
Automatic Service Composition Based on Enhanced

Service Dependency Graph

Zhifeng Gu∗, Juanzi Li∗, Bin Xu∗

∗Department of Computer Science and Technology

Tsinghua University, Beijing, 100084, China

Email: {gzf, ljz, xubin}@keg.cs.tsinghua.edu.cn

Abstract— Service dependency graph (SDG) is an AND/OR
graph showing input output dependencies among service oper-
ations. As dependencies in an SDG are indirectly expressed by
reasoning on data models used by service interface definitions,
their re-usability and expressiveness are limited. In this paper,
we propose an enhanced version of service dependency graph,
namely SDG+. SDG+ enhances SDG with explicit dependency
declaration, which expresses dependencies directly with static
explicit declarations. Based on SDG+, we developed our au-
tomatic service composition algorithm for WS-Challenge 2007,
which wins the championship of composition efficiency in the
competition.

I. INTRODUCTION

Service-oriented computing (SOC), which has been widely

accepted as the next generation programming paradigm, de-

fines promising technologies that enable future computing

models over the Internet. Among various service tasks, service

composition plays a central role. The research of service

composition covers a variety of topics, among which automatic

composition is a big branch. Automatic service composition

(a.k.a service synthesis) aims to create service compositions

that can satisfy given constrains such as temporal behaviors

[1] [2], pre/post conditions [3] [4], or input/output documents

[5] [6].

The automatic composition problem defined by WS-

Challenge 1 requires the inputs of a service operation to be

satisfied by the outputs of other service operations, which

is quite fit to be modeled by a service dependency graph

(SDG) proposed by Liang [5]. After applying SDG to solve

the WS-Challenge problem, we noticed that, as dependencies

in SDG are implied by data model used by service interface

definitions, we have to construct dependencies dynamically in

our algorithm by reasoning on the data model, which occupies

a big part of the overall time cost. It is obvious that according

to one dataset (i.e. a set of services), the corresponding SDG

is fixed, so the process of dependency construction can be

shared among every run of the algorithm on this dataset. Based

on this idea, we propose the concept of explicit dependency

declaration, which records dependencies as static declarations

and allow them to be re-used in subsequent runs of the

algorithm.

At the same time, we noticed that the expressiveness of

implied dependency is very limited. This is can be explained

1http://www.ws-challenge.org/

from the following aspects: 1) it may introduce many depen-

dencies that make no sense; 2) it cannot assign customized

semantics to a dependency; 3) it cannot distinct dependencies

among abstract service interfaces and dependencies among

service instances; 4) it does not well support dependencies

that require message transformation. While all these problems

may be solved by explicit dependency declaration, so we think

explicit dependency declaration would not only benefit our

algorithm for WS-Challenge, but also other services tasks that

are using data dependencies among services.

The rest of this paper is organized as follows. In section

II we give a brief introduction to SDG. Before introducing

SDG+, we first define some concepts in section III. In section

IV we address the problems exposed in SDG, and give the

corresponding solutions in SDG+. The application of SDG+

is also discussed in this section. Section V gives an XML

representation for explicit dependency declaration. Section

VI introduces our automatic service composition algorithm

for WS-Challenge 2007, which takes advantage of explicit

dependency declarations in SDG+. Finally, in section VII, we

draw a conclusion.

II. A BRIEF INTRODUCTION TO SDG

SDG [5] [7] is a AND/OR graph that shows all the possible

input-output dependencies among different services. Within

SDG, services are modeled as operation nodes with an input

set and an output set, which contains attributes as their

elements. Attributes are abstraction of data entities/objects. An

attribute can be a simple attribute or a composite attribute.

Composite attribute is composed of a set of simple attributes

and composite attributes, while simple attribute is logically

atomic. Using SDG, for each service, we can find all the

services that produce at least one attribute in its input set.

Correspondingly, we can find all the services that take at least

one attribute in its output set as the input attribute.

Figure 1 gives an illustration of an SDG, represented in an

AND/OR graph. In the figure, the attribute node, represented

with a circle, is OR node, which means all the directed

edges connected to it are logically ORed. The operation node,

represented with a rectangle, is AND node, which means

all the directed edges connected to it are logically ANDed.

An intuitive explanation is that all the input data have to

be available before the operation can be performed. On the

2008 IEEE International Conference on Web Services

978-0-7695-3310-0/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWS.2008.68

246

other hand, a particular attribute node can be produced by any

operation node that has the attribute node in its output set.

Regarding composite attribute, it can be decomposed into

sub-attributes which can then be fed into operation nodes.

However, there is no such an assumption that the aggregation

of all the sub-attributes is semantically equal to the composite

attribute, so a composite attribute cannot be solved by solving

all of its sub-attributes. For example, in figure 1, a5 cannot be

solved by solving a7 and a8.

Fig. 1. An example of SDG

Given a set of known attributes and a set of required

attributes, Liang has introduced a search algorithm to construct

composite service templates, which is a subgraph of the

AND/OR graph. The search algorithm is started from the

starting node, which is an AND node, and is connected with

all the required attribute nodes. It terminates at the termination

node, which connects to all the known attribute nodes, and is

considered to be solved.

The algorithm will find a solution graph with minimal cost

(a minimal number of operation nodes and data nodes). When

a solution graph is found, it is presented to the requester for

evaluation. If the requester rejects the solution, the search

algorithm will be applied again to find another solution graph.

If no solution graph can be found or the requester rejects all

the solution graphs, some “to-be-explored” operation nodes

that can directly or indirectly produce required attributes will

be added. After the operation nodes are added, the search

algorithm will be applied again.

As a summary, in Liang’s work, the procedure to find a

composite service consists of two parts: 1) an automatic search

algorithm and 2) human evaluation. Thus, it is called a semi-

automatic procedure.

Liang’s method is essentially a document-driven method for

service composition, and it mainly focuses on the efficiency

of the search algorithm. This is quite similar to the works [8]

[9] [10] of WS-Challenge2. WS-Challenge defines syntactic

composition and semantic composition problems, and requires

2http://www.ws-challenge.org/

competitors to solve the problems as quick as possible. We are

one of the competitors, and the work introduced in [10] is the

origin of this paper.

III. CONCEPTS OF DEPENDENCY

In this section, we will discuss and define the concepts of

dependency. In our work, we define two types of dependency:

1) attribute dependency and 2) operation dependency. First,

we give the definition of attribute dependency.

Definition 1: An attribute dependency is a relationship be-

tween an operation and an attribute, or between two attributes.

It has three forms:

• An attribute dependency from attribute a to operation p,

which means p produces attribute a, denoted p → a.

• An attribute dependency from operation p to attribute a,

which means p consumes attribute a, denoted a → p.

• An attribute dependency from a′ to a through transfor-

mation T , which means attribute a′ can be obtained from

a by applying T on a, denoted a
T
−→ a′.

Corresponding to attribute dependency, operation depen-

dency is a relationship between two operations. It actually

indicates a data flow from one operation to another. We give

the following definition of operation dependency.

Definition 2: An operation dependency is a data flow be-

tween two operations. It consists of five parts:

• A producer operation p′.

• A consumer operation p.

• An attribute a′ produced by p′.

• An attribute a required by p.

• An attribute transformation T that transform a′ to a.

We denote it as p′
a′Ta
−−−→ p. If a′ = a, the denotation can be

simplified as p′
a
−→ p.

In Liang’s work, the concept of “dependency” is similar to

the definition of operation dependency in this paper. How-

ever, Liang uses the concept of composite attribute instead

of attribute transformation as introduced in section II. It is

obvious that to extract a sub-attribute from a given attribute

is a special form of attribute transformation. So we think that

attribute transformation is a more general way than composite

attribute to express the relationship between two attributes. In

practice, attribute transformation can be implemented as XSLT

or XPATH.

So far we have given the definition of attribute dependency

and operation dependency. Note that, in service composition,

what we are really interested in are operation dependencies,

so, for conciseness, the term “dependency” will be used to

indicate operation dependency in the following text. This is

consistent to the convention in Liang’s work.

From the definition, we can see that given the following

data dependencies: p′ → a′, a′
T
−→ a and a → p, we can

construct a dependency p′
a′Ta
−−−→ p. Furthermore, given a

set of attribute dependencies, denoted Da, we can construct

a set of dependencies, denoted P (Da), by applying the

above rule. Figure 2(a) and 2(b) gives an example of Da

and P (Da) respectively. We say this is an implicit way to

247

(a) Da (b) P (Da) (c) Dp

Fig. 2. Attribute dependency and operation dependency

specify dependencies, and dependencies in P (Da) are called

implicit dependencies. Correspondingly, an explicit way to

specify dependencies is to give a set of dependencies directly,

denoted Dp, and the dependencies in Dp are called explicit

dependencies. It is obvious that the expressiveness of the

explicit way is stronger than that of the implicit way. For

example, figure 2(c) gives a dependency set Dp that cannot

be expressed in an implicit way. On the reverse direction,

as P (Da) itself is a set of dependencies, it can always be

expressed in an explicit way.

The implicit way for dependency specification is actually

based on such an assumption that if two operations are

syntactically matched, the data flow between them should

work. However, in practice, this assumption is very likely to

be broken due to some interoperability issues. So we think

explicit dependency declaration is necessary in real world

applications.

IV. SDG+: THE ENHANCED SDG

A. Problems and Solutions

In this section we will introduce SDG+, the enhanced SDG.

First, we will discuss our motivation, the problems exposed in

SDG.

First SDG lacks of quantification for attributes. In SDG,

there are two types of attribute: simple attribute and complex

attribute. Simple attribute is a data entity/object that has a

system pre-defined primitive data type, and complex attribute

is composed of a set of simple and composite attributes.

We think the expressiveness of this data model is not strong

enough to handle certain requirements. For example, there are

two operations: one provides a hotel search service that returns

a list of hotel objects; the other provides a hotel reservation

service that takes a hotel object as the input. In this case, the

relation between a hotel object and a list of hotel objects can

not be expressed. As a result, if there is not an operation that

takes the list as the input and returns one hotel object from the

list, these two operations are unable to be composed, although

actually they are highly interrelated.

Second, there is no mechanism to explicitly specify depen-

dencies. In SDG, all the dependencies are specified in the

implicit way. As discussed in section III, implicit dependency

specification is a very coarse-grained mechanism to express

dependencies. An operation producing attribute a will intro-

duce a dependency with every operation consuming a, so that

some general attributes, such as address and dimension, will

lead to a large number of dependencies, many of which are

meaningless. In order to solve this problem, Liang proposed

the concept of “service category” to reduce the number of

implied dependencies. On the other hand, implicit dependency

specification may lose dependencies that actually exist. For

example, suppose a1 and a2 are two different attributes of the

same concept/ontology, in SDG, an operation producing a1
will not be recognized as a possible precedent of the operations

consuming a2. To avoid this problem, Liang assumes “an

integrated ontology space”, so that each service operation

name and data entity name in SDG represents a unique concept

in the integrated ontology space. We think the underlying

cause of these two problems is that these is not a mech-

anism to explicitly specify dependencies (including attribute

transformations). In our work, we allow explicitly specifying

dependency in service definition. This will be introduced in

detail in the following text.

Fig. 3. Definition, implementation, instance and data-source

Third, the issues on instance-level are not concerned in

SDG. Generally speaking, an abstract service definition may

have several implementations, and each implementation may

have several instances deployed, as shown in figure 3. Thus,

it is possible that some combinations of service instances will

fail to work as expected, due to:

• The broken conformance of implementations. As the

abstract definitions of real-world services are compli-

cated, it is usually unable to completely check the confor-

mance of an implementation. Without sufficient testing,

an arbitrary combination of service instances of different

implementations cannot be guaranteed to work properly,

even though they should work from the viewpoint of the

abstract design.

• Unshared data source. The back-end data sources of

different service instances may be different across com-

248

panies and organizations. For example, an ID generated

by a service of company A is very likely to be invalid in

the scope of the services of company B.

In Liang’s work, these issues are not explicitly addressed,

instead, an abstract service definition, its implementations and

its instances are considered as a whole, but not distinguished.

Aiming the problems listed above, we propose the following

enhancements respectively.

First, we define the following quantifiers for attribute:

• 1 (one and only one)

• + (one or more)

• * (zero or more)

• ? (optional, zero or one)

These quantifiers are the same as those of RELAX-NG and

DTD. Thus, in SDG+, each directed edge has a quantifier

associated with it, as shown in figure 4(a). If no quantifier

is specified, the default quantifier is 1 (one and only one).

With this enhanced data model, the relationship between hotel

(a hotel object) and hotel* (a list of hotel objects) can be

formally expressed. As a result, SDG+ is able to exploit

more dependencies among service operations. For example,

in SDG+, operations producing hotel* may be considered as

dependencies of operations requiring hotel, while in SDG, this

is irrealizable.

Second, we allow explicit dependency declaration in ser-

vice definition. Each service definition may contain a list

of dependencies. In SDG+, explicit specified dependency is

represented by a directed edge between two operations, as

shown in figure 4(b). The start of the edge is labeled with the

output attribute and the quantifier. Correspondingly, the end of

the edge is labeled with input attribute and the quantifier. If

the input attribute and the output attribute are not matched, an

attribute transformation is required, and it should be labeled

on the middle of the edge. The quantifiers of the input/output

attributes are not required to be matched. Note that, in figure

4(b), both op3 and op1 may contain the specification of the

dependencies between them. As a result, these two versions

may be inconsistent. This brings a research topic regarding the

management of dependencies.

Third, we classify dependencies into two levels: abstract-

level and instance-level, as shown in figure 4(c). Abstract-level

dependency is defined on abstract service definitions, while

instance-level dependency is defined on service instances. We

prescribe that an instance-level dependency must be an oper-

ation dependency. As instance-level dependency records the

interoperability between service instances, defining attribute

dependency on instance-level makes no sense.

An important feature of instance-level dependency is that

we allow a modifier associated with each instance-level de-

pendency. In figure 4(c), the modifier associated with the

dependency from p2 ins1 to p3 ins1 is F , which means this

is actually a broken dependency. We use different arrows to

represent different modifiers, for example, a hollow arrow

indicates F . Currently three modifiers are defined: F (Fail), S

(Success) and M (Mandatory). If no modifier is specified, S is

the default. F means at least one failure of the dependency has

been reported. S is the negative of F . It does not guarantee

the correctness of the dependency, but means no error case

has been reported. M means the “to” operation exclusively

depends on the “from” operation.

As a summary, in SDG+, we have the following types of

dependencies:

• Instance-level dependencies, e.g. p2 ins1 ∗
a2
−→
F

? p3 ins1

in figure 4(c).

• Abstract-level dependencies, e.g. p2 ∗
a2
−→? p3 in figure

4(b).

• Dependencies implied by service definitions and data

models (i.e. the original SDG)

The priority of these dependencies is from high to low. In

another word, when we look up dependencies, instance-level

dependencies have the highest priority, and should be searched

first, and then abstract-level dependency, and last the implied

dependencies.

B. Discussion

As SDG+ is an extension of SDG, Liang’s search algorithm

may be applied on SDG+ with slight modifications. We need to

compare the quantifiers of the attributes to be produced and to

be consumed, and make decision according to a given policy.

Policy is defined as a boolean function M(qout, qin). If the

function returns true, the input and the output are considered

to be matched, and the search algorithm will continue on the

current search path; otherwise, it will select another path. A

simple policy maybe defined as:

M(qout, qin) =

{

true if qout = qin

false if qout 6= qin

In this case, the search result will be the same as it in SDG.

A reasonable policy may be defined as:

M(qout, qin) =

true if (qout = +) ∨
(qout = ∗ ∧ qin 6= +) ∨
(qout = 1 ∧ qin 6= + ∧ qin 6= ∗) ∨
(qout = ? ∧ qin = ?)

false others

However, we think the application of SDG+ and explicit

dependency is not limited in automatic service composition

algorithms. We think explicit dependency declaration provides

a way for service designers, service providers and service

consumers to record and share empirical knowledge. Ser-

vice designers may specify abstract-level dependencies in

their designs. Service providers may specify instance-level

dependencies in their published service descriptions. Finally,

service consumers may extract dependencies from successful

compositions, and save them into their local knowledge base.

Dependencies can be considered as a distributed service

recommendation and discovery mechanism. Compared with

centralized service discovery mechanisms such as UDDI,

service dependency is more scalable owing to its distributed

natures. As services are maintained by service providers inde-

pendently, the maintenance cost is distributed to every service

249

(a) (b) (c)

Fig. 4. The enhancements

provider. However, as the maintenance cost of the centralized

service discovery mechanisms is usually centralized into one

or several organizations, it will become a bottle neck when

the number of services gets large.

V. XML IMPLEMENTATION FOR EXPLICIT DEPENDENCY

DECLARATION

A. Specify Dependency with XML

In this section, we describe how to specify dependency with

XML.

As introduced in section IV-A, an explicit dependency is a

dependency defined on abstract-level or instance-level. It can

be generally expressed as p′ q′
a′Ta

−−−−−→
modifer

q p, in which, p

and p′ are two operations; a′ is one of the outputs of p′; a

is one of the inputs of p; q and q′ are quantifiers of a and

a′ respectively; modifer only makes sense when this is a

instance-level dependency. These concepts are mapped to web

services through the following table.

Abstract-level Instance-level

p, p′ portType/operation service/port/operation

a, a′ part + auto-recognition part + auto-recognition

q, q′ auto-recognition auto-recognition

a(a′) XPATH or XSLT XPATH or XSLT

modifer N/A <any>

TABLE I

CONCEPTS MAPPING

The attribute and its quantifier of a message part are
auto-recognized by analyzing the schema. Note that WSDL
supports two different binding styles: document and RPC [11].
This leads to two different styles for the definition of message
part, shown as follows:

<!-- document style -->

<part name="arg" element="tns:ElementName"/>

<!-- RPC style -->

<part name="arg" type="tns:TypeName"/>

If definition of TypeName and ElementName is in the following
form:

<xsd:complexType name="TypeName">

<xsd:sequence>

<xsd:element name="sub-item"

minOccurs="..." maxOccurs="..."/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="ElementName" type="TypeName"/>

Then, the attribute is recognized as sub-item, and the quantifier

is recognized by applying the following rules on the minOc-

curs and maxOccurs attributes:

1) if (minOccurs=0 and maxOccurs=1) q =?
2) if (minOccurs=1 and maxOccurs=unbounded) q = +
3) if (minOccurs=0 maxOccurs=unbounded) q = ∗
4) otherwise q = 1

Otherwise, the attribute is recognized as the part itself, and

the quantifier is recognized as 1. In practice, the structure

of schema maybe very complicated. The above rules may

fail to recognize quantifiers as expected. In this case, explicit

declaration of attributes and the associated quantifiers will be

needed.

Listing 1 gives two dependencies that are specified on

instance-level and abstract-level respectively. These two de-

pendencies are corresponding to the dependencies from p2
to p3 and from p2 ins1 to p3 int1 in figure 4(c). The

specification of a dependency mainly consists of two parts:

the src element and the des element. The src element specifies

the source operation and attribute. Correspondingly, The des

element specifies the destination operation attribute.

The dependencies in listing 1 are very primitive forms. In

practice, we need some extended features to enhance and ease

the specification of dependency. We give a brief discussion

about two of them here.

The first feature is the type attribute of element src and des.

Currently, we only support the value webservice, which means

the enclosed description is about a web service. However, this

attribute may indicate different endpoint types when being

assigned other values. For example, it may indicate an XML

stream processor when the value is “xmlsp”. Also it may

indicate a standard testing suite of a certification center to

show the compatibility (or in-compatibility) against the testing

suite.

The second feature is abbreviation rules for dependency

specification. Defining dependency is sometimes a repetitious

job, especially when there are numbers of service instances of

the same service definition. In order to enable more compact

specification of service dependency, we may define some

250

<dependency l e v e l =” a b s t r a c t ”>
<s r c t y p e =” w e b s e r v i c e ”>

<p o r t T y p e>ns :por tTypeName1< / p o r t T y p e>
<o p e r a t i o n>O p e r a t i o n 1< / o p e r a t i o n>

<p a r t>P a r t 1< / p a r t>
< / s r c>
<des t y p e =” w e b s e r v i c e ”>

<p o r t T y p e>ns :por tTypeName2< / p o r t T y p e>
<o p e r a t i o n>O p e r a t i o n 2< / o p e r a t i o n>

<p a r t>P a r t 2< / p a r t>
< / des>
< t r a n s f o r m>

<x p a t h> /AAA/BBB< / x p a t h>

< / t r a n s f o r m>

< / dependency>

<dependency l e v e l =” i n s t a n c e ”>
<s r c t y p e =” w e b s e r v i c e ”>

<s e r v i c e>examples< / s e r v i c e>

<p o r t>p t 1 p o r t< / p o r t>
<o p e r a t i o n>O p e r a t i o n 1< / o p e r a t i o n>

<p a r t>P a r t 1< / p a r t>
< / s r c>
<des t y p e =” w e b s e r v i c e ”>

<s e r v i c e>examples< / s e r v i c e>

<p o r t>p t 2 p o r t< / p o r t>
<o p e r a t i o n>O p e r a t i o n 2< / o p e r a t i o n>

<p a r t>P a r t 2< / p a r t>
< / des>
< t r a n s f o r m>

<x p a t h> /AAA/BBB< / x p a t h>

< / t r a n s f o r m>

< f a i l />
< / dependency>

Listing 1. Specify dependency with XML

abbreviation rules. For example, we may omit the operation,

message and part elements to cover all the possible depen-

dencies between the specified services (or instances). Also we

may allow each dependency containing multiple src and des

elements, and each pair of src and des is considered as an

independent dependency. This will effectively reduce the size

of dependency specification.

B. Embed Dependency into WSDL

Although the specification of dependency is independent to

service description, we think it is better to embed dependency

into service description to reflect the relation between them.

Fortunately, the extensibility of WSDL provides an easy way

to do the integration.

A WSDL document can be logically divided into three

parts [12]: XML schema, abstract description and concrete de-

scription. XML schema defines concepts/types in the domain,

and should be fully shared and re-used. Abstract description

includes definitions of portType, operation and message. It

may import several XML schemata. Concrete description,

containing definitions of binding, service and port, describes

service instances of the imported abstract description. Ob-

viously, the our two-level dependency model is well very

matched to this logical structure. Figure 5 gives a illustration

of the integration model.

Fig. 5. Embed dependency into WSDL

Technically, the W3C schema of WSDL [13] allows certain

WSDL elements containing extensibility elements. However,

the WS-I Basic Profile 1.1 defines more relaxed extensibility

rules. That is, every WSDL element may have extensibility

elements and extensibility attributes. As we use WSDL4J,

an implementation of JWSDL 1.1 that supports the WS-I

extensibility rules, we can put dependency elements under any

WSDL elements.

There are two ways to embed dependency in WSDL. The

first is in-line embedding. In this way, we put dependency

declarations (see listing 1) directly under WSDL elements.

In principle, dependencies can be put under any element of

WSDL. However, as a convention, abstract-level dependencies

should be specified under portType or operation, and instance-

level dependencies should be specified under port . The other

way is specifying dependencies in external files, and import

these files in WSDL. The import statement looks like,

<import-dep file="abstract-deps.xml"/>

VI. ALGORITHM FOR WS-CHALLENGE 2007

Now, let’s go back to our original motivation, to develop an

high performance algorithm for WS-Challenge 2007.

A. Introduction to WS-Challenge

WS-Challenge is a competition of automatic service compo-

sition organized by annual conference of CEC/EEE. The goal

of the challenge is to find all the composition solutions that

satisfy given conditions as quick as possible. Each composition

solution is a service chain as shown in figure 6. The following

conditions are hold for every chain: 1) the input set of WSk

are contained by the union of the input and the output set of

WSk−1; 2) the input set of WS1 is contained by input; 3)

the output set of WSn contains output, the required document

set.

B. Optimization Solution

As we introduced in section I, in order to find the precedent

services of a given service in the service chain, we have to fre-

quently lookup services according to their output documents.

251

Input WS1 WS2 WSn
Output

Fig. 6. Service chain

So the key to the performance of the composition algorithm

lies on an operation that retrieves all the services that can

produce a given document.

In this paper, we take our algorithm for WS-Challenge

2006 as the baseline algorithm. In the baseline algorithm, all

the services are stored and indexed in a inverted table that

uses document as its key. Given a document, the algorithm

retrieves all the service that can produce it efficiently by

looking up in the inverted table. For each service in the service

chain as shown in figure 6, its precedents can be obtained

by intersecting the looking up result of each of its input

documents.

Here we use explicit dependency declaration to optimize

the baseline algorithm. The process of looking up inverted

table is actually a process that construct dependencies. Having

the concept of explicit dependency declaration, we are able

to move this process into a pre-process algorithm, and share

dependencies in subsequent runs of the algorithm. In detail,

we developed an pre-process algorithm that constructs input

dependencies for each services, and store these dependencies

into a file for reuse. For performance concern, we did not seri-

alize dependencies as XML segments, but they are essentially

the same.

With the pre-process algorithm, the optimized algorithm

may eliminate the time cost for looking up the inverted

table, and the performance of the algorithm will obviously

be improved. Of course, the pre-process algorithm also takes

time, so from the viewpoint of one time run, the optimized

algorithm has no advantage; however, the output of pre-process

algorithm can be reused. According to the same dataset, once

the pre-process is finished, all the subsequent requests may

be optimized. So, the advantage of the optimized algorithm

will show with the increase of run times. According the

competition rule of WS-Challenge, every request will be run 5

times, so this optimized algorithm is valid from the viewpoint

of the competition.

C. Experiment Result

We use four datasets of previous WS-Challenge to evaluate

the optimized algorithm. The hardware platform is Celeron

1G, 512M RAM, and the software environment is Debian

Sarge. All the time is retrieved through the “gettimeofday”

API.

The statistic information of the four datasets is shown in

table II. The first two datasets comes from WS-Challenge

2005, the last two datasets comes from WS-Challenge 2006.

WS-Challenge 2005 does not support document inheritance in

XML Schema, so the “Inheritances” values of the first two

datasets are zero. The pre-process time cost of each dataset is

given in the last column. Note that the given value does not

include the time to parse the dataset.

Dataset Services Inheritances Pre-process

composition1-20-32 2156 0 25694 us

composition2-100-32 8356 0 92341 us

composition config small 118 1560 3918 us

composition config large 978 979650 298 ms

TABLE II

THE DATASETS

The experiment results are shown in figure 7. We can see

that there is no significant improvement on efficiency for the

first two datasets, while for the last two datasets from WS-

Challenge 2006, the improvement is quite impressive. This is

within our expectation. According to previous introduction, the

chief difference of the optimized algorithm from the baseline

algorithm is that the time cost for looking up the inverted table

is eliminated, so the ratio of this part of time cost within the

whole time cost determines the effect of the result.

As the datasets from WS-Challenge 2005 do not support

document inheritance, the algorithm only need to look up the

inverted table one time for each input document of a service

in the chain, when it tries to obtain all the precedents of the

service. At the same time, the inverted table is optimized with

hashing, so the complexity of lookup operation is nearly a

constant. As a result, the ratio of time cost for looking up

the inverted table is quite small, and the advantage of the

optimized algorithm vanishes.

However, the datasets from WS-Challenge 2006 support

document inheritance. For each document, we need to lookup

not only the services that can produce the document itself,

but also all the services that can produce any documents

inherited from the document. In this case, the number of

lookup operation is increased rapidly. Especially in the last

dataset, there are nearly one million inheritance relationships,

and the inheritance tree may have thousands of extended

documents. This makes the ratio of time cost for looking up

the inverted table increased greatly, so this time the optimized

algorithm beats the baseline algorithm with an overwhelming

victory. Also we can see that, for datasets of WS-Challenge

2006, the time cost saved by the optimized algorithm is able

to compensate the pre-procoss time cost (see table II) within

one or two runs.

WS-Challenge 2007 supports document inheritance, and

shares the datasets with WS-Challenge 2006, so this optimized

algorithm is valid, and finally wins the championship of

composition efficiency in the competition.

VII. CONCLUSION

In this paper, we propose an enhanced version of SDG,

namely SDG+. We first clarify the concepts of attribute depen-

dency and operation dependency. Then, we list the problems

exposed in SDG, and propose SDG+ to solve these problems.

Further, we discuss how to take advantage of SDG+ in service

252

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 3 4 5 6 7 8 9 10 11

T
im

e
 (

u
s
)

Query No.

composition1-20-32 (2156/0)

Baseline
Optimized

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 3 4 5 6 7 8 9 10 11

T
im

e
 (

u
s
)

Query No.

composition2-100-32 (8356/0)

Baseline
Optimized

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 3 4 5

T
im

e
 (

u
s
)

Query No.

composition_config_small (118/1560)

Baseline
Optimized

 0

 100

 200

 300

 400

 500

1 2 3 4 5 6 7 9 10 11 12

T
im

e
 (

m
s
)

Query No.

composition_config_large (978/979650)

Baseline
Optimized

Fig. 7. Experiment Results

composition. As SDG+ is an extension of SDG, the original

search algorithm based on SDG can be applied on SDG+

with slight modifications. At last, we developed an automatic

service composition algorithm for WS-Challenge 2007 based

on SDG+. The efficiency of this algorithm is significantly

improved with the adoption of explicit dependency declaration

when dealing with datasets containing complex inheritance

hierarchies.

VIII. ACKNOWLEDGMENT

This work is supported by National Basic Research

Program of China (973) under grant No.2007CB310803

and China National High-Tech Project (863) under grant

No.2007AA010306. This work is also inspired by the WS-

Challenge competition.

REFERENCES

[1] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Me-
cella, “Automatic composition of e-services that export their behavior,”
in Service-Oriented Computing - ICSOC 2003, ser. Lecture Notes In
Computer Science. Berlin: Springer-Verlag Berlin, 2003, vol. 2910,
pp. 43–58.

[2] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella,
“ESC: A tool for automatic composition of e-services based on logics
of programs,” in the 5th VLDB International Workshop on Technologies

for e-Services (VLDB-TES 2004), 2004.

[3] S. R. Ponnekanti and A. Fox, “SWORD: A developer toolkit for web
service composition,” in the Eleventh International World Wide Web

Conference, Honolulu, HI, 2002.

[4] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, “Composing web
services on the semantic web,” The VLDB Journal, vol. 12, no. 4, pp.
333–351, 2003.

[5] Q. A. Liang and S. Y. W. Su, “AND/OR graph and search algorithm
for discovering composite web services,” International Journal of Web

Services Research, vol. 2, no. 4, pp. 48 – 67, 2005.
[6] S.-C. Oh, D. Lee, and S. R. T. Kumara, “Web service planner (WSPR):

An effecttive and scalable web service composition algorithm,” Interna-

tional Journal of Web Service Research, vol. 4, no. 1, pp. 1–23, Jan-Mar
2007.

[7] Q. Liang, L. N. Chakarapani, S. Y. W. Su, R. N. Chikkamagalur,
and H. Lam, “A semi-automatic approach to composite web services
discovery, description and invocation.” International Journal of Web

Services Research, vol. 1, no. 4, pp. 64–89, 2004.
[8] M. Aiello, C. Platzer, F. Rosenberg, H. Tran, M. Vasko, and S. Dust-

dar, “Web service indexing for efficient retrieval and composition,” in
CEC/EEE’06. Los Alamitos, CA, USA: IEEE Computer Society, 2006,
p. 63.

[9] S.-C. Oh, H. Kil, D. Lee, and S. R. T. Kumara, “Algorithms for web
services discovery and composition based on syntactic and semantic
service descriptions,” in CEC/EEE’06. Los Alamitos, CA, USA: IEEE
Computer Society, 2006, p. 66.

[10] B. Xu, T. Li, Z. Gu, and G. Wu, “SWSDS: Quick web service discovery
and composition in SEWSIP,” in CEC/EEE’06. Los Alamitos, CA,
USA: IEEE Computer Society, 2006, p. 71.

[11] R. Butek, “Which style of WSDL should I use?” 24 May 2005.
[Online]. Available: http://www-128.ibm.com/developerworks/library/
ws-whichwsdl/index.html?S\ TACT=105AGX52\&S\ CMP=cn-a-ws

[12] S. Tyagi, “Patterns and strategies for building document-based web
services,” Sep 2004. [Online]. Available: http://java.sun.com/developer/
technicalArticles/xml/jaxrpcpatterns/

[13] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web
Services Description Language (WSDL) 1.1,” March 2001. [Online].
Available: http://www.w3.org/TR/wsdl

253

