crucial parameter rather than
the space distance. If we can predict the arrival time of
stimulus accurately, we will achieve a good
performance in terms of delay time and energy
consumption.

2007 International Conference on Parallel Processing Workshops (ICPPW 2007)
0-7695-2934-8/07 $25.00 © 2007

Figure 1. Stimulus spreading

A typical case of DS spreading process is illustrated
in Fig. 1. The gray line represents the current stimulus
boundary and the straight arrows show the spreading
velocity at different spots. The DS boundary at the
next time will then be the envelope curve of the
velocity vectors, represented by the black dashed line.
It is obvious that the sensors near the stimulus will be
covered by the stimulus shortly while the sensors
which are far away from the stimulus will not be
affected. In this case, using distance measurement
related parameters, e.g., hop count, to determine the
arrival of the stimulus may not accurate. In PAS, we
use the expected arrival time to estimate if a sensor
node is near or far away from the stimulus. Once a
sensor calculates the expected arrival time and the
value is less than some predefined threshold value, it
will remain active. Otherwise, it will go to sleep.

Similar to SAS, each sensor in PAS exchanges the
DS information with its neighbors. PAS can achieve
more accurate predictions. This is because PAS allows
the DS information to be exchanged in a larger field of
sensors than SAS, i.e., the sensors which are not
covered by the stimulus also transmit alert information,
which helps distribute the estimations.

3.2 Sensor Operations

There are three types of states for a sensor node in
PAS:

Covered state: Sensors get into this state after
they detect the stimulus.
Alert state: Sensors switch into this state when
the expected arrival time of the stimulus is less
than the threshold value. Sensors in this state are
usually near the DS boundary.
Safe state: Sensors stay in this state when they
have not been notified about the stimulus or the
expected arrival time of the stimulus is larger than
the threshold value. Sensors in this state are
usually far away from the DS boundary.

Sensors in covered state and alert state should be
active to keep on monitoring the area. Sensors in safe
state may turn to sleep mode to conserve energy. A

typical distribution of PAS sensors is shown in Fig. 2.
The ALERT area is an irregular shape rather than a
circle because the spreading rate of the stimulus may
vary in different directions.

Figure 2. Sensor statuses

The state transition diagram of a sensor node in
PAS is shown in Fig. 3. All sensors are initially in safe
state. A sensor will change from safe or alert state to
covered state when it detects the stimulus. A sensor in
safe state will change into alert state when its expected
arrival time of the stimulus is less than the threshold
value. Otherwise, a sensor in alert state will go back to
safe state if its expected arrival time is larger than the
threshold value. When the stimulus moves away from
a covered sensor, the sensor will wait for a detection
timeout, and then returns to safe state.

Figure 3. State transition of a node

Two types of message are defined to be exchanged
among the sensors in a neighborhood in PAS:

REQUEST: A sensor sends this message to
request its neighbors for stimulus information.
This message does not have any payload.
RESPONSE: A sensor sends this message in
response to the REQUEST message. The
RESPONSE message contains a sensor’s location,
state, the estimated spread speed and the
predicted arrival time of the stimulus.

Sensors which are in different states have different
behaviors as follows.

Covered state: A sensor in this state keeps active.
When receiving a REQUEST message, it replies with a
RESPONSE message.

2007 International Conference on Parallel Processing Workshops (ICPPW 2007)
0-7695-2934-8/07 $25.00 © 2007

Alert state: A sensor in this state has complex
actions. If it detects the stimulus, it first sends a
REQUEST message; then it calculates the expected
arrival time according to its neighbors’ response, and
finally it sends a RESPONSE message to deliver the
new changes. If a sensor receives a REQUEST
message, it sends back a RESPONSE message. If a
sensor receives a RESPONSE message, it re-calculates
the expected arrival time and replies with a
RESPONSE message if the difference between the
expectations has changed significantly.

Safe state: A sensor in this state stays in sleep mode.
When it wakes up, it changes to covered state if it
detects the stimulus; otherwise, it sends a REQUEST
message. It then calculates the expected arrival time
according to its neighbors’ responses. If the expected
arrival time is less than the threshold value, it will
change to alert state. Otherwise, it stays in safe state.

3.3 Arrival Time Estimation

To estimate the DS arrival time accurately is crucial
in PAS because it determines a sensor’s state and its
sleeping scheme. Each sensor obtains DS information
from its neighbors, processes the information, and
eventually obtains its predicted DS arrival time.

A sensor needs to first compute the spreading
velocity in order to calculate the expected arrival time.
The velocities vary all the time and may be different at
different positions and in different directions. Each
sensor has its local estimation. The estimated velocity
is a vector which contains both direction and value.
The calculation is based on the assumption that the
stimulus diffusion is perpendicular to stimulus
boundary, e.g., stimulus spreads along the normal
direction of the boundary. This is a reasonable
assumption for diffusion processes as pointed out in
[15].

We define two types of velocity and propose two
computation methods to compute them.

Actual velocity
When a sensor in alert state detects the stimulus, it

first sends a REQUEST message, and then calculates
the spread velocity of the stimulus based on the
responses from its neighbors. This velocity is
computed based on actual observation, and hence, it is
called actual velocity. A sensor usually has more than
one neighboring sensors in covered state. Thus, a node
usually has more than one velocity reported to it. For
sensor X, we use formula

1

1 n

X
I I

IXv
n t

to integrate information from all its neighbors and
calculate the actual velocity. In formula above, I is a
sensor in covered state, tI is the elapsed time between
stimulus detection of sensor I and X, and IX is the
distance between sensor X and I.

Expected velocity
Sensors in alert or safe state need to calculate the

expected velocity, which is based on estimation rather
than observation. The expected velocity of sensor X is
given by

1

1 n

X I
I

v v
n

where sensor I is in covered or alert state and vI is the
expected or actual velocity reported from sensor I.

The sensor obtains an arrival time from each of its
neighbors. The value of expected arrival time is simply
the minimum of these arrival times, that is

cosmin()X I
I

IX It
v

where I is the included angle between vI and IX .

3.4 Prediction-based Adaptive Sleeping

To achieve energy conservation, we use different
sleeping strategies for sensors in different states. First,
sensors in covered state are active so that stimulus
diffusion can be monitored in real time. Second, to
minimize detection delay, sensors in alert state also
keep active so that they can capture possible spreading
events in the future. Third, sensors in safe state deploy
a specified sleeping strategy such as a linearly
increasing sleeping time. By this means we put in-situ
sensor nodes into active mode for accurate DS
monitoring while outward sensors get to sleep for
energy conservation.

When a sensor in safe state wakes up and receives
stimulus information from its neighbors, it calculates
the expected arrival time. If the value is less than the
pre-defined threshold, the sensor increases its sleeping
interval by adding an increment t and falls back to
sleep. Sensors which have a maximum sleeping
interval and their sleeping interval will stay when it
reaches the upper bound.

The advantage of PAS is that it can easily adjust the
size and shape of an alert area according to stimulus
diffusion. For example, the spreading of noxious gas in
a city is highly emergent. In this case, the alert area
should be enlarged to minimize detecting delays. In a
less hazardous case, we can reduce the alert area to cut
down energy consumption. By greatly reducing the

2007 International Conference on Parallel Processing Workshops (ICPPW 2007)
0-7695-2934-8/07 $25.00 © 2007

threshold value of alert time, PAS can degenerate into
SAS.

4. Experiment Evaluation

We conducted comprehensive simulation to
evaluate the efficacy and efficiency of PAS. The
simulation is based on the hardware characteristics of
Telos [10], the popular used wireless sensor platform.
We draw a comparative study with SAS.

4.1 Simulation Methodology

We evaluate the performance of different sleeping
strategies by a series of experiments. A number of
sensors are employed to monitor stimulus diffusion in
a specified region. Based on the characteristics of
Telos, as shown in Table 1, we evaluate detection
delay and energy consumption.

Table 1
Active
power(mW)

Sleep
power(uW)

Receive
power(mW)

3 15 38
Transition
power(mW)

Data rate(kbps) Total active
power(mW)

35 250 41

We propose two metrics to evaluate the
performance of each sleeping algorithms, average
detection delay and average energy consumption [9].

Average detection delay is the average elapsed time
between the actual arrival time and the time when a
sensor just detects it. This metric is an important
measure for environment monitoring. There is no delay
for active sensors since they can immediately detect
the diffusion while sleeping sensors might miss the
first arrival time since they are in sleeping state.

Average energy consumption is the average energy
consumed by each sensor. It consists of both
controllers’ and communication energy consumption.
Average energy consumption provides a scale to
evaluate the energy efficiency of different sleeping
strategies.

4.2 Detection Delay

In this experiment, we evaluate the relationship
between detection delay and maximum sleeping
interval, and compare the results with SAS and non-
sleeping (NS) sensors. We set up 30 nodes; and each
node has a transmission range of 10m. Maximum

sleeping interval is the maximum period when a node
remains in sleeping state.

Fig. 4 shows that NS sensors have zero delay since
they always keep active. The sleeping periods for both
SAS and PAS sensors increase linearly until they reach
the maximum values. However, PAS sensors have less
latency than SAS sensors.

Fig. 5 shows that, in PAS, the average detection
delay decreases from 1.73s to 1.5s when increasing the
threshold of alert time from 10 s to 30 s. It
demonstrates the adaptability of PAS while both PAS
and NS do not such ability. With this characteristic,
PAS can be easily applied to non-emergent
applications as well.

4.3 Energy Consumption

Fig. 6 shows the relationship between energy
consumption and maximum sleeping interval with the
setup of 30 nodes and a transmission range of 10m. As
mentioned above, a longer maximum sleeping interval
usually results in a longer sleeping period and less
energy consumption. In our experiments, NS sensors
consume the most power because they never sleep
while both SAS and PAS have lower energy
consumption. PAS consumes slightly more energy than
SAS because a PAS sensor activates not only its
neighbors but also some far-away sensors; however,
the difference is trivial.

Fig. 7 shows the energy consumption in PAS varies
greatly when increasing the threshold of alert time.
This ability suggests that PAS can be also applied to
energy restricted situations.

5. Conclusions and Future Work

In this paper, we propose PAS to conserve energy
for environment monitoring applications in WSNs. By
exploring the specific features of DS monitoring
scenario, the spreading process is estimated and
adaptive sleeping is achieved for sensors. By adjusting
the alert time, PAS can achieve a balance between
detection latency and energy efficiency. Compared to
SAS, PAS obtains a better detection latency at a
reasonable energy cost. In our future work, we plan to
study the impacts of sensor failure and imperfect
communication channel.

Acknowledgements

This work is supported in part by the National Basic
Research Program of China (973 Program) under grant
No. 2006CB303000.

2007 International Conference on Parallel Processing Workshops (ICPPW 2007)
0-7695-2934-8/07 $25.00 © 2007

Figure 4. Detection delay vs. node sleep time

Figure 5. Detection delay under different alert
time threshold sets

Figure 6. Energy consumption vs. sleep time

Figure 7. Energy consumption under different
alert time threshold sets

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E.
Cayirci, "A Survey on Sensor Networks," IEEE
Communications Magazine, vol. 40, pp. 102 - 114, 2002.

[2] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang,
et al., "A Line in the sand: A wireless sensor network
for target detection, classification, and tracking,"
Computer Networks, pp. 605 - 634, 2004.

[3] M. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, et al.,
"Call and Response: Experiments in Sampling the
Environment," in Proceedings of ACM Sensys'04, 2004.

[4] Q. Cao, T. Abdelzaher, T. He and J. Stankovic,
"Towards Optimal Sleep Scheduling in Sensor
Networks for Rare-Event Detection," in Proceedings of
IPSN, 2005.

[5] B. Chen, K. Jamieson, H. Balakrishnan and R. Morris,
"Span: An Energy-Efficient Coordination Algorithm for
Topology Maintenance in Ad Hoc Wireless Networks,"
in Proceedings of Mobicom, 2001.

[6] M. Li and Y. Liu, "Underground Structure Monitoring
with Wireless Sensor Networks," in Proceedings of
IPSN, 2007.

[7] M. Li, Y. Liu and L. Chen, "Non-Threshold based
Event Detection for 3D Environment Monitoring in
Sensor Networks," in Proceedings of IEEE ICDCS,
2007.

[8] Y. Liu and M. Li, "Iso-Map: Energy-Efficient Contour
Mapping in Wireless Sensor Networks," in Proceedings
of IEEE ICDCS, 2007.

[9] H. Ngan, Y. Zhu, L. M. Ni and R. Xiao, "Stimulus-
based Adaptive Sleeping for Wireless Sensor
Networks," in Proceedings of International Conference
on Parallel Processing (ICPP'05), 2005.

 [10] J. Polastre, R. Szewczyk and D. Culler, "Telos:
Enabling Ultra-Low Power Wireless Research," in
Proceedings of Information Processing in Sensor
Networks (IPSN'06), 2006.

[11] C. Schurgers, V. Tsiatsis, S. Ganeriwal and M.
Srivastava, "Topology Management for Sensor
Networks: Exploiting Latency and Density," in
Proceedings of ACM Mobihoc, 2002.

[12] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A.
Mainwaring, et al., "Habitat Monitoring with Sensor
Networks," Communications of the ACM, vol. 47, pp.
34 - 40, 2004.

[13] I. Vasilescu, K. Kotay, D. Rus, P. Corke and M.
Dunbabin, "Data Collection, Storage and Retrieval with
an Underwater Optical and Acoustical Sensor
Network," in Proceedings of ACM SenSys, 2005.

[14] Y. Xu, J. Heidemann and D. Estrin, "Geography-
informed Energy Conservation for Ad Hoc Routing," in
Proceedings of ACM Mobicom, 2001.

[15] W. Xue, Q. Luo, L. Chen and Y. Liu, "Contour Map
Matching For Event Detection in Sensor Networks," in
Proceedings of ACM SIGMOD, 2006.

[16] F. Ye, G. Zhong, S. Lu and L. Zhang, "PEAS: A Robust
Energy Conserving Protocol for Long-lived Sensor
Networks," in Proceedings of International Conference
on Distributed Computing Systems (ICDCS), 2003.

[17] R. Zheng, J. C. Hou and L. Sha, "Asynchronous
Wakeup for Ad Hoc Networks," in Proceedings of
ACM Mobicom, 2003.

2007 International Conference on Parallel Processing Workshops (ICPPW 2007)
0-7695-2934-8/07 $25.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

