
A QoS-Driven Approach for Semantic Service Composition 
 

Yixin Yan, Bin Xu, Zhifeng Gu, Sen Luo 
Department of Computer Science and Technology 

Tsinghua University 
Beijing, 100084, China 

{yanyx, xubin, gzf, luos}@keg.cs.tsinghua.edu.cn 
 
 

Abstract—Semantic information, which is well-regulated 
and easy to be retrieved, has greatly enriched the 
expressive ability of the Web. These advantages can be 
applied in Web Services to meet the increasing 
complexity of Web applications. In this paper, we 
propose a service composition approach. It combines the 
large-scaled Web Services and semantic information 
which is described in WSC’09. Besides, QoS has become 
a critical issue to evaluate the performance of Web 
applications. Being different from improving the QoS of 
single services, our approach focuses on the overall QoS 
of the service composition. The algorithm shows that the 
semantic information based and QoS driven approach 
improves the efficiency and QoS performance of service 
composition.  

Keywords-service composition; QoS; semantic information 
integration 

I.  INTRODUCTION 
Semantic Web has become a hot research topic in the 

past few years. With structured/semi-structured semantic 
information, it helps to construct a more understandable 
Internet environment as well as an easier way for Human-
Computer interaction. And one of the most important targets 
is to turn the semantics from implicit to explicit, e.g. in the 
form of ontology. So most researchers in this field focus on 
the database, data mining and information retrieval 
technologies based on the semantic Web. 

On the other hand, Web Service has become a popular 
technology in system design and implementation along with 
the development of SOA. It changes the behaviors of the 
Web from providing static information to providing services. 
Therefore, Web Service should support the analyzing, 
processing and transferring of semantic information [1]. 

However, as the business requirements become more 
complex, a single service usually cannot satisfy them. But 
meanwhile, the number of Web Services is also rapidly 
increasing, so the composition of Web Services provides a 
way to solve the problem. In this paper, we introduce a 
method for Web Service composition which is different from 
traditional ways. Especially, our method focuses on the 
following three aspects. 

• Large-scale Web Service composition. The biggest 
challenge of handling a large number of services is 

the efficiency, e.g. real-time service composition in 
online search systems. 

• Semantic information integration. WSC’09 provides 
a formal description of semantic information using 
Web Ontology Language (OWL) where two 
relationships of data and concept are recorded, i.e. 
class and sub-class; instance and concept. 

• The QoS of the service composition. 
The quality of service (QoS) is involved as an index to 

evaluate the efficiency of composition result in WSC’09. In 
practice, QoS is always a critical challenge of Web Services. 
Actually, many researchers from both colleges and industries 
doubt the efficiency of SOAP and proposed many methods 
to improve quality of services. E.g. reduce the number of 
functions in a Web Service in order to release the resource 
which is occupied by the agent to the client in time; or 
optimize the XML format including the data compression 
algorithm, XML parser, XML tags, etc. 

However, in the problem of service composition, the 
quality of composite result rather than the quality of single 
service seems to be more important. Because services, which 
act as elements in the composite system, must coordinate to 
finish a given task, so the QoS of the composite system is 
more relevant with the composition structure than the QoS of 
single service [2, 3]. E.g. when several services are invoked 
in parallel, the bottleneck of response time will be the 
slowest service. But when the invocations are in a sequence, 
every service will affect the whole QoS. In fact, WSC’09 
defines two popular indexes to evaluate the QoS of the 
composition system: response time and throughput. In this 
paper, we will introduce how to balance the topological 
structure and QoS performance of service composition. 

The rest of this paper is organized as follows. Section 2 
describes the problem proposed in WSC’09 and an overview 
of our approach. Section 3 detailedly presents the algorithm 
in a three steps search. Section 4 introduces the related works 
about QoS driven Web Services technologies. Section 4 
gives the conclusion and future works. 

II. OVERVIEW 

A. Problem Overview 
In previous ws-challenge competitions, a Web Service is 

defined by its input and output data. Additionally, QoS is 
introduced into the service model this year. So, a Web 
Service can be represented as, 

2009 IEEE Conference on Commerce and Enterprise Computing

978-0-7695-3755-9/09 $25.00 © 2009 IEEE

DOI 10.1109/CEC.2009.44

523



 
 

It is important to emphasize that the service defined 
above can represent not only a single Web Service, but also a 
composition of Web Services. So service is an extended 
concept in the problem. Besides, as semantic information of 
services is denoted as class and sub-class relationship 
between the I/O data types, { , } can be extended to 

{ , } as follows, 
inD outD

inD' outD'

inD'  = { |  Input data or the sub-classes extended}, id id ∈

outD'  = { |  Output data or its super-classes}. id id ∈
A request can be defined with { , } which has 

the similar meaning with { in , out }. If a service is 
determined by a given request, it means  
and . 

inR' outR'
D' D'

inin RD '' ⊆
outout

In order to evaluate the QoS of service composition, 
response time (R) and throughput (T) is introduced into the 
service model. The QoS index of the Web Service is 
indicated in a WSLA file. Based on the BPEL described 
composition result, WSC’09 defines the evaluation rules: For 
sequence A which consists of A1, A2, …, An; flow B which 
consists of B1, B2, …, Bn; Case C which consists of C1, 
C2, …, Cn, 

RD '' ⊇

 

 
Given all the available Web Services and their QoS index, 

the target is to find a service composition to satisfy a certain 
request, at the same time, with the lowest response time and 
highest throughput. 

B. Approach Overview 
Based on the request defined in the last section, we 

proposed a QoS-driven approach for semantic service 
composition. It contains three steps, shown in Figure 1, 
which ensures a result with good QoS performance can be 
found in a low cost of time. 

 

Service = { inD , outD , R, T} where 

inD = { id  | id ∈  Input data of the service}, 

outD = { id  | id ∈  Output data of the service}, 
R = Response time measured in milliseconds, 
T = Throughput measured in invocations per second. 

Figure 1.  algorithm overview: 3 steps search 

Generally speaking, the composition result can be 
regarded as a sequence with complex inner structure. 
According to the QoS evaluation rules Eq1 and Eq2, it is 
obvious that the longer the sequence is, the longer the 
response time will be. In contrast, if a sequence path is short, 
it means more parallel invocations exist in the solution. The 
same explanation can be applied in another index of QoS—
throughput using Eq4 and Eq5. So the first step of our 
approach is a breadth-first search which finds the shortest 
path in global to satisfy the request. 

Furthermore, when comparing the QoS of two Flows, the 
one which contains fewer invocations is more likely to have 
lower response time according to Eq2. Thus, in the second 
step, i.e. semantic optimization, the semantic information 
helps to cut redundant services so as to further minimize the 
response time. At the same time, the throughput will be 
enlarged according to Eq5. 

Actually, the previous two steps ignore the QoS 
differences among different Web Services, but stand on the 
approximate estimation of QoS. The motivation of doing that 
is to reduce the search space of the third step, i.e. QoS 
optimization, and get a higher efficiency of the algorithm. So 
in the third step, we use the QoS index of the Web Services 
which is indicated in the WSLA file to refine the search 
result. Obviously, this approach cannot guarantee that the 
solution with the best QoS performance can be found. So 
when there is a solution with better QoS index outside the 
space determined by the first two steps, an automatic 
backtracking process will take place to enlarge the search 
space until the solution or a better one is found (shown by 
the broken arrows in Figure 1). 

According to our preliminary experiments, the three steps 
algorithm ensures both the accuracy and efficiency of the 
search process. 

1)()(
0

EqARAR
n

i
i∑

=

=

2)}(),...,(),(max{)( 21 EqBRBRBRBR n=
3)}(),...,(),(min{)( 21 EqCRCRCRCR n=
4)}(),...,(),(min{)( 21 EqATATATAT n=
5)}(),...,(),(min{)( 21 EqBTBTBTBT n=
6)}(),...,(),(max{)( 21 EqCTCTCTCT n=

III. QOS-DRIVEN SEMANTIC SERVICE COMPOSITION 
This section presents how our approach ensures the 

efficiency and effectiveness in a three steps search on the 
problem of service composition in WSC’09. 

In fact, considering the entire efficiency, a pre-processing 
of data is done in the very beginning [4]. In the composition 
algorithm, we build an inverted table as the index for the data. 
And three kinds of relationship are recorded in it: 1. 
Relationships between data which are described in OWL; 2. 
Relationships between data and Web Services which are 
described in OWL; 3. QoS of Web Services which is 
described in WSLA. The index accelerates the composition 
process. 

According to the semantic feature of data and the QoS 
evaluation baseline, we divide the composition task into 
three steps: 1. Top-down and breadth-first searching in the 
whole space; 2. Bottom-up optimization based on the 

524



semantic information; 3. QoS optimization based on step 2 
and each Web Service’s QoS index. 

The problem of service composition can be regarded as a 
typical search problem on AND-OR graph [5]. Based on the 
service dependency graph (SDG), different optimization 
targets can be achieved through different strategies. A typical 
algorithm for AND-OR graph searching is AO*. However, 
AO* has two shortcomings: 1. AO* can only find one 
solution while we have two optimization targets, i.e. 
response time and throughput. Moreover, these two targets 
may conflict with each other. 2. The search speed is slow 
using AO*. A large-scale data set usually leads to a long 
sequence in the solution. So if we directly use the heuristic 
search, there will be many judgments and jumps inside the 
search process which make the efficiency low. 
 

 
Figure 2.  two expressions for a service composition: graph and sequence 

Therefore, directly applying AO* to our problem cannot 
ensure the efficiency and the effectiveness. So we adopt a 
top-down and breadth-first search algorithm. A solution is 
represented by a sequence of layers instead of an AND-OR 
graph. See Figure 2. 

To prove the two expressions logically equal to each 
other, we define a relationship between Web Services as {P, 
S} pairs where P represents the predecessor of S. A {P, S} 
pair means Web Service P directly invokes Web Service S. 
Accordingly, we define Set(P) which contains all P in all the 
{P, S} pairs. Circularly scan Set(P), for any Web Service W 
in Set(P), if W has not predecessor or all its predecessors 
have been marked as ‘true’, then W is marked as ‘true’. Until 
all Web Services in Set(P) has been marked ‘true’, the 
sequence will be valid solution. E.g. we can get 5 {P, S} 
pairs: {S2, S5}, {S4, S2}, {S4, S5}, {S1, S2}, {S3, S4}. 
Figure 3 shows the process how to find an execution 
sequence. 

Based on the above proof, our algorithm ensures the 
correctness of the result. Besides, the length of the result 
sequence will be the shortest. Starting with the provided data 
of the request, the algorithm finds all the covered Web 
Services, adds them into the first layer and then adds the 
output data of them into an available data set. Continuing the 
process until all the required data of the request is covered. 
See Listing 1. 

 
Figure 3.  find a sequence equivalent to the graph 

 
Listing 1: Step 1 — Bread-first entire search 
1.  while (!all request data are available) { 
2.      //get a new layer 
3.     Layer new_layer = dig(); 
4.     add_to_solution(new_layer); 
5.      //check if the solution satisfies the request 
6.      if(cover_quest()) 
7.          break; 
8.      if(!solution_exist()) 
9.  exit(1); 
10.  } //end loop: solution found 
 
11.  //function: search in a new depth 
12.  Layer dig() { 
13.     Layer new_layer; 
14.     //search availble services 
15.     foreach unused ws { 
16.         if(is_ws_available(ws)) 
17.       new_layer.add(ws); 
18.      } 
19.      return new_layer; 
20.  } //end function 
 

According to the algorithm, for any a Web Service in the 
solution, assume it belongs to the kth layer, then it can not 
belongs to the first k-1 layers in other solutions. That is 
because every layer in the solution has covered all possible 
invocations. The proof in details is ignored because of the 
limitation of pages. As mentioned in section 2, given the 
other conditions constant, the shorter the solution is, the 
better the paralleled feature will be. 

The optimization in the second step focuses on how to 
decrease the number of services. Listing 2 shows how 
semantic relationship between data is used to cut redundant 
Web Services. First, define a predictive minimum data set 
for the solution and initial it with the required data. Then, 
search from bottom to up, if a data type can be provided by 
several services, select one of them and add its inputs into 
the minimum data set. Same process continues until the top 
layer is finished. After the semantic optimization, lots of 
redundant services are eliminated so as to ensure the QoS in 
every layer. 

525



Listing 2: Step 2&3 — Semantic & QoS Optimization 
1.  Solution optimization() { 
2.     //record the global min set of available data 
3.     Map min_data; 
4.     //initial min_data: key<-required data; value<-false 
5.     init(min_data); 
6.     foreach layer in the solution { 
7.        //record the refined layer 
8.        Layer min_service; 
9.        while ((data = min_data.next) != null) { 
10.           //indicate the data has been handled 
11.           data.value = true; 
13.           //covered by the request data 
14.           if(covered(data)) 
15.              continue; 
16.  //get a service with the best QoS in current layer 
17.   Service s = get_best_service(data, layer); 
18  min_service.add(s); 
19.  //enlarge the min_data with the data in 
20.  //the input list of the service 
21.   min_data.add(s.input_list); 
22.       } //end loop: current layer refinement finish 
23.       //update the current layer with fewer services 
24.       updata_layer(layer, min_service); 
25.    } //end loop:solution refinement finish 
26. } //end function 
 

The third step, i.e. the QoS optimization, focuses on the 
QoS index of each different Web Services. The 17th line in 
Listing 2 indicates the process of QoS optimization. In the 
search algorithm, the best service is selected from many 
candidate Web Services according to the QoS. However, a 
good QoS of current layer does not always leads to a good 
QoS of the entire solution. So we need to use backtracking 
until the best or a relative good solution is found. 
Furthermore, the backtracking may return to the first step, 
i.e. breadth-first search, in order to get a larger solution 
space.  

Because response time and throughput are two different 
and irrelevant QoS indexes. It is hard to optimize both of 
them at the same time. So in our approach, they are 
separately considered using different search process. 

IV. RELATED WORKS 
Zeng [6] proposed a global planning approach for 

service composition to optimize multiple criteria of QoS. 
Through linear programming methods, it can handle 
multiple execution paths. Zeng’s method focuses on the 
dynamic selection of Web Services in the runtime while our 
approach is static selection based on the data set. 

Because of the disadvantages of UDDI (e.g. nearly half 
of the entries in UDDI are unavailable), Ran suggests 
extending the model of Web Service in [7]. Through adding 
the role of QoS certifier in service level, it ensures the QoS 
requirements of the service provider. 

V. CONCLUSION AND FUTURE WORKS 
We propose a service composition approach which 

makes use of the QoS and semantic relationship of Web 
Services. By this approach, a service composition with good 
QoS performance can be found through layered and 
backtracking search. Besides, the future improvement can 
focus on the I/O number of services. If a service requires 
many inputs, it seems to be harder to satisfy. In contrast, if a 
service can provide lots of data, it will easily have lots of 
successors. Another concern is the semantic complexity of 
data and concepts. If a concept acts as many others’ father 
node, it is easy to get; otherwise, it will be hard to be mapped 
to other data types. 

ACKNOWLEDGMENT 
This work is supported by China National High-Tech 

Project (863) under grant No. 2009AA01Z120 and No. 
2007AA010306. 

REFERENCES 
[1] E Sirin, James Hendler Semi-automatic Composition of Web Services 

using Semantic Descriptions. Modeling, Architecture and 
Infrastructure workshop in ICEIS 2003. 

[2] L Zeng, Benatallah, B. QoS-aware middleware for Web Services 
composition. IEEE Transactions on Software Engineering. Volume 
30, 2004 

[3] Gerardo Canfora. An approach for QoS-aware service composition 
based on genetic algorithms. The conference on Genetic and 
evolutionary computation.2005 

[4] Zhifeng Gu, Bin Xu and Juanzi Li. Inheritance-Aware Document-
Driven Service Composition. CEC/EEE’07, page 513, Tokyo, Japan, 
2007. IEEE Computer Society. 

[5] Y Yan, B Xu and Z Gu. Automatic Service Composition using 
AND/OR Graph. CEC/EEE’08, page 335, Washington D.C. 2008. 
IEEE Computer Society. 

[6] L Zeng, B Benatallah. QoS-Aware Middleware for Web Service 
Composition. IEEE Transactions on Software Engineering, Vol. 30, 
No. 5, May 2004. 

[7] Ran, Shuping: A Model for Web Services Discovery With QoS. 
ACM 2003. 

 

526


