
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll08/14llpp678-686
Volume 15, Number 6, December 2010

Efficient Composition of Semantic Web Services
with End-to-End QoS Optimization*

XU Bin (许 斌)**, LUO Sen (罗 森), YAN Yixin (闫奕歆)

Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

Abstract: The efficiency of QoS-aware service composition is important since most service composition

problems are known to be NP-hard. With the growing number of web services, service composition is like a

decision problem on selecting services or/and execution plans to satisfy the users’ end-to-end QoS re-

quirements (e.g. response time, throughput). Composite services with the same functionality may have dif-

ferent execution plans, which may cause different end-to-end QoS. This paper presents a model combining

semantic data-links and QoS, which leads to an efficient approach to automatic construction of a composite

service with optimal end-to-end QoS. The approach is based on a greedy algorithm to select both services

and execution plans for composite services. Empirical and theoretical analyses of the approach show that its

time complexity is O(mn2) for a repository with n services and an ontology with m concepts. Moreover, the

approach increases linearly in time when using an index to search services in the repository. Tests with a

repository with 20 000 services and an ontology with 300 000 concepts show that the algorithm significantly

outperforms current existing algorithms in terms of composition efficiency while achieving optimal end-to-end

QoS.

Key words: semantic web service; web service composition; QoS; optimization

Introduction

In the service-oriented computing paradigm, single
web services can be combined to create value-added
services for business applications. Service composi-
tions have been put into industrial practice in many
areas like e-commerce, supply chain management, fi-
nance, and travel. With the growing number of web
servers with different quality parameters (QoS), the
service composition problem becomes a QoS-aware
service composition problem, which is to find a com-
posite service with the optimal end-to-end QoS.

The QoS-aware service composition problem has

been discussed in many studies[1-4]. Given an abstract
composition request (execution plan), which can be
stated in a workflow-like language (e.g., BPEL[5]),
each abstract service (task node) in the execution plan
has a candidate service list. The goal is to select one
concrete service for each abstract service such that the
aggregated QoS satisfies the user’s end-to-end QoS
requirement. Thus, the problem can be mapped to a
multi-choice multidimensional knapsack problem,
which is known to be NP-hard in the strong sense[6].
Consequently, an optimal solution may not be expected
to be found in a reasonable amount of time[7]; so many
approximation algorithms have been proposed. Zeng et
al.[2,4] used global planning to optimize multiple QoS
criteria. Yu et al.[3] proposed a broker-based architec-
ture as well as a heuristic algorithm to optimize the
end-to-end QoS with multiple QoS constrains. Alrifai

 Received: 2010-09-16

* Supported by the National High-Tech Research and Development
(863) Program of China (Nos. 2009AA01Z120 and 2007AA010306)

** To whom correspondence should be addressed.
E-mail: xubin@tsinghua.edu.cn; Tel: 86-10-62781461

XU Bin (许 斌) et al.：Efficient Composition of Semantic Web Services …

679

and Risse[1] gave a method to handle the global QoS
requirements through combining global optimization
with local selection.

The QoS-aware service composition problem is
more concerned with I/O than the abstract composition.
For example, a traveler with a GPS device wants to
find a service to know the weather of his location as
quickly as possible. Thus, the system is to find a com-
posite service with minimal response time, whose
input data is a location (latitude and longitude) and

output data is a weather report.
The example composite service shown in Fig. 1 in-

cludes one Google web service (WS) and one Yahoo
web service. The input data for the Google service is
latitude and longitude from a GPS device with the
output data being the city name, which acts as input
data to the Yahoo service. The output data of the Yahoo
service is the weather report, which is the data desired
by the traveler. The total response time for both ser-
vices is the composite services’ response times.

Fig. 1 Example of QoS-aware service composition with data-links

The QoS-aware service composition model with the
data-links is shown in Fig. 2. The composition request
includes a provided data list and a required data list.
The goal is to find an execution plan with data-links

from the service repository and to get the optimal
end-to-end QoS. For example in Fig. 1, the execution
plan is the services and data in the dotted box. The
QoS is the response time.

Fig. 2 Conceptual overview

The QoS-aware service composition with data-links
is not based on an abstract composition. That is, users
do not need to provide a pre-defined execution plan as
a request. The first goal of the service composition is
to find a proper execution plan. The execution plan
may contain many kinds of relationships between ser-
vices such as sequence, parallel, and switch. The

services in the composite service should be linked by
data, which requires that the former service’s output
can satisfy successive services’ input by semantics. In
practice, several composite services may satisfy the
request, but with different QoS. Thus, the second goal
is to find the composite service with the best
end-to-end QoS. The QoS attributes include response

 Tsinghua Science and Technology, December 2010, 15(6): 678-686 680

time, throughput, cost, availability, and reliability.
Lecue and Mehandjiev[8] proposed semantic links

between services to evaluate the matching degree of
data between services. Their work is also based on the
input of an abstract composition with semantic links
regarded as a type of non-functional qualities evaluated
by the calculating matching scores according to the I/O
of the services. However, semantic links can not re-
place restricted data dependencies (data-links) because
a service cannot be invoked until all its inputs are fully
satisfied.

The contributions of this paper are:
● A QoS-aware service composition model with se-

mantic data-links is proposed. Unlike the QoS-aware
service composition problem having an abstract com-
position as a request, this model uses provided data
and required data as request. The user giving service
composition request can more easily give provided and
required data than an abstract composition. The QoS
optimization in this model finds the execution plan as
well as selects the services for the optimal end-
to-end QoS.
● An efficient data-driven, QoS-optimized service

composition algorithm is given. A greedy algorithm is
used to select services from a repository of services
and to construct an execution plan to ensure the opti-
mal end-to-end QoS. A theoretical analysis of the algo-
rithm shows its time complexity is O(mn2), with linear
time dependence in practice by using indexing. Test
datasets from the Web Service Challenge[9] are used to
compare with other algorithms[10,11]. Tests show that
the algorithm significantly outperforms existing algo-
rithms in terms of composition efficiency while
achieving optimal end-to-end QoS.

1 Problem Definitions

1.1 Service vs. composite service

Definition 1 Service in out s{ , , }S D D Q= where
in()D S =

{ () | ()i id S d S is an input data type of service S, defined
by one specific concept in an ontology}, out ()D S =
{ ()| ()j jd S d S is an output data type of service S, de-
fined by one specific concept in an ontology}, s ()Q S =

r r{ () | ()q S q S is a QoS attribute of service S, such as
cost or response time}.

The most important features of a service include the
I/O parameters and QoS. Each I/O parameter of a

service can be mapped to a concept of some ontology
to express semantic information about the service.
Thus, the QoS can represent any kind of non-func-
tional property.

Definition 2 Composite service in outCS { , ,D D=

cs, }P Q where in (CS) { (CS) | (CS)i iD d d= is an input
data type of CS, defined by one specific concept in an
ontology}. out (CS) { (CS) | (CS)j jD d d= is an output
data type of CS, defined by one specific concept in an
ontology}. If CS is composed by S1 to Sn , then

out out 1 out 2 out(CS) { (), (), , ()}.nD D S D S D S= P is the im-
plementation of the CS as an execution plan (such as
BPEL) where services can be invoked following cer-
tain dependency rules to perform certain tasks.

cs (CS) { (CS) | (CS)r rQ q q= is an end-to-end QoS at-
tribute of CS, such as total cost or total response time}.

There are many QoS attributes which can be used to
evaluate the services. Some of them can be considered
at the design time, such as availability, extensibility,
adaptability, testability, operability, deployability, and
modifiability, while some of them are used at runtime,
such as the response time and throughput. However,
this analysis is not concerned about how the QoS of a
single service is measured, but how to study and opti-
mize the end-to-end QoS of a composite service.

1.2 Composite service execution plan

The execution plan is composed of sequences, parallels,
and switches in structures. A sequence consists of ser-
vices which are invoked in order. A parallel consists of
services which are invoked at the same time. A switch
consists of services which can be selectively invoked.
The basic structures can be nested to form a complex
structure. Adjacent services have data-links between
them. The whole execution plan can be expressed us-
ing BPEL.

In the sample execution plan in Fig. 3, a user request
includes the provided data (d1, d2, and d3) and the
required data (d5 and d6). Services A and B are in one
sequence. Service A’s inputs are d1 and d2, while its
output d4 acts as an input to service B. B’s output is
d5. Services C and D are in a switch, so C or D can
generate d6. The sequence and switch can be invoked
in parallel to get both d5 and d6. The execution plan is
shown in Fig. 4 with the QoS (response time) but
without the data.

XU Bin (许 斌) et al.：Efficient Composition of Semantic Web Services … 681

Fig. 3 Example of execution plan

Fig. 4 Execution plan with QoS (response time)

1.3 End-to-end QoS calculation

The end-to-end QoS is calculated based on the execu-
tion plan. Table 1 lists the calculation at formulas for
three basic composite structures. The two typical, most
commonly used QoS (response time and throughput)
are used as examples. The response time evaluates the
time from sending a request to a composite service to
receiving the response message. When the message
passes through two services in sequence, the response
time should be the sum of the two services’ times.

Table 1 QoS calculation for various composite structures

QoS attribute Composition structure Calculation
Parallel 1max{ }R R=

Sequence 1
1

n

i
R R

=
= ∑ Response

time
Switch 1min{ }R R=

Parallel 1min{ }T T=

Sequence 1min{ }T T= Throughput
Switch 1max{ }T T=

Parallel 1
1

n

i
A A

=
=∏

Sequence 1
1

n

i
A A

=
=∏

Availability
/ Reliability

Switch 1max{ }A A=

Parallel 1
1

n

i
C C

=
=∏

Sequence 1
1

n

i
C C

=
=∏ Cost (Price)

Switch 1min{ }C C=

When the two services are invoked in parallel, the

larger response time of the two is used as the compos-
ite service’s response time. While two services are in a
switch, the best one with minimal response time is
used.

Throughput is the maximum amount of information
passing through a composite service. Thus, the
throughput is the minimum value in a sequence of two
services. When two services are in a parallel, the
throughput is the minimum value which is the bottle-
neck of the composite service. When two services are
in a switch, the throughput is the one which has maxi-
mum throughput.

Referring to the response time calculation of the
execution plan in Fig. 4, the switch uses service D
whose response time is 150 ms (better than service D’s
300 ms). In the sequence of services A and B, the total
response time is 100 ms (50 ms plus 50 ms). In the
parallel structure, the response time is the maximum
one (150 ms). So the total response time of this execu-
tion plan is 150 ms.

1.4 Problem statement

The problem of QoS-aware service composition with
data-links can be stated as follows:

For a given composition request in out{ (), (),R D R D R=

}rq and a given service repository 1 2SS { , , , }nS S S= ,
find a composite service CS such that:

(1) in in() (CS)D R D⊇ , out out() (CS)D R D⊆ ;

(2) The end-to-end QoS attribute qr (CS) is optimal.
This problem is concerned with a single QoS attrib-

ute of a composite service, not the integration of all the
QoS attributes. The system can find the composite ser-
vice with the minimum response time or maximum
throughput. A utility function of weight different QoS
attributes is not discussed in this paper.

2 Greedy Algorithm for QoS-Aware
Service Composition

2.1 Algorithm description

A greedy algorithm (GA) is used to solve this problem.
The key idea is to select the service with the best ac-
cumulated QoS. A priority queue is defined to record
all the satisfied services. A service becomes satisfied
only when all of its inputs are satisfied. The priority of
a service is determined by its accumulated QoS. A

 Tsinghua Science and Technology, December 2010, 15(6): 678-686 682

smaller accumulated response time gives a higher pri-
ority. A larger accumulated throughput also gives a
higher priority.

The GA has two values for each QoS attribute, self
value and the accumulated value. For the example in
Fig. 5a, the self value of the response time for service
A (Srv A) is 15; while in Fig. 5c, the accumulated

value of the response time for service A is 35. Since
service A is the successor of service B, the response
time of service B (20) plus service A (15) is the accu-
mulated value (35) of service A. Thus, the accumulated
value of each service is the end-to-end QoS from the
beginning of the execution plan to this service, calcu-
lated according to Table 1.

Fig. 5 GA search process

An intuitive example is given to describe the GA to
find the composition with the minimum response time
in Fig. 5. The given I/O data shown in Fig. 5a consists
of data #1, #2, #3, and #4, while the required output
data type is data #8, #9, and #10. In Fig. 5b, the satis-
fied services (B, E, and F) are pushed into the queue

sorted by the accumulated response times. In Fig. 5c,
the service with the minimum accumulated response
time is popped and added into the solution (execution
plan), with newly satisfied service A pushed into the
queue. Then in Fig. 5d, the first service in the queue,
service E, is popped. The procedure is repeated in Figs.

XU Bin (许 斌) et al.：Efficient Composition of Semantic Web Services … 683

5e and 5f until all the required output data types are
found in Fig. 5g. Then, a trace back procedure helps to
find the solution shown in Fig. 5h.

This example shows that new services will be added
to the solution until all the required data is found. Each
popped service from the queue always has the best
accumulated QoS, so every time new data is found, it
also has the best accumulated QoS. Thus the new
added data gives a list of services whose inputs are
satisfied which are then put into the queue.

A search procedure is used to find a solution with
the minimum response time. The first step is to find the
services which are satisfied by the provided data and
put them into the priority queue.

The second step is to add services into the solution
which is popped from the queue. The added service
must have the minimum accumulated response time
among all the services in the priority queue.

The third step of the search procedure is to push new
services with the accumulated QoS into the priority
queue. The second step popped a new service into the
solution, so its output data could be used by other ser-
vices. The service response time is always the accu-
mulated value. For example, the response time of ser-
vice A itself is 15 ms, but service A is invoked after
service B whose response time is 20 ms. Thus, the ac-
cumulated response time of service A is 15 ms plus
20 ms (35 ms).

The second and third steps are repeated until all the
required output data are found.

When determining whether a service is satisfied, the
ontology is used in the composition to define the pa-
rameter types of the service I/O and their type hierar-
chy. Each data type of a service I/O can be mapped to a
concept. If an output data type of service A can match
an input data type of service B according to the ontol-
ogy concept hierarchy, the two services can be con-
nected. A service is satisfied once all its input data
types are connected. The DataType in the algorithm is
defined as below.
Definition of DataType
1 struct DataType
2 {
3 //the concept the datatype belongs to
4 Concept concept_of_datatype;
5 //the accumulated response time for producing it
6 float response_time;
7 //point to the service which generates it
8 Service ptr_response_time_generator;
9 }

The main GA process is shown below.
Main GA Process
1 foreach Service Si
2 Si.response_time = Si.self_response_time
3 foreach DataType Dj
4 Dj.response_time = infinity
5 foreach DataType Dk in the provided DataTypes
6 Dk.response_time = 0
7 available_data.add(Dk)
8 available_service = getAvailableService(available_data)
9 foreach Service Sm in available_service
10 priority_queue.push(Sm)
11 while(priority_queue is not empty and

required data are not covered)
12 Service s = priority_queue.pop()
13 for each DataType Do in s.output
14 if(Do.response_time > s.response_time)
15 Do.response_time = s.response_time
16 available_data.add(Do)
17 available_service = getAvailableService(available_data)
18 foreach Service Sn in available_service {
19 Sn.response_time+=maxResponseTime(Sn.input)
20 priority_queue.push(Sn)
21 }
22 if all required DataType are found {
23 foreach required DataType Dr
24 traceback(Dr);
25 }

A traceback function is used at the end of the main
process to generate the BEPL format solution, which is
described in the following.
Tracebace Search
1 traceback(Dr){
2 if Dr belongs to the provided DataTypes
3 return
4 print("<sequence>\n<parallel>")
5 foreach DataType Dm in

Dr.ptr_response_time_generator.input
6 traceback(Dm);
7 print("</parallel>")
8 print("invoke " +

Dr.ptr_response_time_generator.name)
9 print(</sequence>)
10 }

2.2 Algorithm correctness analysis

If the algorithm has proposed a solution, the solution
must have the minimum accumulated response time.
The solution is denoted as Solution1 (with accumulated
response time R1). Suppose there is another solution
with a smaller accumulated response time which will
be denoted as Solution2 (with a smaller accumulated
response time R2). If service Slast is the last popped ser-
vice of Solution1, then when Slast is pushed into the
queue, its accumulated response time is R1. When Slast
is popped, at least one of the services in Solution2, de-
noted as S0, must not have been popped from the queue;
otherwise all the services in Solution2 would have been
popped to get Solution2 rather than Solution1. Then at
least one of services that produce the inputs of S0 is not

 Tsinghua Science and Technology, December 2010, 15(6): 678-686 684

popped, otherwise S0 would be popped. A trace back (a
service is not popped because at least one of services
that produce the inputs of it is not popped) will show a
service that is satisfied by the provided data but not
popped. However this is impossible, since this service
was pushed into the queue when the queue was initial-
ized and its accumulated response time was smaller
than R1 (otherwise R2 will not be smaller than R1.).
There is a contradiction so Solution1 must be the opti-
mal solution.

2.3 Algorithm complexity analysis

Suppose n is the number of the overall services and m
is the number of the overall concepts in the ontology.

The algorithm has several main operations, denoted
as SCAN (scan unused services to find satisfied ser-
vices), POP (pop out a service from the priority queue),
and PUSH (push a service into the priority queue).

For the POP operation, every service is popped from
the queue at most once, so there are at most n POP op-
erations. Every POP operation takes O(1) time, so
POP operations take O(1)n = O(n) time.

The PUSH operation also has at most n PUSH op-
erations. Each PUSH operation takes O(m) time to up-
date the corresponding response times and takes
O(log n) time to put the service at the right position.
Thus all the PUSH operations take (O(m)+O(log n))n =

O(mn+nlog n) time.
The SCAN operation takes place at most n times

regardless of the original SCAN, since there are n ser-
vices overall and the SCAN operation is executed right
after a POP operation. In each SCAN operation, the
time to determine whether a service is satisfied is O(m)
and there are at most n unused services. So each SCAN
operation takes O(m)n = O(mn) time. All the SCAN
operations take O(mn)*O(n) = O(mn2) time.

An index is used to record all the relationships be-
tween the I/O data types and the services. Assume a
data type has a constant number of services, c, on av-
erage. Then O(c) time is needed to update the response
time in PUSH and to determine whether a service is
satisfied in SCAN. The SCAN operation needs only to
test at most c services to determine the satisfied ser-
vices. The time complexity is then O(cn+nlog n) for
PUSH and O(c2n) for SCAN.

In summary, the time complexity is O(n)+
O(mn+nlog n)+O(mn2) = O(mn2). If an index is used,

the time complexity becomes O(n)+O(cn+nlog n)+
O(c2n) = O(nlog n). This is a very loose upper bound,
which only happens in the worst case. In the best case,
all the popped services are services in the optimal so-
lution and the algorithm takes only a constant amount
of time (assume that the number of service in the op-
timal solution is n0 and there are at most cn0 PUSH
operations, n0 POP operations, and n0 SCAN opera-
tions. The total time is then O(cn0)+O(cn0+n0log n0)+
O(c2n0), which is constant.).

3 Performance Evaluation

The algorithm was validated by showing that it
achieves the correct composite service with the optimal
QoS in much lower computation time than for other
algorithms.

3.1 Test process

The algorithm performance was tested based on the
requirements of the annual Web Service Challenge
(WS-Challenge)[12] which focuses on the semantic
composition of web services with QoS. WS-Challenge
provides a set of standard testing tools and data sets.

WS-Challenge uses a generator to generate a test set.
Each test set includes four input files: (1) Ser-
vices.wsdl provides the available web services; (2)
Taxonomy.owl[13] provides all the concepts in the on-
tology with every input/output data type of the web
services defined as an instance of a concept; (3) Ser-
vicelevelagreements.wsla[14] provides the self QoS
values (response time and throughput) of the web ser-
vices; and (4) Query.wsdl gives the user requests in-
cluding the provided and required data types. The gen-
erator also gives a standard result for each test set.

The tests first use the generator to generate 18 test
sets. Then the composition algorithm and other algo-
rithm are used to evaluate the 18 test sets with the time
cost recorded during the composition procedure. The
results are checked against the results provided by
WS-Challenge.

The GA performance is compared to that of the
QoS-driven algorithm (QDA)[11] which placed sec-
ond[9,10] in the WS-Challenge2009 performance
evaluation[9].

The tests are on a machine with Intel Core 2 CPU
1.83 GHz, 1 GB RAM, running Windows XP.

XU Bin (许 斌) et al.：Efficient Composition of Semantic Web Services … 685

3.2 Evaluations

The 18 test sets generated by the generator each have a
different scale of web services and ontology concepts.
There are about 20 000 web services available on the
Internet[15], with the most widely used “OpenCyc” on-
tology[16] having about 150 000 concepts.

The 1-6 test sets are designed with different numbers
of concepts and web services but a constant ratio be-
tween them. Table 2 lists the settings for these six test
sets and the time cost for the QDA and GA algorithms.

Table 2 Concepts and services increase with the same ratio

Test set properties Time cost (ms)
Test
set Number of

concepts
Number of

web services
QDA GA

1 37 500 500 125 78
2 75 000 1000 300 78
3 112 500 1500 600 93
4 150 000 2000 800 109
5 187 500 2500 950 109
6 225 000 3000 1040 78

The results in Table 2 show that the QDA time cost
increases with the scale of the test sets, while the GA
time cost is constant at about 100 ms, even for 225 000
concepts and 3000 services. In test set 6, the GA is
more than 10 times faster than the QDA.

The 7-12 test sets fixed the number of web services
at 20 000 and changed the ontology concepts from
50 000 to 300 000 with the interval of 50 000. These
sets are closer to development trends on the real web,
with the semantic web expanding rapidly and more
ontologies appearing, the number of web services has
remained stable in recent years. Table 3 lists the results
for these six test sets, and the time costs.

Table 3 Concepts increase while the services remain constant

Test set properties Time cost (ms)
Test
set

Number of
concepts

Number of
web services

QDA GA

7 50 000 20 000 600 234
8 100 000 20 000 800 141
9 150 000 20 000 1100 140
10 200 000 20 000 1220 188
11 250 000 20 000 1440 219
12 300 000 20 000 1680 210

The results in Table 3 show that the QDA time cost
increases linearly with the increasing number of

concepts. The GA is more efficient with the time cost
constant at about 200 ms. With test set 12, the GA was
about 8 times faster than the QDA.

In the 13-18 test sets, the number of concepts was
held constant while the number of web services in-
creased. In the future, when most concepts are well
described by ontologies, the number of web services
may increase because of new businesses. Table 4 lists
the results for these six test sets, and the time costs.

Table 4 Services increase while the concepts remain constant

Test set properties Time cost (ms)
Test
set Number of

concepts
Number of

web services
QDA GA

13 150 000 2000 580 78
14 150 000 4000 620 78
15 150 000 6000 750 94
16 150 000 8000 880 109
17 150 000 10 000 960 125
18 150 000 12 000 1040 125

The results in Table 4 show that when the number of
concepts is constant, the QDA time cost changes line-
arly with the increasing number of services. The GA is
again stable and efficient at about 100 ms. In test set 18,
the GA is about 8 times faster than the QDA.

For all 18 test sets, the QoS values in the composi-
tion result are the same as the standard results with the
optimal QoS.

3.3 Discussion

In all 18 test sets, the GA algorithm was very efficient,
performing the composition in no more than 219 ms.
Test sets 1-6 and 13-18 had time less than 125 ms. The
GA was 2 to 10 times faster than the QDA with the GA
performance very stable even with large number of
services and concepts. The GA always selected the
service with the best accumulated QoS, so the services
in the solution did not need to be updated in the fol-
lowing search process which improved the efficiency.
The QDA was an iterative search process with new
services added to the solution layer by layer until all
the output data was found, so many redundant services
were included. The GA search space was also much
smaller than that of the QDA.

4 Conclusions and Future Work

This paper presents a QoS-aware service composition

 Tsinghua Science and Technology, December 2010, 15(6): 678-686

686

model with data-links. The end-to-end QoS optimiza-
tion in this model finds the execution plan and selects
services with the optimal accumulated QoS. A greedy
algorithm is used to select services for a given compo-
sition request. Tests show that the algorithm signifi-
cantly outperforms existing algorithms in terms of
composition time cost while still achieving the optimal
end-to-end QoS. The algorithm was based on problems
having the scale of a real web (20 000 services and
300 000 concepts). The algorithm will be applied to
web services with dynamic QoS in future work to sat-
isfy real-time composition requests. A run-time com-
position engine will be developed to integrate real
services.

References

[1] Alrifai M, Risse T. Combining global optimization with
local selection for efficient QoS-aware service composition.
In: Proceedings of WWW 2009. Spain: ACM, 2009:
881-890.

[2] Zeng L, Benatallah B. QoS-aware middleware for web
service composition. IEEE Transactions on Software En-
gineering, 2004, 30(5): 311-327.

[3] Yu T, Zhang Y, Lin K J. Efficient algorithms for web ser-
vices selection with end-to-end QoS constraints. ACM
Transactions on the Web, 2007, 1(1).

[4] Zeng L, Benatallah B, Dumas M, et al. Quality driven web
services composition. In: Proceedings of WWW 2003.
Hungary: ACM, 2003: 411-421.

[5] OASIS. Web services business process execution language.
http://docs. oasis-open. org/wsbpel/2. 0/wsbpel-v2. 0. pdf,

2007.
[6] Pisinger D. Algorithms for Knapsack problems [Disserta-

tion]. Copenhagen: University of Copenhagen, 1995.
[7] Maros I. Computational Techniques of the Simplex

Method. Springer, 2003.
[8] Lecue F, Mehandjiev N. Towards scalability of quality

driven semantic web service composition. In: Proceedings
of IEEE International Conference on Web Services. USA:
IEEE, 2009.

[9] Web Service Challenge 2009. http://www.ws-challenge.
org/wsc09, 2009.

[10] Yan Y, Xu B, Gu Z, et al. A QoS-driven approach for se-
mantic service composition. In: Proceedings of 2009 IEEE
Conference on on Commerce and Enterprise Computing.
Austria: IEEE, 2009: 523-526.

[11] Xu B, Yan Y. An efficient QoS-driven service composition
approach for large-scale service oriented systems. In: Pro-
ceedings of IEEE International Conference on Ser-
vice-Oriented Computing and Applications (SOCA09).
2009: 25-32.

[12] Web Service Challenge. http://www.wschallenge.org/.
2010.

[13] Web Ontology Language. http://www.w3.org/TR/owl-
features/. 2004.

[14] Web Service Level Agreements. http://www.research.
ibm.com/wsla/. 2003.

[15] Al-Masri E, Mahmoud Q H. Investigating web services on
the world wide web. In: Proceedings of WWW 2008. Bei-
jing, 2008: 795-804.

[16] Cycontology. http://www.cyc.com/cyc/technology/whatis-

cyc_dir/maptest. 2010.

