
Semantic Web Services Discovery in P2P Environment

Bin Xu, Dewei Chen
Department of Computer Science and Technology, Tsinghua University

xubin@tsinghua.edu.cn, chendw@keg.cs.tsinghua.edu.cn

Abstract

Web services are new paradigm of using the Web.
One of emerging challenges is to discover Web
services efficiently and precisely. Unfortunately,
existing systems like UDDI often have the problems of
low availability, low accuracy, and bad performance.
In this paper, we propose an approach of semantic
Web services discovery in P2P environment. Firstly,
Web services are published and deployed in same Web
server to guarantee the availability. Secondly, Web
servers are organized into groups to form a structured
P2P network. Thirdly, for improving the query
performance of service discovering, we propose a 2-
layers searching algorithm. Finally we developed a
prototype system, and tested the system in real P2P test
bed of Planet-lab. Experimental results show our
approach’s precision, recall, query time and
scalability. By analysis of the performance, we
observed that the system has good efficiency and
scalability.

1. Introduction

Web services are emerging as a new paradigm to
construct distributed applications in the Web and
enable enterprise-wide interoperability. Technologies
like WSDL, SOAP and UDDI constitute the current
standards of Web services. With the growing
popularity of Web services, Web services discovery is
becoming a big challenge.

Unfortunately, existing standards of discovering
Web services are mainly through UDDI servers, which
are focusing on operational and syntactic details to
implement and execute Web services. Thus the
discovery of Web services is limited to keyword-based
search. But facing with thousands of Web services,
keyword-based search with manual intervention is a
problem. Moreover, after searching in UDDI, not all
the Web services listing in the searching result are
available. For example, when you search in Microsoft
UDDI server, you may get many un-accessible Web

services. The problem is due to that UDDI server can
not track the real status of each Web services.

In order to discover Web services more efficiently
and precisely, it is necessary to improve availability,
accuracy and performance. This is exactly the problem
addressed in this paper.

In this paper, we propose to conduct Web services
discovery in four steps. First, Web services are
deployed and published in same Web server. Then we
use an algorithm to convert WSDL into OWL-S for
each Web Service. We next cluster the Web servers
into groups to form a “structured” P2P network.
Finally, for improving the query performance of
service discovering, we propose a 2-layers searching
algorithm.

We have developed a prototype system for P2P
Web services discovery based on JXTA
(www.jxta.org). We conducted experiment to test the
proposed approach. We tried to collect Web services
from different sources. In total, 1000 WSDL files are
gathered. The experiments ran on Planet-lab
(www.planet-lab.org), which is a real P2P test bed in
Internet. And we also simulate 2000 peers with plain
text description to evaluate the scalability of our
approach. The experiments and simulation indicates
that our approach can indeed enhance the performance
of Web service discovery in P2P environment.

The contributions of this paper are a structure of
Web server to tightly integrate the deployment and
publication of Web service together to guarantee the
availability of Web service, a P2P architecture of
service discovery system to share service description in
order to improve the recall and performance of service
discovery.

The rest of this paper is structured as following: in
section 2, we give the related work. In section 3, we
discuss the issue in current Web service discovery
research. In section 4, we give our approach,
presenting the architecture of P2P service discovery
system, and introducing the 2-layers searching
algorithm. In section 5, we present the experiment and
simulation, and analyze the accuracy and performance

2007 International Conference on Parallel Processing Workshops (ICPPW 2007)
0-7695-2934-8/07 $25.00 © 2007

of the service discovery system. We make concluding
remarks in section 6.

2. Related Work

As we know, current Web service discovery
standard of UDDI provides business registry for
service provider to publish Web service, and for
service requestor to find Web service. Searching for
registered Web services is based on keyword matching.
Though each UDDI registry can include some nodes to
replicate the data, it is basically a centralized design for
Web service publishing and searching.

Semantic Web service discovery aims to improve
accuracy of discovery by adding semantics to service
description. There are two approaches. One approach is
to enhance current Web services standards like WSDL
and UDDI [1][7][8], to describe capability of Web
services by semantics. The other approach utilizes
some ontology-based description language like
WSMO[3] or OWL-S (formally DAML-S[6]) to
describe Web service.

As far as we know, there is some work about P2P
Web service discovery. METEOR-S Web Service
Discovery Infrastructure (MWSDI) [8] is an
infrastructure for Web services publication and
discovery. MWSDI integrated P2P technology and
UDDI specification to build P2P network between
UDDI servers. MWSDI uses a shared Registries
Ontology to divide the UDDI servers according to the
knowledge domains, and each registry was mapped to
the node of Registries Ontology. In literature [2],
Thaden etc. use DAML-S service description to
provide enhanced semantic search capabilities, and
organize all registries into P2P network.

3. Issues of Web Services Discovery

Availability, accuracy and performance are crucial
criteria of Web service discovery. Availability is the
number of the accessible Web services comparing to
the number of all returned Web services in one query.
Accuracy is made up of two parts: precision and recall.
Precision is the number of correct returned Web
services comparing to the number of all returned Web
service in one query, while recall is the number of
returned correct Web services comparing to the
number of all correct Web service. Performance
includes the response time for one query and the total
network overhead.

Among these criteria, availability is the most
important one, because the purpose of service
discovery system is to find the accessible Web service.
It is useless to get an un-available Web service. And

accuracy is also very important, since finding a
“correct” Web service is the basic step to access it.
Performance concerns about the efficiency of service
discovery system.

Low availability is a big issue of current UDDI
servers. According to Kim and Rosu’s survey[4] of
UDDI registry, approximately 67% of the registered
Web services are not available or valid. Furthermore,
many of the downloaded WSDL files omit mandatory
elements or contain other syntax errors. There are two
factors affecting the availability of Web service, one is
that whether the Web server is running, the other is
that whether the WSDL file of this Web service is
valid and accessible in the Internet. But in UDDI
server, there is no status monitor to insure the Web
server is running; even some malicious providers
register an un-existing Web service. So, the separation
of service provider and service registry might lead to
the un-available Web services.

Low accuracy is another issue of current UDDI
server, especially the precision is a big issue. Since
UDDI is limited to keyword-based searching and lack
of powerful search mechanism, precision and recall are
low. Adding semantics (like OWL-S) to Web service
description in UDDI and WSDL is a good way to
improve the accuracy[1][3][6][7][8][9]. But most of
the current description of Web service is based on
WSDL, how to convert WSDL to OWL-S is a
problem.

In P2P Web service discovery, bad performance is
also a key issue. Since the query is forwarded in P2P
network, sometimes in the manner of flooding, the
response time may be too long and network overhead
is big. So the topology and query forwarding algorithm
may affect the performance of P2P Web service
discovery.

4. Our Appoach

4.1. Architecture

To improve the availability of Web service, our
approach binds the Web service’s deployment and
publication in one Web server. Since the publication of
Web service is in the same Web server, if the server
doesn’t work, the service description cannot be
accessed; if the server is running and the service
description is accessed by service consumer, then the
Web service can also be accessed by the consumer. So
this insures the availability of Web service. To
improve the accuracy, the Web service description file
of WSDL is converted to OWL-S file and plain text
description automatically, and these descriptions are
published in same Web server, not in UDDI server. A

2007 International Conference on Parallel Processing Workshops (ICPPW 2007)
0-7695-2934-8/07 $25.00 © 2007

semantic matching algorithm is proposed for match-
making of Web service discovery. To improve the
performance, Web servers are organized into P2P
network according to the description of Web services.
Peers with similar service description are formed into
one group, and query is forwarded to the groups with
similar service description. Then the network overhead
and query time may reduce.

In our service discovery system, Web servers are
organized into structured P2P network. Web services
are deployed on Web server. But there is no central
server like UDDI to publish Web services. Each Web
server publishes its Web services itself, and discovers
other Web server’s Web services directly through P2P
network.

2-Layers searching
algorithm

Query Agent

Query Answering Agent

Semantic Matcher

Web Services Modeling Ontology (OWL-S)

Web
Application

Server

Description Generator

Service Deployment Tool

Repository of Semantic Descriptions

Role 2: Peer in p2p network Role 1: Server in the Web

Service
status

monitor

Figure 1. Structure of Web Server.

Figure 1 illustrates the structure of each Web server.
There are two roles of Web server. One is server in the
Web and the other is peer in P2P network. As a server,
service deployment tool is used by the service provider
to deploy the Web services on Web application server,
then the description generator generates the semantic
descriptions of OWL-S. The service status monitor
keeps deployment and publication status consistent.
Web services on Web application server are accessed
through current standards (SOAP and HTTP).

As a peer, repository keeps the semantic
descriptions. All peers share the same Web services
modeling ontology and use the same semantic matcher.
Query agent collects queries from users and forwards
them in P2P network. It also receives the query results
and displays them to user. Query answering agent
responds to the query through semantic matching, and
continues to forward the query. Query agent and query
answering agent utilize 2-layers searching algorithm.

4.2. Generate Description

Compared to UDDI, our discovery system describes
the Web services not only in WSDL, but also in OWL-

S and plain text. The component of description
generator creates OWL-S file for each Web service.
Usually Web service has a WSDL file. The generator
converts the WSDL file into OWL-S files via an
annotation algorithm. The annotation algorithm of our
work is discussed in literature [5].

Our discovery system not only generates semantic
description of Web services, but also generates plain
text description of Web service. In WSDL file, there is
a tag <documentation> describing the function of each
operation. So, plain text description is generated by
parsing the tag <documentation>. There are two
advantages of plain text description: one is to help the
user in understanding the Web services, and the other
is to form a structured P2P network.

4.3. Structure P2P Network

In P2P network, to reduce the query time and raise
the query precision, the query should be forwarded to
related peers. To structure the P2P network, we use
groups to divide the P2P network into two layers.
Layer one is made up of many peer groups, while layer
two is made up of many peers inside one peer group.

Each Web server might have more than one Web
service, and each Web service has its plain text
description. So, we extract keywords from all plain text
description of one server, and forms Vector VP to
describe the server (peer): (wi is the term weight [11]
of keyword ki)

VP={<k1,w1>,<k2,w2>, …<ki,wi>}
Thus the similarity between Peer1 and Peer2 is:
Sim(Peer1,Peer2)=Similarity(VP1,VP2)
Several peers form a group through the clustering of

VP. One peer of the group acts as group server to keep
the description of the group, which is defined by vector
VG:

VG={<k1,w1>,<k2,w2>, …<kg,wg>}
The statistics of kg and wg are according to every

peer’s VP in the group.
Accordingly, the similarity between Group1 and

Group2 is:
Sim(Group1,Group2)=Similarity(VG1,VG2)
And the similarity between Group1 and Peer1 is:
Sim(Group1,Peer1)=Similarity(VG1,VP1)
The similarity between query R and Group is:
Sim(R,Group)=Similarity(KR,VG)
As figure 2 illustrated, the topology of P2P network

is made up of peer groups. One peer joins one group if
the Sim(Group,Peer) is higher than a given threshold.
Communication inside group is through broadcasting,
while communication outside group is through peer
group servers. Each peer keeps its peer vector VP,
while peer group server keeps not only its peer vector

2007 International Conference on Parallel Processing Workshops (ICPPW 2007)
0-7695-2934-8/07 $25.00 © 2007

VP but also the group vector VG and route table. Route
table represents ‘acquaintances’ of the group. It keeps
the most similar groups and least similar groups,
according to the ranking of similarity between the
peer’s group vector VG and other groups’ VG.

Figure 2. Topology of P2P network.

4.4. Query Process

Every query is made up of two files. One is owl file
for semantic matching, and the other is plain text file
for routing. For instance, to discover Web services
about weather forecast, the query is:

Query.txt: “weather query check weather by
specified date and city weather query services”.

Query.owl:

In query.owl, the input and output are classes of
travel ontology. The query.owl file is used in semantic
matching, while the query.txt file is used to route the
query.owl file to according peer groups. We extract
keywords from query.txt file, and form query vector:

KR={<k1
R,1>,<k2

R,1> , …<km
R,1>}

In <km
R,1>, km

R is a keyword, and 1 is the weight of
that keyword.

The query is forwarded in two layers: layer one is
between group servers, layer two is inside one group.

4.4.1. Layer One Searching. Layer one searching is to
locate peer groups which probably satisfy the query.
When the query agent of one peer gets the query R, it
forwards the query statement like <Peer-ReqID, R> to
its peer group server. Then the server decides which
groups to forward the query, as following:

1) Compute the similarities between KR and every
VG in route table, and get the result
SIM={Sim1,Sim2,…,Simi}.

2) For every Simj in SIM, if Simj is higher than
Simthreshold, then the statement <<GroupID>, hops,
<Peer-ReqID, R>> is forwarded to Groupj .

3) If there is no Simj higher than Simthreshold, then
choose most similar groups of quantity Q to forward
the statement.

4) While forwarding the statement, current group ID
is add to the groups list <GroupID>, and hops=hops+1.
If hops reach the MaxHops, the statement is not
forwarded.

5) If query statement is from other group, and
Groupj is in the groups list <GroupID>, then the
statement <<GroupID>, hops, <Peer-ReqID, R>> is
not forwarded to Groupj.

This process utilizes keywords to filter the peer
groups, in order to reduce the forwarding peers. Setp 4
and 5 prevent the forwarding from cycle and un-
limitation.

4.4.2. Layer Two Searching. Layer two searching is
to locate peers which probably satisfy the query. When
peer group server receives the query forwarded from
other group, it extracts the query statement <Peer-
ReqID, R>, and broadcasts it to all peers in the group.
Each peer in the group receives the query statement
and uses its query answering agent to match based on
semantic matching. Matched Web services are returned
to Peer-ReqID directly in the statement of <Peer-
AnsID, URL, Matched>. Our semantic matching
algorithm is discussed in literature [10].

5. Experiment and Simulation

We implement the service discovery system with
Java and JXTA, and run the system in the P2P test bed
of Planet-lab. The P2P architecture is implemented
with JXTA, and the semantic matcher is implemented
with Jena (jena.sourceforge.net).

<?xml version='1.0' encoding='ISO-8859-1'?>
<profile
xmlns="http://keg.cs.tsinghua.edu.cn/ontology/travel#"
……
>
<profile:serviceName>weather query
</profile:serviceName>
<profile:textDescription>check weather by specified

date and city.</profile:textDescription>
……
<profile:hasInput rdf:resource="#Date"/>
<profile:hasInput rdf:resource="#City"/>
<profile:hasOutput rdf:resource="#Weather"/>
<profile:hasPrecondition></profile:hasPrecondition>
<profile:hasResult></profile:hasResult>
</profile>

2007 International Conference on Parallel Processing Workshops (ICPPW 2007)
0-7695-2934-8/07 $25.00 © 2007

5.1. Precision and Query Time

We tried to collect Web services for experiments
from as many sources as possible. We randomly chose
1000 WSDL files from the www.xmethods.com,
www.google.com and www.baidu.com. Among them
there are only 74 files are about travel. We annotated
these 74 files with travel ontology and generated 74
OWL-S files.

To test the precision and query time in the
environment of real Internet, we ran the system in 50
peers of Planet-lab. There are totally 74 Web services
about travel. Each Web service has its OWL-S file and
plain text file. These Web services descriptions are
distributed in 50 peers, and each peer has about six
Web services descriptions. We made a query like
section 4.4 for more than ten times, and recorded the
average precision and query time. To compare with the
query time and precision of UDDI, we searched Web
services by using the keyword “weather” in Microsoft
UDDI server for more than ten times, and also
recorded the average precision and query time.

Table 1. Precision and Query Time
 P2P Service Discovery UDDI

Precision 100% 60%
Query Time (ms) 52558 3213

As the above table illustrated, semantic matching
improves the precision to 100%, but cost much query
time(averaged 52588 milliseconds). Query in UDDI
server is quick, but in the 35 list result of weather Web
services, only 21 is available. So, semantic matching
improves the precision of Web services discovery, but
cost much time. The query time of P2P semantic
discovery system is longer than that of UDDI server,
because UDDI is centralized design to reduce query
time, and keyword-based query of UDDI costs less
time than semantic matching. Anyway, the precision of
our approach is much better than that of UDDI.

5.2. Recall and Query Time

It is the P2P topology that affects the recall of
query. If the query is forwarded to every peer group,
the recall is 100%, but this will cause network
congestion and cost much time. To reduce network
overhead and query time, the query should be
forwarded to the groups with similar description. It is
very important to make peers with similar description
form in one group.

The P2P topology is decided by the clustering of
peer keyword vectors, in other words, it is decided by
the plain text description of Web services. We can get

plain text description from the total 1000 WSDL files,
but since they belong to many different domains, the
clustering of these files is not good. At the end, to
simulate the plain text description of Web services and
make them clustering, we generate 2000 text files; each
text file describes one Web service. Every 40 text files
are put in one peer, then there are totally 50 peers. In
order to make the peers clustering, the 2000 text files
were generated like this:

1) We got a word set of 5075 words from
dictionary.

2) The 5075 words were divided into 10 sets. Each
set had about 600 words.

3) Each set generated 200 text files, and each text
file had 50 words randomly selected from the 600
words.

Every 40 text files in one set were put in one peer,
so there are five peers having the text files from one
set. This made these five peers have similar VP (peer
vector), and form into one peer group finally. There
were totally 10 peer groups.

We put all these 2000 text files for 50 peers in
Planet-lab to test the query time and recall. The query
text is that: “The Web services are about travel, which
help me to book flight ticket, reserve room in hotel,
reserve car, or even forecast the weather.”

The same query was committed 5 times, and got the
result as following.

Table 2. Recall and Query Time
Recall 0.14 0.28 0.44 0.61 0.75 1.00 Query1
T i m e 312 609 656 1219 1984 2015
Recall 0.14 0.31 0.44 0.61 0.75 1.00 Query2
T i m e 360 485 531 594 953 1922
Recall 0.14 0.31 0.44 0.50 0.67 1.00 Query3
T i m e 391 750 1079 1891 1922 2000
Recall 0.14 0.31 0.44 0.58 0.75 1.00 Query4
T i m e 344 563 594 781 1375 1594
Recall 0.14 0.31 0.44 0.61 0.75 1.00 Query5
T i m e 328 546 640 953 1125 1187

According to above table, every query reaches the
recall of 75% in no less than 1984ms. At the time of
1000ms, the averaged recall is about 56%. This means
that 56% matched Web services return in one second.
Since each peer should set a time interval to get the
returned service, the setting of 2000ms should
guarantee 100% matched services to return. Because
Planet-lab is a real Internet environment, our P2P
semantic discovery system proves its efficiency in the
Internet.

5.3. Recall and Scalability

2007 International Conference on Parallel Processing Workshops (ICPPW 2007)
0-7695-2934-8/07 $25.00 © 2007

With the quantity of peer increases, scalability of
the discovery system may affect the recall. To simulate
the discovery system in large scale peers, we generated
plain text description of Web service like section5.2
for 100 peers, 1000 peers and 2000 peers respectively.
Section4.4.1 details the layer one searching which will
decide the quantity of the peer groups to forward the
query. Forwarding query to less peer groups may
improve the performance of service discovery, but it
may lead to low recall. Search scale is the quantity of
peer groups chosen to forward the query compared to
all peer groups. According to different search scale of
layer one searching, we committed five queries and get
the average recall for different scale of 100 peers, 1000
peers and 2000 peers accordingly.

Figure 3. Recall and Search Scale

From above figure we can see that the three curves
are very near, that means the recall increases similarly
while the peer number increases. When the search
scale is only 20%, the recalls of the three scales are
more than 85%. In other words, with the network
overhead in 20% peer groups, the discovery system can
get 85% recall. The increasing of peer number doesn’t
affect the recall so much, because the P2P network is
structured with groups; and new peer may add to the
most similar peer group. So, the discovery system is
scalable while keeping a good recall.

6. Conclusion

In this paper, we have investigated the issue of Web
service discovery. We have proposed an approach for
discovering semantic Web services in P2P network.
Web services are deployed and published in same Web
server, and description of Web services in OWL-S file
and plain text are generated and stored in P2P network.
We present a 2-layers searching algorithm to control
the message forwarding complexity in P2P network.

Experimental and simulative results show our
approach’s precision, recall, query time and scalability.
By analysis of the performance, we observed that the
system has good efficiency and scalability.

7. References

[1] K. Sivashanmugam, K. Verma, A. Sheth, J. Miller.
Adding Semantics to Web Services Standards.
Proceeding of the 1st International Conference on Web
Services (ICWS'03), Las Vegas, Nevada ,June 2003,
pp.395 - 401.

[2] U. Thaden, W. Siberski, W. Nejdl, A Semantic Web
based Peer-to-Peer Service Registry Network, Technical
Report, Learning Lab Lower Saxony, 2003.

[3] D. Roman, H. Lausen, U. Keller, et al. D2v1.1. Web
Servcie Modeling Ontology (WSMO), WSMO Working
Draft 10 October 2004. http://www.wsmo.org/2004/d2/
v1.1/20041010/.

[4] S.M. Kim, M. Rosu.b A survey of public Web servcies.
WWW2004, NY, USA, May 2004, pp. 312-313.

[5] D. Zhang, J. Li, B. Xu. Web Service Annotation Using
Ontology Mapping. Proceeding of IEEE International
Workshop on Service-Oriented System Engineering,
Beijing, China, Oct 2005.

[6] A. Ankolekar, M. Burstein, J. Hobbs, et al. DAML-S:
Semantic markup for Web services. Proceeding of the
First International Semantic Web Working Symposium
(SWWS): Infrastructure and Applications for the
Semantic Web, Stanford University, CA, USA, 2001,
pp. 411--430.

[7] N. Srinivasan, M. Paolucci, K. Sycara. Adding OWL-S
to UDDI, implementation and throughput, SWSWPC
2004 6-9, 2004, San Diego, California, USA.

[8] K. Verma, K. Sivashanmugam, A. Sheth, et al.
METEOR–S WSDI: A Scalable Infrastructure of
Registries for Semantic Publication and Discovery of
Web Services, Journal of Information Technology and
Management, 2004.

[9] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.
Semantic Matching of Web Services Capabilities.
Proceeding of the 1st International Semantic Web
Conference (ISWC), Sardinia, Italia, June 2002, pp.
333-348.

[10] P. Zhang, J. Li, K. Wang. Discovery and Query: Two
Semantic Processes for Web Services. The 5th IFIP
conference on e-Commerce, e-Business, and e-
Government (I3E 2005), Poznan, Poland, Oct 2005.

[11] G. Salton, C. Buckley. Term-Weighting Approaches in
Automatic Text Retrieval. Information Processing&
Management, 24(5), pp. 513-523, 1988

2007 International Conference on Parallel Processing Workshops (ICPPW 2007)
0-7695-2934-8/07 $25.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

