
An Efficient QoS-driven Service Composition Approach for Large-scale
Service Oriented Systems

Bin Xu, Yixin Yan
Department of Computer Science and Technology, Tsinghua University
Tsinghua National Laboratory for Information Science and Technology

Beijing, 100084, China
{xubin, yanyx}@keg.cs.tsinghua.edu.cn

Abstract—QoS (Quality-of-Service) has become a critical issue
to guarantee the performance of service oriented systems
(SOS). However, efficient ways to build SOS with required
QoS are still being developed. In most cases of SOS, developers
are more concerned on the service functionalities than QoS. In
this paper, we propose a QoS-driven service composition
approach to efficiently build SOS with optimal QoS. We show
that, under certain conditions, the problem of QoS
optimization can be solved by dynamic programming. The
experiment results show that our approach can be used to solve
large-scale service composition problem effectively and
efficiently with QoS guaranteed.

Keywords - service composition; quality of service; large-
scale services; dynamic programming;

I. INTRODUCTION

As SOS becomes more widely adopted, a large number
of services are composed from distributed software systems
to handle complex processes in many business fields. At the
same time, QoS has become a critical issue to guarantee the
performance of SOS. Users usually prefer to use a system
with better QoS.

While developing SOS, developers may have multiple
choices for one desired service. For example, to know the
weather, they can choose a weather forecast service from
either Yahoo or Google. For an individual service, its QoS is
often determined by its network conditions or the capability
of servers, and thus may be difficult to improve. On the other
hand, since an SOS consists of many services each with
multiple candidates, the QoS of SOS can be improved by
selecting services.

So far, efficient service composition algorithms that build
SOS with required QoS are still difficult to find. In this paper,
we study the following problem: given a set of available
services, how to efficiently build a QoS-guaranteed SOS.
There are four reasons why this task may be difficult:
1. The number of services on Internet grows very fast in

recent years. Meanwhile, service oriented e-business
systems have become more popular and more complex.
So an approach that can efficiently handle a large-scale
service composition for SOS is urgently needed.

2. Trade-off exists between functionalities and non-
functionalities when selecting services for SOS. For
example, when using E-Bay, people can find a wide

range of goods but sometimes have to suffer a long
network delay. In comparison, people who use local
online community market may have a limited selection
on the range of goods but do not need to worry about
network congestions. So, the problem becomes more
complex after considering the QoS in SOS.

3. Traditional service composition algorithms usually
focus only on the functionalities, such as I/O parameters.
Non-functional QoS, e.g. response time and throughput,
is often ignored, which makes the performance of SOS
quite poor.

4. Semantic information complexity grows exponentially
for computer to have a precise understanding about the
data on the Web. But there is still no effective
integration between Web services and semantic
information which makes service composition with
semantics hard to do in SOS.

To meet the challenges in building SOS, we propose a
QoS-driven service composition algorithm that can
efficiently build SOS with guaranteed QoS. The advantages
of our algorithm include the abilities to: 1) efficiently handle
large-scale service pools; this is the most important
contribution of this paper; 2) integrate semantic information
(“concepts” in ontology) with services through I/O matching
in the composition; 3) satisfy both functional and non-
functional (QoS) requirements. In this paper, we focus on
two common QoS attributes in SOS: response time and
throughput.

The rest of this paper is organized as following. Section 2
gives some preliminary definitions and a formal description
of the problem. Section 3 presents the composition algorithm.
Section 4 gives the experiment strategy, data set and result
analysis. Section 5 reviews and compares the related works.
Section 6 concludes the paper and proposes future work.

II. PROBLEM DEFINITION

This section presents some basic definitions as well as
the description of the composition problem. They include the
definitions of service and SOS (functionalities and non-
functionalities), the rule how QoS is defined and calculated
in SOS and the optimization targets.

In general, a service can be developed by different
methods and deployed on different platforms. In this paper,
we define a service as:

We identify the most important features of a service

including I/O parameters and QoS. Each I/O parameter of a
service can be mapped to a concept of some ontology to
express semantic information about the service. QoS can
represent any kind of non-functional property. For simplicity,
we consider only response time and throughput in this paper.
Any service that has these features can be used in building
SOS, defined as:

From these two definitions, we can see that response time

and throughput for service and SOS are similarly defined.
Take response time as an example, the response time of a
single service means the time from sending a request to the
service to receiving the response. As mentioned in the first
section, it could be affected by network conditions or the
capability of servers where the service is deployed.
Therefore, in most cases, the response time of a single
service is difficult to improve. But the response time for a
SOS is a different story.

There are three basic flow structures in SOS including
sequence, parallel and switch (Figure 1). A sequence
consists of services that are invoked in order. A parallel
consists of services that are invoked together at the same
time. And a switch consists of services that can be
selectively invoked. Simple processes can be nested inside of
more complex processes. The whole execution plan can be
expressed in a BPEL file.

Based on the three flow structures, we adopt some widely
used QoS composition rules. Suppose sequence A consists of
A1, A2, …, An; parallel B consists of B1, B2, …, Bn; switch
C consists of C1, C2, …, Cn. Definition 3 shows how R(x)

(the response time of x) and T(x) (the throughput of x) can
be calculated. These calculating rules are used in the Web
Service Challenge competition [1] which will be further
discussed in the experiment section.

Figure 1. Three Basic Flow Structures in SOS

Since SOS can be defined as a combination of the three

structures, based on the above QoS definition and
composition rules, the QoS of SOS can be determined. For
example, in Figure 2, services C and D are invoked
sequentially to form a sequence (Sequence 4). So the
response time of the sequence (600 ms) is the sum of the
response time of service C (200 ms) and D (400 ms). If two
or more services can be chosen in a solution like services F
and G, the response time should be the smallest one (150) of
these services (300 and 150). The calculation can be
extended recursively, e.g. sequence 5 and switch 6 are
independent to each other, so they can be invoked in parallel.
Obviously, the response time of a parallel should the biggest
response times (150) of all the branches (100 vs. 150) which
can be regarded as the bottleneck of the parallel. After the
calculation, the response time of SOS in this example is
1150ms and the throughput is 7000 invocation/min.

Definition 3:

1
0

)()(Eq
n

i

iARAR 




2)}(),...,(),(max{)(21 EqBRBRBRBR n
3)}(),...,(),(min{)(21 EqCRCRCRCR n
4)}(),...,(),(min{)(21 EqATATATAT n
5)}(),...,(),(min{)(21 EqBTBTBTBT n
6)}(),...,(),(max{)(21 EqCTCTCTCT n

Definition 2:

Service-Oriented System (SOS) = { inD , outD , P, R, T}

where

inD = { id | id is an input type of the SOS, defined by some

specific concept in the ontology};

outD = { id | id is an output type of the SOS, defined by

some specific concept in the ontology};
P : the implementation of the SOS. It is an execution plan

(such as BPEL) where services can be invoked following
certain dependency rules to perform certain tasks;

R : response time - the time from receiving a request to
producing the response from SOS;

T : throughput - the number of requests a SOS can support.

Definition 1:

Service S = { inD , outD , R, T} where

inD = { id | id is an input type of the service, defined by

some specific concept in the ontology};

outD = { id | id is an output type of the service, defined by

some specific concept in the ontology};
R : response time - the time from receiving a request to

producing the response from the service;
T : throughput - the number of requests a service can support.

Figure 2. QoS Calculation for three structures in SOS

From the above discussion, we can see that the QoS of
SOS is different from that of a single service. And it is
possible for developers to improve the QoS of SOS through
selecting proper services. This is the goal of our study to find
the optimized QoS.

Given a set of available services, a user request includes
I/O parameters (inD , outD ,in Definition 2). The input data
types of the SOS are provided by the user; the output data
types and the QoS requirements of the SOS is what the users
really want. So the problem is, given a set of services and a
user request, how to find a service execution plan (P in
Definition 2) that takes the input data types and outputs the
requested data types with guaranteed QoS.

Figure 3. Example of Service Composition

Figure 3 shows an example. The user request includes the
input (data types 1, 2 and 3) and the output (data types 7 and
8). The intermediate part which is enclosed by the rectangle

box is the execution plan of services. In the plan, the
invocation of services follows certain rules. For example,
service D outputs data type 5 which is the input of service B,
so B cannot be invoked before D. And not all services are
adopted in the plan (only grey ones). The execution plan is a
service composition which we want to find out.

III. QOS-DRIVEN AND LARGE-SCALE SERVICE

COMPOSITION ALGORIGHM

There are two important properties in the composition
problem: overlapping sub-problem and optimal sub-structure.
The overlapping sub-problem property means that a big
problem can be divided into several small ones, and the
solution of a small problem can be saved in order to be
directly re-used in the following search. The optimal sub-
structure property means that, to ensure the optimization of
the whole problem, every small sub-problem must be in its
optimal state.

Based on the two properties, we propose a dynamic
programming algorithm to solve the problem of service
composition for SOS. The key ideas of the algorithm are:
1. We define a variable for every service that maintains the

best known QoS value so far for the service. When
executing the SOS, this value records the best QoS from
the beginning to where the service locates. It will be
assigned and updated while searching the optimal
composition.

2. We define a variable for every data type that maintains
the best known QoS value for the data type. When
executing the SOS, this value records the QoS from the
beginning to where the data type is produced. It will be
assigned and updated during the composition. For
example, the response time of a data type is determined
by the first service that can produce the data type. If
more than one service can produce the data type as
output, the variable records the shortest response time.

3. Concepts in ontology are used in the composition to
define the parameter types of services I/O and their type
hierarchy. Each data type of a service I/O can be
mapped to a concept. If an output data type of service A

can match an input data type of service B according to
the ontology concept hierarchy, the two services can be
connected. We say that a data type is satisfied when at
least one service can output a matched data type.
Similarly, we say a service is satisfied when all its input
parameters are satisfied.

4. We model every stage of the search process as a “small
part of the whole problem”. The optimal results of all
known sub-problems are saved and reused in the
following search. So, if every sub-problem is guaranteed

to be local optimal, the whole solution can be
guaranteed to be optimal because every service selection
is based on the states and the optimal values of previous
sub-structures.

5. We use breadth-first search to find the solution. The
QoS of services and data types are calculated and
updated in this phase. When all required output data
types are satisfied, we will produce the composition (P
in Definition 2) using a depth-first trace back.

15
Srv A

20
Srv B

35
Srv C

15
Srv D

30
Srv E

50
Srv F

5
Srv G

55
Srv H

15
Srv A

20
Srv B

35
Srv C

15
Srv D

30
Srv E

50
Srv F

5
Srv G

55
Srv H

#1 #2 #3 #4 #1 #2 #3 #4

0 0 0 00000

#5 #6 #7 #8
20 20 30 50

35
Srv A

20
Srv B

65
Srv C

65
Srv D

30
Srv E

50
Srv F

55
Srv G 55

Srv H

#1 #2 #3 #4

0 0 0 0

#5 #6 #7 #8
20 20 30 50

35 65 35 55 65

#9 #10 #11 #12 #13

35
Srv A

20
Srv B

65 65
Srv D

30
Srv E

50
Srv F

55
Srv G 55

Srv H

#1 #2 #3 #4

0 0 0 0

#5 #6 #7 #8
20 20 30 50

35 65 35 55 65

#9 #10 #11 #12 #13

#8 #9 #10

Target:
(Output)

Input:

#8 #9 #10

Target:
(Output)

found

#8 #9 #10

found

#8 #9 #10

Target (Output): found found foundfound found

Srv C

Target (Output):

4(a) 4(b)

4(c)4(d)

Figure 4. Example of How to Get the Composition Result Step by Step

Figure 4 shows an example of the search process to find
the SOS with an optimal (minimum) response time. The user
request includes the provided input data types {data type #1,
#2, #3 and #4}, required output data types {data type #8, #9
and #10} and all available services { A, B, …, H}.

The algorithm first extends services B, E and F since
they can be directly invoked using the input data types. It
then updates the QoS of these services and the extended data
types as shown in Figure 4(b). Based on the produced data
types (data type #5, 6, 7 and 8) and all previous available
data types, more services (C, A, G and D) can be extended.
The algorithm updates these services’ QoS using Definition
3. For example, the response time of C itself is 35 (in Figure
4(a)). When it is extended in the composition, the optimal
response time from the beginning of the composition to
where the service is will be based on the response time of all
its input and itself. Since the processes that make data type
#5 and #7 available can be executed in parallel, until all its

input are available service C can be invoked, so the response
time of itself is added at last, which equals to the maximum
response time of data type #5 and #7 plus 35, resulting in 65.

The algorithm continues to extend the services and
update the QoS until all required data types are covered and
no more services can be added into the composition. In
Figure 4(d), from data type #8, #9 and #10, it conducts a
trace back depth-first search to record the path of the SOS.
At this point, we know that the minimum response time of
data type #8, #9 and #10 are 50, 35 and 65 respectively. The
maximum of the three will be the minimum time we can get
all of them from the SOS.

When there is more than one services with output
matches a data type, the algorithm selects the service with
the best QoS performance. So, every extended service is
based on the optimal path which makes the whole SOS have
the best QoS performance.

The algorithm is shown on the next page.

main ()
{

Define a set “available_data”, record the data type if the service, which can output it,
is satisfied, initialize the set as blank.

Initialize the response time: zero for provided data types, infinity for others.
Initialize the throughput: infinity for provided data types, zero for others.
Define an ontology tree to record the ontology concepts and their relationship.

while solution is not found or still have available services
{

List<Service> current_layer;
foreach unused service s
{

if s can be invoked/satisfied
{

current_layer.add(s);
updateServiceQoS(s);
available_data.add(s.output);

}
}
solution.addlayer(currentlayer);

}
//generate the solution with the shortest response time
//similar to generate the solution with best throughput
print("<parallel>");
foreach required datatype d

traceback(d);
print("</parallel>");

)

void updateServiceQoS(Service s)
{ //update the QoS to ensure the sub-structure is local optimal

s.response_time = maxResponseTime(s.input_list) + s.self_response_time;
s.throughput = min(minThroughput(s.input_list), s.self_throughput);
foreach output datatype d of s
{

if d.response_time > s.response_time
{

d.response_time = s.response_time;
d.ptr_response_time_generator = s;

}
if d.throughput < s.throughput
{

d.throughput = s.throughput;
d.ptr_throughput_generator = s;

}
}

}

void traceback(DataType d)
{ //do a trace back search to output the bpel formatted solution

if d belongs to the provided data set
return;

else {
print("<sequence>\n<parallel>");
foreach d.ptr_response_time_generator.input_list di //input_list means the input data types of some service.
{

traceback(di);
}
print("</parallel>");
print("invoke " + d.ptr_response_time_generator.name);
print(</sequence>);

}
}

Do a breadth-firth search until all required data types are
covered and no more services can be used, and save the
solution. When checking whether a service is satisfied, we
use ontology mapping to check if all its input are satisfied.

Core part of the algorithm: update and save the QoS to
ensure the sub-structure is local optimal. The QoS
calculation follows the rules in Definition 3 for parallel.

Use a depth-first trace back search to generate
the solution of BPEL formats.

Service is defined in terms of Definition 1

//a data type represents an input or an output of services. It is
//assigned a variable to record its best known QoS, which has been
//explained in the above paragraph.
struct DataType
{
 //indicate the concept which the data type belongs to.
 //all concepts are defined in the provided OWL file.

Concept concept_of_datatype;

 float response_time; //indicate its current best response time

 //point to the service which generate it with best response time.

 Service ptr_response_time_generator;

 float throughput; //indicate its current best throughput.

//point to the service which generate it with best throughput.
 Service ptr_throughput_generator;

}

IV. EXPERIMENTS

A. Experiment Process

The experiments are carried out based on four input files:
1) Services.wsdl which records all available Web
services; 2) Taxonomy.owl which records all concepts in
an ontology format [2]; every input/output data type of the
Web services is defined as an instance of some concept; 3)
Servicelevelagreements.wsla which records the
QoS values (response time and throughput) of Web services
[3]; 4) Query.wsdl which records one user query
including the provided data types and required data types.

The experiment follows the requirements of the Web
Service Challenge (WS-Challenge) which is an annual
service composition competition held in the IEEE e-
Commerce conference (CEC) since 2006 [1]. It focuses on
the semantic composition of Web services and uses OWL
ontology to define services and their relationships. QoS is
also introduced into the competition in 2009. WS-Challenge
has provided a set of standard experimental tools including a
test set generator and a service composition result checker.

The test set generator is used to generate four input files
and a benchmark. The generated Web services are virtual
yet real. They are virtual since there are no actual service
implementations that can be invoked on the Internet. But
they are real in our experiment because they are consistent
with Definition 1, including I/O and QoS values. The
benchmark (a standard result) is also provided by the test set
generator and is promised to have the optimal QoS (the
shortest response time and the largest throughput). We can
evaluate our experiment result by comparing with the
benchmark.

Servicelevel
agreements

.wsla

Taxonomy
.owl

Services
.wsdl

Composition
Algorithm

Test Set Generator

WSBPEL

Query
.wsdl

Time Cost

Result Checker

Composition Result :
Response Time
Throughput

Benchmark :
Best Response Time
Best Throughput

Compare

Standard
WSBPEL

Result Checker

Figure 5. Experiment Process

We use the composition result checker provided by WS-
Challenge to check whether our composition is correct for

the request and calculate the QoS values of the composition.
Our algorithm can guarantee that the composition result has
the optimal QoS, and it has been proved by comparing the
benchmark with our results.

Figure 5 shows the experiment process. First, we use test
set generator to generate four input files for each test set.
Then our composition algorithm takes these four files as the
input and output a BPEL file as the composition result. At
the same time, we record the time cost during the
composition procedure. Finally, we use the checker to check
whether the result is correct, record the QoS values and
compare it with the standard result.

B. Experiment Settings and Results

For the experiment setting, we concern about the scale of
Web services and ontology concepts. After investigating on
the Internet, we found that the number of available Web
services is about 2000, and the Cyc ontology [4] having
about 150,000 concepts. The Cyc ontology is almost the
largest ontology, and having a set of concepts which tries to
describe universal subjects. Along with the development of
semantic Web, more and more data on Web will be
formalized and mapped to concepts of ontology. So we
integrate concepts and I/O data types together. In the
following experiment, we set the number of Web services
and concepts at the scale of investigation, or even larger.

The test set of experiments 1 is conducted by changing
the number of concepts and Web services while keeping the
ratio between them. Table I shows the test sets of
experiment 1. In test set 4, the number of concepts and Web
services are according to our investigation on the Internet.

The configuration of our test machine is: Intel Core 2
CPU 1.83GHz with 1GB RAM, and running Windows XP.

TABLE I. TEST SETS IN EXPERIMENT 1

Test Set ID
Test Sets Properties

Number of Concepts Number of Web services

1 37,500 500

2 75,000 1,000

3 112,500 1,500

4 150,000 2,000

5 187,500 2,500

 6 225,000 3,000

For the composition result of each test set, we concern

about the composition time cost and QoS values. Figure 6
shows the composition time cost for each test set. We can
see that the time complexity is linear. In most cases the time
cost is less than 1 second. Compared to Zeng’s work [5]
which is shown as the red line in the figure, our algorithm
has a much better performance on the time cost. In addition,
our experiments are based on a much larger concept scale
(concepts in a universal domain) than that in Zeng’s
experiments (concepts in a local domain), which means

under the same number of services, our experiment handles
a more complex problem.

Figure 6. Efficiency Analysis of Experiment 1

The second study is, if the number of Web services
remains the same while the number of ontology concepts
increases, how the algorithm performs. This experiment is
closer to the real world situation, because the semantic Web
is expanding rapidly and the number of Web services
becomes stable in recent years. Though there are about 2000
available Web services on the Internet, we enlarge the
number of Web services and keep it in 20000. Table II
shows the test sets for the study.

TABLE II. TEST SETS IN EXPERIMENT 2

Test Sets
Test Sets Properties

Number of Concepts Number of Web services

1 50,000 20,000

2 100,000 20,000

3 150,000 20,000

4 200,000 20,000

5 250,000 20,000

6 300,000 20,000

Figure 7 shows the composition time cost for each test

set. We can see that the time complexity is linear and all test
sets perform efficiently (less than 1.7 seconds).

Figure 7. Efficiency Analysis of Experiment 2

The third experiment is that the number of the concepts
remains the same while the number of Web services
increases. This assumption is for the future development of

Web. When most concepts are well described by ontology,
the number of Web services may increase because of new
businesses. Table III shows the test sets for this experiment.

TABLE III. TEST SETS IN EXPERIMENT 3

Test Sets
Test Sets Properties

Number of Concepts Number of Web services

1 150,000 2,000

2 150,000 4,000

3 150,000 6,000

4 150,000 8,000

5 150,000 10,000

6 150,000 12,000

Figure 8 shows the composition time cost for each test

set. We can see that when the number of concepts remains
the same, the time cost will not change significantly even
with the increase of Web services. This means our algorithm
performs stable and efficient (less than 1 seconds) under this
assumption.

Figure 8. Efficiency Analysis of Experiment 3

Table IV shows the QoS values of composition result in
the above three experiments. As we have explained above,
there is a standard result of each data set which has the
optimal QoS. And our algorithm can always guarantee that
the composition result have the optimal QoS. The values in
the table are the same with the values of the standard results.
RT means the response time measured in ms; TP means
throughput measured in the invocations per-seconds.

TABLE IV. QOS VALUES OF COMPOSITION RESULTS

Data Set
Experiment 1 Experiment 2 Experiment 3

RT TP RT TP RT TP

1 1,950 1,000 960 6,000 850 3,000

2 1,700 2,000 1,800 1,000 1,370 1,000

3 1,760 3,000 1,370 1,000 1,460 13,000

4 1,370 1,000 1,240 3,000 590 9,000

5 1,400 3,000 2,210 3,000 1,480 4,000

6 1,030 5,000 1,120 8000 890 5,000

C. Discussion

The experiments are based on the scale of a real Web.
The numbers of services and concepts in the test sets have
the same or larger scale than that on the Internet. Besides,
we propose two trends for future Web and related series of
tests. So the experiments well reflect and simulate the actual
state of the Web. And the experiment results show that our
algorithm has a very high efficiency. In most cases, a service
composition can be done in less than 1 second.

V. RELATED WORK

In the domain of automatic service composition, many
works have been done based on the input and output
parameters of services. Liang [6] proposed a semi-
automated method for service composition. The main idea is
to construct an AND/OR graph form a service dependency
graph (SDG), applying a bottom-up search algorithm REV*
to find a sub-graph for the solution. It is an effective method
to find executions on parallel, but it doesn’t consider the
scale of the services and ignore the quality of services.

Concerned with QoS of software systems, Zeng [5, 7]
proposed a global planning approach for service
composition to optimize multiple criteria of QoS. Through
integer programming, it can handle multiple execution paths.
But the disadvantage is that it can only handle small scale
service composition problem. All its experiments are based
on only dozens of candidate services. Through comparison,
our approach performs 3~5 times faster than Zeng’s method
in the large-scale service composition. Previous work like
Cardoso [8] also considers QoS in service composition but
this work doesn’t focus on dynamic service composition.

Tao [9] studied the problem of service composition with
multiple end-to-end QoS constrains. They proposed a
broker-based architecture and several efficient heuristic
algorithms to maximize the QoS. Xiao [10] also studies the
QoS in end-to-end environment and presents a MCOP
method in domain composition and adaptation problem. Tao
improves Xiao’s work to handle multiple workflows such as
parallel, conditional and loops. However, their work doesn’t
address the performance of large-scale service composition.

Alrifai and Risse [11] proposed a solution for optimizing
QoS in dynamic service selection. First, they use mixed
integer programming to find the optimal decomposition of
global QoS constraints into the local constraints. Second,
they use distributed local selection to find the best web
services that satisfy these local constraints. The
disadvantages of their work include: 1. can not find the
optimal QoS in all the experiments; 2. the composition time
in random data set is poor.

Jaeger and Ladner [14] studies how already identified
candidates, which a selection process originally has
separated out, can improve a composition with respect to
particular QoS categories. They propose a model which uses
redundant arrangements which involve the alternative
candidates so as to supplement the originally assigned
service. Some other works [12, 13] also study the QoS in
Web service composition.

VI. CONCLUSION AND FUTURE WORK

Under the hypothesis that the QoS of SOS can be
quantitatively calculated according to the included services
and their relationships, QoS based service composition
problem can be efficiently solved by our algorithm using a
dynamic programming solution. If new services are
deployed, we can also conveniently use them to refine the
composition result without redo the whole composition. The
biggest advantage is that we can handle a large-scale service
composition within a very short time.

There are still some constraints of the approach which
we want to extend on in the future. It depends on some
preconditions in practice, e.g. finding the ontology concepts
and the mapping between the concepts and service I/O;
detecting the QoS of each available service before the
composition starts. But as semantic Web develops and QoS
becomes more important in e-business, these issues may be
addressed in the near future.

ACKNOWLEDGMENT

This work is supported by China National High-Tech
Project (863) under grant No. 2009AA01Z120 and 2007AA010306.

REFERENCES
[1] Web Service Challenge. http://www.ws-challenge.org

[2] Web Ontology Language: http://www.w3.org/TR/owl-features/

[3] Web Service Level Agreements: http://www.research.ibm.com/wsla/

[4] Cyc ontology: http://www.cyc.com/cyc/technology/whatiscyc_dir/ma
ptest

[5] L Zeng, B Benatallah. QoS-Aware Middleware for Web Service Co
mposition. IEEE Transactions on Software Engineering, Vol. 30, No.
 5, May 2004.

[6] Q. A. Liang and S. Y.W. Su. AND/OR graph and search algorithm fo
r discovering composite web services. International Journal of Web S
ervices Research, 2(4):48 – 67, 2005.

[7] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng.
Quality Driven Web Services Composition. In Proceedings of the 12t
h international conference on World Wide Web (WWW), Budapest,
Hungary. ACM Press, May 2003.

[8] J. Cardoso. Quality of service and semantic composition of workflow
s. Ph.D Thesis, University of Georgia, 2002.

[9] TAO YU, YUE ZHANG, and KWEI-JAY LIN. Efficient Algorithms
 for Web Services Selection with End-to-End QoS Constraints. ACM
 Transactions on the Web, Vol. 1, No. 1, Article 6, May 2007.

[10] XIAO,J. AND BOUTABA, R. 2005. QoS-aware service composition
 and adaptation in autonomic communication. IEEE J. Select. Areas
Comm. 23, 12, 2344–2360.

[11] Alrifai, M., Risse, T. Combining Global Optimization with Local Sel
ection for Efficient QoS-aware Service Composition. WWW 2009, A
pril 20–24, 2009.

[12] Lecue, F., Mehandjiev, N. Towards Scalability of Quality Driven Se
mantic Web Service Composition. IEEE International Conference on
Web Services, July 2009.

[13] Stein, S., Payne, T.R., Jennings, N.R., "Flexible Provisioning of Web
 Service Workflows" ACM Transactions on Internet Technology, Feb.
 2009.

[14] JAEGER,M.C. AND LADNER, H. 2005. Improving the QoS of WS
compositions based on redundant services. In Proceedings of the Inte
rnationalConference onNextGenerationWeb Services Practices (NWe
SP 2005). 189–194.

