

Automatic Service Composition Using AND/OR Graph

Yixin Yan, Bin Xu, Zhifeng Gu
Department of Computer Science and Technology

Tsinghua University, Beijing, 100084, China
{yanyx, xubin, gzf}@keg.cs.tsinghua.edu.cn

Abstract
As SOC and Web service technology become more widely
used, large amounts of services need to be efficiently and
effectively composed to meet complex businesses. In this
paper, we proposed an approach to resolve the
composition problem over large-scale services. We used
an inverted table as index for a quick service discovery,
and applied a Service Dependency Graph (SDG) and an
AND/OR graph as the algorithm basis for parallel
compostion. Considering the semantic information
described in Web service, our approach also recognizes
and transmits the semantic relationships described in
Web Ontology Language (OWL).

1. Introduction

Service Oriented Computing (SOC) is changing the
way of conventional software designing and realization.
And Web services technology, which is self describing,
cross platform and loose coupling, is the basis to SOC for
both its realization and popularization. Today, Web
services over the Internet are used more frequently in real
life, and the amount of them is growing rapidly, e.g.
Amazon and ebay provide online product information to
their potential consumers through Web services.

As more businesses could be executed through Web
services, the requirement of Web service discovery and
automatic service composition become larger. Service
discovery and composition have become the most
improtant research topics in SOC. Especially for large-
scale Web services, the research on effective composition
method with high efficiency is a critical challenge.

On the other hand, semantic composition becomes the
trend of the web technology development. Many
ontologies have been defined, created and used in various
research fields and applications. However, the existing
Web Service Description Languages and service
composition methods can not give semantic information a
full support for recognizing and transmitting.

In this paper, we propose a service discovery and
composition model based on the AND/OR graph to
resolve the semantic composition problem. We focus on

both the parallelizability discovery and the efficiency of
the algorithm over large-scale Web services. Section 2
presents the related work of service composition. Section
3 introduces related concepts and definitions including
service dependency graph (SDG). In section 4 we present
our approach of service composition. At last, we give the
conclusion and future work.

2. Related Work

Many works on service discovery and automatic
composition have been done based on the I/O data and
the semantic information of services.

Liang [1] proposed a semi-automated method for
service composition. The main idea is to construct an
AND/OR graph form a service dependency graph (SDG),
applying a bottom-up search algorithm REV* to find a
sub-graph for the solution. It is a effective method to find
executions on parallel, but it didn’t consider the scale of
the services. Besides, there have been many research on
AND/OR graph searching such as AO* algorithm (A.
Martelli, 1978) [4] [5]. Gu [2] presented a fast service
composition model using a inverted table to index the
services. [2] also proposed a method to handle the
semantic relationship between I/O data.

Based on the previous work mentioned above, this
paper presents a continued and improved method for
service composition. In addition, our new algorithm has
the following improvement:

● Search for the solution with parallel execution.
Compared to the linear composition algorithm applied to
the prior competitions, we use a graph to represent the
solution for specified request, which can ignore some
constraints on I/O to obtain more effective composition
with high-level parallel executions.

●Fully support to the recognization, conversion and
usage of semantic information, inheritance relationships
between concepts, relationships between instances and
concepts, etc., which are described in an OWL format.

● New evaluation function for the solution is applied,
helping to improve the composition efficiency and
accuracy.

1530-1354/08 $25.00 © 2008 IEEE

DOI 10.1109/CEC/EEE.2008.45

335

10th IEEE Conference on E-Commerce Technology and the Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-Services

1530-1354/08 $25.00 © 2008 IEEE

DOI 10.1109/CEC/EEE.2008.45

335

10th IEEE Conference on E-Commerce Technology and the Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-Services

1530-1354/08 $25.00 © 2008 IEEE

DOI 10.1109/CEC/EEE.2008.45

335

3. Definitions

In this section, we introduce the concepts and
definitions related to the composition algorithm which
will be discussed in the next section. For the convenience
of discussion and the understanding of the concepts, here
we give three assumptions in the paper. 1) The terms of
“Web service” and “service” have the same meaning. 2)
A composed service is considered as a service, they have
the same definition, see section 3.2. 3) A service has and
only has one operation.

3.1. Service Model

The service composition task proposed by WS-
Challenge is basically based on the input and output data
of the given Web Services. That is, for a particular
service, we consider it as a black box which receives an
input message and generate an output message, ignoring
the other information provided in the WSDL such as
namespace, binding, etc. Thus, a service can be simply
defined as an I/O pair:
Definition 1 Service = { , } where inD outD

inD = { | the input data of service}, id id ∈

outD = { | the output data of service}. id id ∈
Besides, WS-Challenge adopts the semantic concepts

as an enhancement to the syntactic based composition.
The extended semantic relationship, classes and
subclasses, between messages are described in an OWL
file. And a Web service with a semantic extension is so-
called a “Semantic Web Service”. For example, if a
service takes a parameter which is an instance of class X,
and X has a subclass Y indicated in the OWL, then it will
be considered a valid case if an instance of class Y is
taken as the parameter designed for X. So we extend the
I/O pair to { , } relying on the semantic
extension:

inD' outD'

Definition 2 Service = { , } where inD' outD'

inD' = { | service input data or the sub-classes
extended from the input data},

id id ∈

outD' = { | service output data or the super-
classes got form the output data}.

id id ∈

Similarly, a Request can be defined as:
Definition 3 Request = { , } where inR' outR'

inR' = { | provided data by the requestor or the
sub-classes extended},

id id ∈

outR' = { | required data by the requestor or
super-classes extended}.

id id ∈

Accordingly, we give the below statement to determine
whether a found service satisfies a given request:
Statement 1 A Service { , } satisfies a Request

{ , } iff they satisfy the restriction

and

inD' outD'

inR' outR' inin RD '' ⊆

outout RD '' ⊇ .

3.2. Service Dependency Graph

In Figure 1, service A and B are linked with directed
arrows through a data node ‘d4’ which the former service
generates and the later one consumes. We call two
services which have this kind of relationship have
dependency. And if all the given services are linked and
represented using dependencies, we call it a services
dependency graph (SDG).

Considering the semantic extension, we use broken
line arrows to indicate the inheritance relationship
between data nodes. In figure 1, ‘d5’ is a subclass of ‘d6’,
so ‘d5’ can be taken as the parameter of service B.

Fig.1 Example of Service Dependency Graph (SDG)

4. Service Composition Approach

In this section, we propose the search algorithm that
finds a composed service with parallel optimization
satisfying the given request. In section 4.1, we will
introduce the further formalization of service dependency
graph. In section 4.2, an efficient indexing method of
large-scale Web services is described. Section 4.3 gives
the core search algorithm.

336336336

4.1. Generate AND/OR Graph

In the service dependency graph (SDG), there are
several obvious regulations. 1) Any path of the SDG
consists of two kinds of nodes which always alternate in
the path. 2) We call a service is satisfied when all the
income lines (inputs) is satisfied. 3) In a found solution,
it’s not necessary to satisfy all the income lines of an OR
data node. For example, ‘d4’ is used in path from Service
A to B regardless of Service C in figure 1.

Based on the above features in the SDG, we can
generate a specified AND/OR graph using the following
rules respectively:

● Map a service node to an AND node.
● Map a data node to an OR node.
● Add a dummy AND node { , null} to the graph

to connect all the requested data nodes by the user
().

inD'

outin RD '' =
● Collect all the data nodes provided by the user as the

target set.

4.2. Indexing of Large-scale Services

WS-Challenge provides a large amount of candidate
Web services. So it becomes very important to build a
high performance index for service lookup. In our
approach, the index of services is constructed as an
inverted table. It can be explained as a map from the I/O
data to the services which generate the data. Using the
inverted table, it will return all the involved services
through a given I/O data very quickly.

Besides, in order to meet the requirement of semantic
extension, we consider the super class of an output data
of a service as the output data of the service as well. Thus,
it will not be necessary to consider the semantic
relationship separately in the search algorithm.

4.3. Composition Algorithm

For a given request (defined in Definition 3), the task
proposed by WS-Challenge is to find a composed service
(defined in Definition 2) that satisfies the request (defined
in Statement 1).

Before presenting the search algorithm, we first
discuss the feasibility of the algorithm based on the
AND/OR graph generated from the SDG described in
section 4.1. In fact, it is easy to prove that a solution is a
sub-graph of the AND/OR graph which starts from the
dummy AND node { , null} and ends at the target set

 presented in figure 2. Because all the required data
nodes are connected to the dummy AND node
(), they are satisfied iff the starting node is

satisfied (

inD'

inR'

outin RD '' =

outinout RRD ''' =⊇). On the other hand, we

mean the sub-graph ends at the target set by .
Then we have proved the equivalence of the sub-graph
and the solution service.

inin RD '' ⊆

Fig.2 A solution from AND/OR graph

One of the aims of this paper is to find the optimal

service composition solution from a given set of services.
Commonly, the more services a solution calls, the more it
will cost in time. And the more inputs a service takes, the
harder it can be satisfied. So it would be reasonable to
define a cost of a service and a cost of data in order to
represent the cost of the solution. In this task, we simply
assign a fixed cost c_s on each AND node except for the
dummy starting node and another fixed cost c_d for each
OR node except for the nodes in the target set. Using the
cost values, our algorithm will find the smallest cost
solution if existed for a given request.

First, we mark every element in the target set as
‘RESOLVED‘ because these are the given inputs by the
requestor, and other nodes are marked as
‘UNRESOLVED‘. Any AND node is modified as
‘RESOLVED‘ iff every its input node is marked
‘RESOLVED‘. Any OR node will be modified as
‘RESOLVED‘ iff its producer AND node is marked
‘RESOLVED‘. We define graph G for recording the
nodes and the path of the solution. G contains the starting
dummy node and an empty path initially. Actually G
could be thought as a changing directed sub-graph of the
AND/OR graph.

337337337

Algorithm for Service Composition
1. //add(s, G), s is the starting node
2. init_graph(G);
3. Until s is marked "RESOLVED", begin
4. //find a node to expand
5. node n = find(G);
6. //expand node
7. expand(n, G);
8. //modify cost, link and mark
9. void modify(n, G);
10. end begin//end loop

11. /* function: bottom-up modify costs, links and marks
12. of the nodes recursively*/
13. void modify(n, G){
14. if n == s then
15. return;
16. end if
17. modify_mark(n);
18. modify_cost(n);
19. modify_link(n);
20. foreach parent p of n do
21. modify(p);
22. end for
23. }//end modify

The algorithm starts from G. Repeatedly get an
‘UNRESOLVED‘ node from G accroding to the current
path pointers. Expand the node and add the new
generated nodes to G. Modify the
‘UNRESOLVED‘ mark if possible. Then modify the cost
of all related node in the solution path recursively. We
define the cost modification formulas as follows:

{ }⎪⎩

⎪
⎨
⎧

=
∑

nodeORisnPCost

nodeANDisnICost
nCost

iPproducer

Iinput
i

i

i

,}{max

,)(
)(

When the cost modification is finished, redirect the
current path pointer. Repeat the loop until all the nodes of
G is marked as ‘RESOLVED‘, otherwise, claim no
solution. The sequential nodes directed by the path
pointers in G is a solution with a minimum cost.

At the end, we represent the found solution to a
process flow format such as a WSBPEL document
defined by WS-Challege.

5. Conclusion, Analysis and Discussion

Our approach is based on an AND/OR graph, and the
found solution is a directed sub-graph of the given
services. Branches, which contain at least one AND node,
flowing out from a node can be executed in parallel.

Another quest proposed is semantic composition. Our
search model supports the discovery and transmitting of
the ontology information described in an OWL format.

Considering the composition efficiency, we adopt a
fast service discovery method using an inverted table
mapping each attribute to its owner services.

However, there still have some problems and
improvements to be realized before applying our
approach to practical use:

● The functionalities of services are not considered in
our composition method. Obviously, this will cause
confusion when two services take and generate exactly
the same types of data. To avoid the confusion, other
information besides I/O data must be used. Actually, this
problem is still a critical challenge.

● Parallel evaluation on a solution can be taken as the
heuristic information in the algorithm. However, there’s
not a benchmark for evaluating a composed service and
the composition itself that is widely accepted. For our
algorithm, how to balance getting the best solution
against getting all the solutions also depend on future
experiments.

6. Acknowledgement

This work is supported by China National High-Tech
Project (863) under grant No.2007 AA 010306 and China
Postdoctoral Science Foundation under the grant No.
20070410061.

7. References

[1] Q. A. Liang and S. Y.W. Su. AND/OR graph and
search algorithm for discovering composite web services.
International Journal of Web Services Research, 2(4):48 –
67, 2005.

[2] Zhifeng Gu, Bin Xu and Juanzi Li. Inheritance-Aware
Document-Driven Service Composition. CEC/EEE’07,
page 513, Tokyo, Japan, 2007. IEEE Computer Society.

[3] M. Aiello, C. Platzer, F. Rosenberg, H. Tran, M.
Vasko, and S. Dustdar. Web service indexing for efficient
retrieval and composition. In CEC/EEE’06, page 63, Los
Alamitos, CA, USA, 2006. IEEE Computer Society.

[4] Patrick Henry Winston. Artificial Intelligence (3rd
edition), Addison Wesley, page94, May 10, 1992.

[5] A. Martelli and U. Montanari, Optimizing decision
trees through Heuristically guided search. Commun.
ACM., vol. 21, no. 12, pp. 1025–1039, 1978.

338338338

