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Abstract—QoS (Quality-of-Service) has become a critical issue 
to guarantee the performance of service oriented systems 
(SOS). However, efficient ways to build SOS with required 
QoS are still being developed. In most cases of SOS, developers 
are more concerned on the service functionalities than QoS. In 
this paper, we propose a QoS-driven service composition 
approach to efficiently build SOS with optimal QoS. We show 
that, under certain conditions, the problem of QoS 
optimization can be solved by dynamic programming. The 
experiment results show that our approach can be used to solve 
large-scale service composition problem effectively and 
efficiently with QoS guaranteed. 

Keywords - service composition; quality of service; large- 
scale services; dynamic programming; 

I.  INTRODUCTION 

As SOS becomes more widely adopted, a large number 
of services are composed from distributed software systems 
to handle complex processes in many business fields. At the 
same time, QoS has become a critical issue to guarantee the 
performance of SOS. Users usually prefer to use a system 
with better QoS.  

While developing SOS, developers may have multiple 
choices for one desired service. For example, to know the 
weather, they can choose a weather forecast service from 
either Yahoo or Google. For an individual service, its QoS is 
often determined by its network conditions or the capability 
of servers, and thus may be difficult to improve. On the other 
hand, since an SOS consists of many services each with 
multiple candidates, the QoS of SOS can be improved by 
selecting services. 

So far, efficient service composition algorithms that build 
SOS with required QoS are still difficult to find. In this paper, 
we study the following problem: given a set of available 
services, how to efficiently build a QoS-guaranteed SOS. 
There are four reasons why this task may be difficult: 
1. The number of services on Internet grows very fast in 

recent years. Meanwhile, service oriented e-business 
systems have become more popular and more complex. 
So an approach that can efficiently handle a large-scale 
service composition for SOS is urgently needed. 

2. Trade-off exists between functionalities and non-
functionalities when selecting services for SOS. For 
example, when using E-Bay, people can find a wide 

range of goods but sometimes have to suffer a long 
network delay. In comparison, people who use local 
online community market may have a limited selection 
on the range of goods but do not need to worry about 
network congestions. So, the problem becomes more 
complex after considering the QoS in SOS. 

3. Traditional service composition algorithms usually 
focus only on the functionalities, such as I/O parameters. 
Non-functional QoS, e.g. response time and throughput, 
is often ignored, which makes the performance of SOS 
quite poor. 

4. Semantic information complexity grows exponentially 
for computer to have a precise understanding about the 
data on the Web. But there is still no effective 
integration between Web services and semantic 
information which makes service composition with 
semantics hard to do in SOS. 

To meet the challenges in building SOS, we propose a 
QoS-driven service composition algorithm that can 
efficiently build SOS with guaranteed QoS. The advantages 
of our algorithm include the abilities to: 1) efficiently handle 
large-scale service pools; this is the most important 
contribution of this paper; 2) integrate semantic information 
(“concepts” in ontology) with services through I/O matching 
in the composition; 3) satisfy both functional and non-
functional (QoS) requirements. In this paper, we focus on 
two common QoS attributes in SOS: response time and 
throughput. 

The rest of this paper is organized as following. Section 2 
gives some preliminary definitions and a formal description 
of the problem. Section 3 presents the composition algorithm. 
Section 4 gives the experiment strategy, data set and result 
analysis. Section 5 reviews and compares the related works. 
Section 6 concludes the paper and proposes future work. 

II. PROBLEM DEFINITION 

This section presents some basic definitions as well as 
the description of the composition problem. They include the 
definitions of service and SOS (functionalities and non-
functionalities), the rule how QoS is defined and calculated 
in SOS and the optimization targets. 

In general, a service can be developed by different 
methods and deployed on different platforms. In this paper, 
we define a service as: 



 
We identify the most important features of a service 

including I/O parameters and QoS. Each I/O parameter of a 
service can be mapped to a concept of some ontology to 
express semantic information about the service. QoS can 
represent any kind of non-functional property. For simplicity, 
we consider only response time and throughput in this paper. 
Any service that has these features can be used in building 
SOS, defined as: 

 
From these two definitions, we can see that response time 

and throughput for service and SOS are similarly defined. 
Take response time as an example, the response time of a 
single service means the time from sending a request to the 
service to receiving the response. As mentioned in the first 
section, it could be affected by network conditions or the 
capability of servers where the service is deployed. 
Therefore, in most cases, the response time of a single 
service is difficult to improve. But the response time for a 
SOS is a different story. 

There are three basic flow structures in SOS including 
sequence, parallel and switch (Figure 1). A sequence 
consists of services that are invoked in order. A parallel 
consists of services that are invoked together at the same 
time. And a switch consists of services that can be 
selectively invoked. Simple processes can be nested inside of 
more complex processes. The whole execution plan can be 
expressed in a BPEL file. 

Based on the three flow structures, we adopt some widely 
used QoS composition rules. Suppose sequence A consists of 
A1, A2, …, An; parallel B consists of B1, B2, …, Bn; switch 
C consists of C1, C2, …, Cn. Definition 3 shows how R(x) 

(the response time of x) and T(x) (the throughput of x) can 
be calculated. These calculating rules are used in the Web 
Service Challenge competition [1] which will be further 
discussed in the experiment section.  

 
Figure 1.  Three Basic Flow Structures in SOS 

 
Since SOS can be defined as a combination of the three 

structures, based on the above QoS definition and 
composition rules, the QoS of SOS can be determined. For 
example, in Figure 2, services C and D are invoked 
sequentially to form a sequence (Sequence 4). So the 
response time of the sequence (600 ms) is the sum of the 
response time of service C (200 ms) and D (400 ms). If two 
or more services can be chosen in a solution like services F 
and G, the response time should be the smallest one (150) of 
these services (300 and 150). The calculation can be 
extended recursively, e.g. sequence 5 and switch 6 are 
independent to each other, so they can be invoked in parallel. 
Obviously, the response time of a parallel should the biggest 
response times (150) of all the branches (100 vs. 150) which 
can be regarded as the bottleneck of the parallel. After the 
calculation, the response time of SOS in this example is 
1150ms and the throughput is 7000 invocation/min. 
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Definition 2: 

Service-Oriented System (SOS) = { inD , outD , P, R, T} 

where 

inD = { id  | id  is an input type of the SOS, defined by some 

specific concept in the ontology}; 

outD = { id  | id is an output type of the SOS, defined by 

some specific concept in the ontology}; 
P : the implementation of the SOS. It is an execution plan 

(such as BPEL) where services can be invoked following 
certain dependency rules to perform certain tasks; 

R : response time - the time from receiving a request to 
producing the response from SOS; 

T : throughput - the number of requests a SOS can support. 

Definition 1: 

Service S = { inD , outD , R, T} where 

inD = { id  | id  is an input type of the service, defined by 

some specific concept in the ontology}; 

outD = { id  | id  is an output type of the service, defined by 

some specific concept in the ontology}; 
R : response time - the time from receiving a request to 

producing the response from the service; 
T : throughput - the number of requests a service can support. 



 
Figure 2.  QoS Calculation for three structures in SOS 

From the above discussion, we can see that the QoS of 
SOS is different from that of a single service. And it is 
possible for developers to improve the QoS of SOS through 
selecting proper services. This is the goal of our study to find 
the optimized QoS. 

Given a set of available services, a user request includes 
I/O parameters ( inD , outD ,in Definition 2). The input data 
types of the SOS are provided by the user; the output data 
types and the QoS requirements of the SOS is what the users 
really want. So the problem is, given a set of services and a 
user request, how to find a service execution plan (P in 
Definition 2) that takes the input data types and outputs the 
requested data types with guaranteed QoS.  

 
Figure 3.  Example of Service Composition 

Figure 3 shows an example. The user request includes the 
input (data types 1, 2 and 3) and the output (data types 7 and 
8). The intermediate part which is enclosed by the rectangle 

box is the execution plan of services. In the plan, the 
invocation of services follows certain rules. For example, 
service D outputs data type 5 which is the input of service B, 
so B cannot be invoked before D. And not all services are 
adopted in the plan (only grey ones). The execution plan is a 
service composition which we want to find out. 
 

III. QOS-DRIVEN AND LARGE-SCALE SERVICE 

COMPOSITION ALGORIGHM 

There are two important properties in the composition 
problem: overlapping sub-problem and optimal sub-structure. 
The overlapping sub-problem property means that a big 
problem can be divided into several small ones, and the 
solution of a small problem can be saved in order to be 
directly re-used in the following search. The optimal sub-
structure property means that, to ensure the optimization of 
the whole problem, every small sub-problem must be in its 
optimal state. 

Based on the two properties, we propose a dynamic 
programming algorithm to solve the problem of service 
composition for SOS. The key ideas of the algorithm are: 
1. We define a variable for every service that maintains the 

best known QoS value so far for the service. When 
executing the SOS, this value records the best QoS from 
the beginning to where the service locates. It will be 
assigned and updated while searching the optimal 
composition. 

2. We define a variable for every data type that maintains 
the best known QoS value for the data type. When 
executing the SOS, this value records the QoS from the 
beginning to where the data type is produced. It will be 
assigned and updated during the composition. For 
example, the response time of a data type is determined 
by the first service that can produce the data type. If 
more than one service can produce the data type as 
output, the variable records the shortest response time. 

3. Concepts in ontology are used in the composition to 
define the parameter types of services I/O and their type 
hierarchy. Each data type of a service I/O can be 
mapped to a concept. If an output data type of service A 



can match an input data type of service B according to 
the ontology concept hierarchy, the two services can be 
connected. We say that a data type is satisfied when at 
least one service can output a matched data type. 
Similarly, we say a service is satisfied when all its input 
parameters are satisfied. 

4. We model every stage of the search process as a “small 
part of the whole problem”. The optimal results of all 
known sub-problems are saved and reused in the 
following search. So, if every sub-problem is guaranteed 

to be local optimal, the whole solution can be 
guaranteed to be optimal because every service selection 
is based on the states and the optimal values of previous 
sub-structures. 

5. We use breadth-first search to find the solution. The 
QoS of services and data types are calculated and 
updated in this phase. When all required output data 
types are satisfied, we will produce the composition (P 
in Definition 2) using a depth-first trace back. 

15
Srv A

20
Srv B

35
Srv C

15
Srv D

30
Srv E

50
Srv F

5
Srv G

55
Srv H

15
Srv A

20
Srv B

35
Srv C

15
Srv D

30
Srv E

50
Srv F

5
Srv G

55
Srv H

#1 #2 #3 #4 #1 #2 #3 #4

0 0 0 00000

#5 #6 #7 #8
20 20 30 50

35
Srv A

20
Srv B

65
Srv C

65
Srv D

30
Srv E

50
Srv F

55
Srv G 55

Srv H

#1 #2 #3 #4

0 0 0 0

#5 #6 #7 #8
20 20 30 50

35 65 35 55 65

#9 #10 #11 #12 #13

35
Srv A

20
Srv B

65 65
Srv D

30
Srv E

50
Srv F

55
Srv G 55

Srv H

#1 #2 #3 #4

0 0 0 0

#5 #6 #7 #8
20 20 30 50

35 65 35 55 65

#9 #10 #11 #12 #13

#8 #9 #10

Target:
(Output)

Input:

#8 #9 #10

Target:
(Output)

found

#8 #9 #10

found

#8 #9 #10

Target (Output): found found foundfound found

Srv C

Target (Output):

4(a) 4(b)

4(c)4(d)

 
Figure 4.  Example of How to Get the Composition Result Step by Step 

Figure 4 shows an example of the search process to find 
the SOS with an optimal (minimum) response time. The user 
request includes the provided input data types {data type #1, 
#2, #3 and #4}, required output data types {data type #8, #9 
and #10} and all available services { A, B, …, H}. 

The algorithm first extends services B, E and F since 
they can be directly invoked using the input data types. It 
then updates the QoS of these services and the extended data 
types as shown in Figure 4(b). Based on the produced data 
types (data type #5, 6, 7 and 8) and all previous available 
data types, more services (C, A, G and D) can be extended. 
The algorithm updates these services’ QoS using Definition 
3. For example, the response time of C itself is 35 (in Figure 
4(a)). When it is extended in the composition, the optimal 
response time from the beginning of the composition to 
where the service is will be based on the response time of all 
its input and itself. Since the processes that make data type 
#5 and #7 available can be executed in parallel, until all its 

input are available service C can be invoked, so the response 
time of itself is added at last, which equals to the maximum 
response time of data type #5 and #7 plus 35, resulting in 65.  

The algorithm continues to extend the services and 
update the QoS until all required data types are covered and 
no more services can be added into the composition. In 
Figure 4(d), from data type #8, #9 and #10, it conducts a 
trace back depth-first search to record the path of the SOS. 
At this point, we know that the minimum response time of 
data type #8, #9 and #10 are 50, 35 and 65 respectively. The 
maximum of the three will be the minimum time we can get 
all of them from the SOS. 

When there is more than one services with output 
matches a data type, the algorithm selects the service with 
the best QoS performance. So, every extended service is 
based on the optimal path which makes the whole SOS have 
the best QoS performance.  

The algorithm is shown on the next page.  



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

main () 
{ 

Define a set “available_data”, record the data type if the service, which can output it, 
is satisfied, initialize the set as blank. 

Initialize the response time: zero for provided data types, infinity for others. 
Initialize the throughput: infinity for provided data types, zero for others. 
Define an ontology tree to record the ontology concepts and their relationship. 
 
while solution is not found or still have available services 
{ 

List<Service> current_layer; 
foreach unused service s 
{ 

if s can be invoked/satisfied 
{ 

current_layer.add(s); 
updateServiceQoS(s); 
available_data.add(s.output); 

} 
} 
solution.addlayer(currentlayer); 

} 
//generate the solution with the shortest response time 
//similar to generate the solution with best throughput 
print("<parallel>"); 
foreach required datatype d  

traceback(d); 
print("</parallel>"); 

) 
 
void updateServiceQoS(Service s) 
{ //update the QoS to ensure the sub-structure is local optimal 

s.response_time = maxResponseTime(s.input_list) + s.self_response_time; 
s.throughput = min(minThroughput(s.input_list), s.self_throughput); 
foreach output datatype d of s  
{ 

if d.response_time > s.response_time  
{ 

d.response_time = s.response_time; 
d.ptr_response_time_generator = s;   

} 
if d.throughput < s.throughput  
{ 

d.throughput = s.throughput; 
d.ptr_throughput_generator = s; 

} 
} 

} 
 
void traceback(DataType d) 
{ //do a trace back search to output the bpel formatted solution 

if d belongs to the provided data set 
return; 

else { 
print("<sequence>\n<parallel>"); 
foreach d.ptr_response_time_generator.input_list di //input_list means the input data types of some service. 
{ 

traceback(di); 
} 
print("</parallel>"); 
print("invoke " + d.ptr_response_time_generator.name); 
print(</sequence>); 

} 
} 

Do a breadth-firth search until all required data types are 
covered and no more services can be used, and save the 
solution. When checking whether a service is satisfied, we 
use ontology mapping to check if all its input are satisfied. 

Core part of the algorithm: update and save the QoS to 
ensure the sub-structure is local optimal. The QoS 
calculation follows the rules in Definition 3 for parallel. 

Use a depth-first trace back search to generate 
the solution of BPEL formats. 

Service is defined in terms of Definition 1 

//a data type represents an input or an output of services. It is 
//assigned a variable to record its best known QoS, which has been 
//explained in the above paragraph. 
struct DataType 
{ 
     //indicate the concept which  the data type belongs to. 
     //all concepts are defined in the provided OWL file. 

Concept concept_of_datatype;  
 

  float response_time; //indicate its current best response time 
 
 //point to the service which generate it with best response time. 

  Service ptr_response_time_generator;  
 
   float throughput; //indicate its current best throughput. 
 

//point to the service which generate it with best throughput. 
  Service ptr_throughput_generator; 

} 



IV. EXPERIMENTS 

A. Experiment Process 

The experiments are carried out based on four input files: 
1) Services.wsdl which records all available Web 
services; 2) Taxonomy.owl which records all concepts in 
an ontology format [2]; every input/output data type of the 
Web services is defined as an instance of some concept; 3) 
Servicelevelagreements.wsla which records the 
QoS values (response time and throughput) of Web services 
[3]; 4) Query.wsdl which records one user query 
including the provided data types and required data types. 

The experiment follows the requirements of the Web 
Service Challenge (WS-Challenge) which is an annual 
service composition competition held in the IEEE e-
Commerce conference (CEC) since 2006 [1]. It focuses on 
the semantic composition of Web services and uses OWL 
ontology to define services and their relationships. QoS is 
also introduced into the competition in 2009. WS-Challenge 
has provided a set of standard experimental tools including a 
test set generator and a service composition result checker. 

The test set generator is used to generate four input files 
and a benchmark. The generated Web services are virtual 
yet real. They are virtual since there are no actual service 
implementations that can be invoked on the Internet. But 
they are real in our experiment because they are consistent 
with Definition 1, including I/O and QoS values. The 
benchmark (a standard result) is also provided by the test set 
generator and is promised to have the optimal QoS (the 
shortest response time and the largest throughput). We can 
evaluate our experiment result by comparing with the 
benchmark. 
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Figure 5.  Experiment Process 

We use the composition result checker provided by WS-
Challenge to check whether our composition is correct for 

the request and calculate the QoS values of the composition. 
Our algorithm can guarantee that the composition result has 
the optimal QoS, and it has been proved by comparing the 
benchmark with our results.  

Figure 5 shows the experiment process. First, we use test 
set generator to generate four input files for each test set. 
Then our composition algorithm takes these four files as the 
input and output a BPEL file as the composition result. At 
the same time, we record the time cost during the 
composition procedure. Finally, we use the checker to check 
whether the result is correct, record the QoS values and 
compare it with the standard result.  

B. Experiment Settings and Results 

For the experiment setting, we concern about the scale of 
Web services and ontology concepts. After investigating on 
the Internet, we found that the number of available Web 
services is about 2000, and the Cyc ontology [4] having 
about 150,000 concepts. The Cyc ontology is almost the 
largest ontology, and having a set of concepts which tries to 
describe universal subjects. Along with the development of 
semantic Web, more and more data on Web will be 
formalized and mapped to concepts of ontology. So we 
integrate concepts and I/O data types together. In the 
following experiment, we set the number of Web services 
and concepts at the scale of investigation, or even larger. 

The test set of experiments 1 is conducted by changing 
the number of concepts and Web services while keeping the 
ratio between them. Table I shows the test sets of 
experiment 1. In test set 4, the number of concepts and Web 
services are according to our investigation on the Internet. 

The configuration of our test machine is: Intel Core 2 
CPU 1.83GHz with 1GB RAM, and running Windows XP.  

TABLE I.  TEST SETS IN EXPERIMENT 1 

Test Set ID
Test Sets Properties 

Number of Concepts Number of Web services

1 37,500 500 

2 75,000 1,000 

3 112,500 1,500 

4 150,000 2,000 

5 187,500 2,500 

 6 225,000 3,000 

 
For the composition result of each test set, we concern 

about the composition time cost and QoS values. Figure 6 
shows the composition time cost for each test set. We can 
see that the time complexity is linear. In most cases the time 
cost is less than 1 second. Compared to Zeng’s work [5] 
which is shown as the red line in the figure, our algorithm 
has a much better performance on the time cost. In addition, 
our experiments are based on a much larger concept scale 
(concepts in a universal domain) than that in Zeng’s 
experiments (concepts in a local domain), which means 



under the same number of services, our experiment handles 
a more complex problem. 

 
Figure 6.  Efficiency Analysis of Experiment 1 

The second study is, if the number of Web services 
remains the same while the number of ontology concepts 
increases, how the algorithm performs. This experiment is 
closer to the real world situation, because the semantic Web 
is expanding rapidly and the number of Web services 
becomes stable in recent years. Though there are about 2000 
available Web services on the Internet, we enlarge the 
number of Web services and keep it in 20000. Table II 
shows the test sets for the study.  

TABLE II.  TEST SETS IN EXPERIMENT 2 

Test Sets 
Test Sets Properties 

Number of Concepts Number of Web services

1 50,000 20,000 

2 100,000 20,000 

3 150,000 20,000 

4 200,000 20,000 

5 250,000 20,000 

6 300,000 20,000 

 
Figure 7 shows the composition time cost for each test 

set. We can see that the time complexity is linear and all test 
sets perform efficiently (less than 1.7 seconds). 

 

 
Figure 7.  Efficiency Analysis of Experiment 2 

The third experiment is that the number of the concepts 
remains the same while the number of Web services 
increases. This assumption is for the future development of 

Web. When most concepts are well described by ontology, 
the number of Web services may increase because of new 
businesses. Table III shows the test sets for this experiment. 

TABLE III.  TEST SETS IN EXPERIMENT 3 

Test Sets 
Test Sets Properties 

Number of Concepts Number of Web services

1 150,000 2,000 

2 150,000 4,000 

3 150,000 6,000 

4 150,000 8,000 

5 150,000 10,000 

6 150,000 12,000 

 
Figure 8 shows the composition time cost for each test 

set. We can see that when the number of concepts remains 
the same, the time cost will not change significantly even 
with the increase of Web services. This means our algorithm 
performs stable and efficient (less than 1 seconds) under this 
assumption. 

 

 
Figure 8.  Efficiency Analysis of Experiment 3 

Table IV shows the QoS values of composition result in 
the above three experiments. As we have explained above, 
there is a standard result of each data set which has the 
optimal QoS. And our algorithm can always guarantee that 
the composition result have the optimal QoS. The values in 
the table are the same with the values of the standard results. 
RT means the response time measured in ms; TP means 
throughput measured in the invocations per-seconds. 

TABLE IV.  QOS VALUES OF COMPOSITION RESULTS 

Data Set
Experiment 1 Experiment 2 Experiment 3

RT TP RT TP RT TP 

1 1,950 1,000 960 6,000 850 3,000

2 1,700 2,000 1,800 1,000 1,370 1,000

3 1,760 3,000 1,370 1,000 1,460 13,000

4 1,370 1,000 1,240 3,000 590 9,000

5 1,400 3,000 2,210 3,000 1,480 4,000

6 1,030 5,000 1,120 8000 890 5,000



C. Discussion 

The experiments are based on the scale of a real Web. 
The numbers of services and concepts in the test sets have 
the same or larger scale than that on the Internet. Besides, 
we propose two trends for future Web and related series of 
tests. So the experiments well reflect and simulate the actual 
state of the Web. And the experiment results show that our 
algorithm has a very high efficiency. In most cases, a service 
composition can be done in less than 1 second. 

V. RELATED WORK 

In the domain of automatic service composition, many 
works have been done based on the input and output 
parameters of services. Liang [6] proposed a semi-
automated method for service composition. The main idea is 
to construct an AND/OR graph form a service dependency 
graph (SDG), applying a bottom-up search algorithm REV* 
to find a sub-graph for the solution. It is an effective method 
to find executions on parallel, but it doesn’t consider the 
scale of the services and ignore the quality of services. 

Concerned with QoS of software systems, Zeng [5, 7] 
proposed a global planning approach for service 
composition to optimize multiple criteria of QoS. Through 
integer programming, it can handle multiple execution paths. 
But the disadvantage is that it can only handle small scale 
service composition problem. All its experiments are based 
on only dozens of candidate services. Through comparison, 
our approach performs 3~5 times faster than Zeng’s method 
in the large-scale service composition. Previous work like 
Cardoso [8] also considers QoS in service composition but 
this work doesn’t focus on dynamic service composition. 

Tao [9] studied the problem of service composition with 
multiple end-to-end QoS constrains. They proposed a 
broker-based architecture and several efficient heuristic 
algorithms to maximize the QoS. Xiao [10] also studies the 
QoS in end-to-end environment and presents a MCOP 
method in domain composition and adaptation problem. Tao 
improves Xiao’s work to handle multiple workflows such as 
parallel, conditional and loops. However, their work doesn’t 
address the performance of large-scale service composition. 

Alrifai and Risse [11] proposed a solution for optimizing 
QoS in dynamic service selection. First, they use mixed 
integer programming to find the optimal decomposition of 
global QoS constraints into the local constraints. Second, 
they use distributed local selection to find the best web 
services that satisfy these local constraints. The 
disadvantages of their work include: 1. can not find the 
optimal QoS in all the experiments; 2. the composition time 
in random data set is poor. 

Jaeger and Ladner [14] studies how already identified 
candidates, which a selection process originally has 
separated out, can improve a composition with respect to 
particular QoS categories. They propose a model which uses 
redundant arrangements which involve the alternative 
candidates so as to supplement the originally assigned 
service. Some other works [12, 13] also study the QoS in 
Web service composition. 

VI. CONCLUSION AND FUTURE WORK 

Under the hypothesis that the QoS of SOS can be 
quantitatively calculated according to the included services 
and their relationships, QoS based service composition 
problem can be efficiently solved by our algorithm using a 
dynamic programming solution. If new services are 
deployed, we can also conveniently use them to refine the 
composition result without redo the whole composition. The 
biggest advantage is that we can handle a large-scale service 
composition within a very short time. 

There are still some constraints of the approach which 
we want to extend on in the future. It depends on some 
preconditions in practice, e.g. finding the ontology concepts 
and the mapping between the concepts and service I/O; 
detecting the QoS of each available service before the 
composition starts. But as semantic Web develops and QoS 
becomes more important in e-business, these issues may be 
addressed in the near future. 
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