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Abstract—In this paper, we propose the Service Data Link model (SDL), a service relationship modeling schema, to describe service

data correlations, which are data mappings among the input and output attributes of services. SDL recognizes the close

correspondence between service data correlations and webpage hyperlinks, and defines service data correlations with explicit

declarations, making it more expressive than the implicit method. We developed an XML implementation for SDL that can be

seamlessly integrated into WSDL, the primary web services modeling language nowadays, and serves as an extension of metadata of

services interfaces. An application of the SDL model in the domain of data-driven automatic service composition is then presented.

First, we combine SDL with the Service Dependency Graph domain model developed by Liang, and present SDGþ, our enhanced

model which extends the expressive power of SDG to include attribute quantifiers, attribute transforms, and explicit dependencies.

Then, we show how SDGþ can be used to improve the performance of composition algorithms in this domain.

Index Terms—Web services modeling, metadata of services interfaces, relationship modeling schema, extensions, service

composition.

Ç

1 INTRODUCTION

SERVICE-ORIENTED Computing (SOC) has been widely
accepted as an important new computing paradigm

over the Internet. In recent years, research in SOC has
shifted from description, publication, and discovery of a
single service to composition and coordination among
multiple services and peers. This increase in complexity
necessitates new approaches that recognize and utilize
various types of service relations. In this paper, we focus on
a specific type of service relation, namely data correlation.
We give a formalism for service data correlation and an
application of our formalism in the domain of data-driven
automatic service composition.

Fig. 1 gives an illustration of service data correlation.
Suppose that there are two webpages. The first provides an
interface for product list, i.e., a list of ProductIDs resulting
from a search request. The other webpage provides an
interface giving the details for a given ProductID from the
product list. The data correlation between these two
webpages is usually established by a hyperlink.1

Suppose that we wish to migrate our application to SOC
by creating a service layer that provides the same function-
ality as these two webpages. A problem arises regarding

how to express the corresponding data correlation between
Operation A and Operation B. As far as we know, there is still
no standardized solution to this problem. One possible way
is to provide extra tags in the output document of Operation
A. However, this approach has serious shortcomings: 1) for
data models that allow extensibility, it may increase the
verbosity of the output document and may introduce
interoperability issues and 2) for strict data models that
do not allow extensibility, the approach is infeasible unless
the original data models are revised.

It is obvious that the data correlation between Operation
A and Operation B does exist even though it is not explicitly
defined. We may reestablish this data correlation by
matching and reasoning about the I/O documents of
Operations A and B. We refer to this as an implicit method
of expressing service data correlations. However, the
expressive power of the implicit method is limited in
several important ways.

First, when expressing a collection of data correlations,
the implicit method often introduces undesired or mean-
ingless data correlations. This is explained in Fig. 2. In the
figure, pi is a service operation, a is an attribute, pi ! a
means a is an output attribute of pi, a! pi means a is an
input attribute of pi, and pi !

a
pj means a data correlation

between pi and pj. Given the I/O definitions as shown in
Fig. 2a, we can derive four data correlations as shown in
Fig. 2b; however, the data correlations in Fig. 2b are highly
interrelated. For example, we cannot derive p1 !

a
p3 with-

out p2 !
a
p3. So it is usually unable to specify an arbitrary

data correlation set precisely in an implicit way, for
example, the set containing two data correlations as shown
in Fig. 2c. Thus, the implicit method is a coarse-grained
approach. A service operation producing attribute a will
introduce a data correlation with every service operation
consuming a; this is especially problematic with common
attributes such as name, address, etc.

Second, the implicit method cannot effectively handle
data correlations that need data transform, a time-consuming
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and error-prone task. Despite the existence of a number of
commercial tools to aid in this process, the creation of data
transforms requires dedicated input from domain experts
and has not yet been fully automated. Moreover, transform
from attribute a to a0 is usually not unique, and in many cases,
it is not true that the transforms from a to a0 can be replaced
with each other. For example, given p! a, a0 ! p0, and
twodata transforms: T1 : a 7! a0, T2 : a 7! a0, we may derive

two data correlations: p !T1
p0 and p!T2

p0. However, it is
possible that T1 is dedicated to some other service operations,
and does not work well with p and p0. In such cases, we may
want to suppress the undesired dependency; however, it is
obvious that we cannot do this in an implicit way due to the
lack of independence again.

Third, the implicit method is unable to distinguish
between instance-level and definition-level data correla-
tions. Fig. 3 illustrates the relationship between service
definitions and service instances. Each service definition
may have several implementations, and each implementa-
tion may have several instances; instances may share a
common data source or use its own private data source. The
implicit method assumes that the instance-level data
correlations are always consistent with the definition-level
data correlations, a situation that is not always true. It is
possible that a definition-level data correlation fails to work
when being applied to the instances of the definitions.
There might be variety of reasons for such failures, and two
major reasons are given below:

. Broken conformance of implementations. The
specifications of real-world services might be very
complicated, and are usually specified in natural
languages, so it is hard to completely check the
conformance of an implementation in a formal way.

. Incompatible data sources. The back-end data
sources used by service instances may be incompa-
tible across companies and organizations. For

example, an ID generated by a service instance of
company A is very likely to be invalid in the scope of
the service instances of company B.

Fourth, the implicit method is unable to assign extended
information to a data correlation such as a priority rank or
QoS properties. Moreover, the implicit method is based on
an assumption that if the I/O attributes of two service
operations are syntactically matched, the dataflow between
them should work. However, in practice, this assumption is
very likely violated due to interoperability issues intro-
duced by real-world scenarios. In such cases, we may need
to explicitly declare that the data correlations among some
particular service operations should be avoided or enforced.

In order to overcome the problems associated with the
implicit method of data correlation, we propose the Service
Data Link model (SDL), which explicitly defines service
data correlations. Our formal SDL model provides mechan-
isms to support data transforms, annotations, as well as
decoupling of service data correlation definitions from data
instances. We also formalize the Service Dependency Graph
(SDG) model of Liang et al. [1], [2] and combine it with SDL
to produce SDGþ. This enhanced model provides a rich
foundation for expressing the complex service data correla-
tion relationships found in the domain of data-driven
automatic service composition.

The rest of the paper is organized as follows: In Section 2,
we give the definition of the SDL model. An XML
implementation of SDL is presented in Section 3. From
Section 4 to Section 6, we give an application of SDL in the
domain of data-driven automatic service composition. In
Section 4, we give a brief introduction to SDG, a domain
model proposed by Liang and Su [2], and present a
formalism of SDG. Then, in Section 5, we propose SDGþ,
a combination of SDL and SDG. We address the problems
exposed in SDG, and give the corresponding solutions based
on SDL. A formal definition of SDGþ is given at the end of
this section. In Section 6, we show how SDGþ is used to
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Fig. 2. Implied data correlations are interrelated.

Fig. 3. Service definition and service instance.Fig. 1. How to express the corresponding data correlation at the service
layer?



improve the performance of our solution for WS-Challenge
2007. Finally, we discuss related works in Section 7, and
draw some conclusions in Section 8.

2 THE SDL MODEL

2.1 Definition

First, we give a formal definition of the SDL model. The
following are the concepts used by SDL:

. d, d0, di, dI , dO: documents. Each document is a data
entity with arbitrary structures.

. p, p0, pi: service operations. Each service operation in
SDL has one and only one document as its input,
and one and only one document as its output. In
other words, each service operation can be ab-
stracted as a pair (dI , dO).

. e, e0, ei: elements. Each element is an addressable
subcomponent of a document. The way to locate
an element in a document depends on the
implementation.

. q, q0, qi, m: quantifiers. We introduce the following
widely accepted quantifiers:

- 1 (one and only one),
- þ (one or more),
- � (zero or more), and
- ? (zero or one).

. T , T 0, Ti: transforms that map a document to an
element. Given document d and element e, the
transform between them is not supposed to be
unique. We do not engage any implementation
details of transforms. This is supposed to be handled
in the research area of schema mapping [3], [4].

. A, A0, Ai: annotations.

Based on these concepts, we give the definition of SDL.

Definition 1 (SDL). An SDL is a quintuple (p, p0, L, T , A),

where:

. p is a service operation, which may refer to a definition
or an instance.

. p0 is a service operation, which may refer to a definition
or an instance.

. L : d0e> eq is a locator that addresses an element e in
d0, the input document of p0. q is the quantifier of e.

. T : d 7! em is a transform that maps d, the output
document of p, to an element e. m, a quantifier, is the
multiplicity factor of T .

. A is annotations associated with this SDL. A is
optional.

The SDL quintuple can also be denoted by T ðpÞ )
A
Lðp0Þ,

which is more compact and more intuitive. Fig. 4 gives an
illustration of the SDL model. The locator L is not included
directly in the figure, but the element e located by L is
figured out to connect with the output of transform T . m

and q are the quantifier of the output element of T and the
located element of L, respectively.

2.2 Combination of SDLs

It is obvious that given a service operation p0, there might be
many SDLs pointing to various elements within its input
document d0. So there might be a number of SDL
combinations to fulfill the elements in d0. Three possible
combination patterns are shown in Figs. 5a, 5b, and 5c.
However, SDL is simply a data correlation between two
service operations; we do not assume that any SDL
combinations are valid. Whether a combination of SDLs is
valid is decided by high-level logic.

Moreover, unlike hyperlinks between two webpages,
which may include user inputs, SDL combinations are
usually incomplete, which means that the input document of
one service operation usually needs inputs from the
application layer, and cannot be fulfilled by any combination
of SDLs. This is a significant difference between hyperlinks
and service data correlations. In the XML implementation of
SDL, we provide a simple mechanism to group a set of SDLs
from p to p0, and to specify whether the combination of the
grouped SDLs is complete to p0 (see Section 3.1).

In Fig. 6, we show a dataflow pattern that cannot be
supported by the combination of SDLs. This is also an N:1
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Fig. 4. An illustration of the SDL model.

Fig. 5. Combination patterns of SDLs. (a) 1:1, (b) N:1, and (c) merge.

Fig. 6. An unsupported dataflow pattern.



pattern like that shown in Fig. 5b. This pattern is needed if
e1 and e2 are interrelated, and cannot be generated
independently by T1 and T2. Although such requirements
really exist, we think that they are too application specific to
be handled by general models like the SDL model.

3 IMPLEMENTATION OF SDL

In this section, we introduce an XML implementation of the
SDL model and its integration with WSDL.

3.1 Specifying SDL with XML

First, we developed an XML schema to describe the SDL
model. As the XML schema is quite verbose, we use a
comprehensive example to show how it works. The
example SDL is intended to describe the data correlation
illustrated in Fig. 1, and the detailed XML snippet is given
as follows:

Some comprehensive comments have been added to this
snippet to show how each piece of code corresponds to the
elements in the SDL quintuple. Note that in the rest of this
section, the meanings of the terms, “attribute” and “ele-
ment,” are supposed to be consistent with the meanings in
the terminology of XML.

At the beginning of the XML snippet, two operations, p
and p0, are given. In this example, p and p0 refer to two
operation definitions in WSDL, each one is identified by
two attributes: portType and operation. If p and p0 refer
to two instances, we also provide an element instance,
which identifies an operation instance by three attributes:
service, port, and operation.

The next part is a group of mapping rules. Each rule
consists of two elements, a locator and a transform,

which correspond to L and T in the definition of SDL,
respectively. Locator may contain two attributes,
quantity and part, both optional. Suppose L : d0e> eq,
then quantity corresponds to the quantifier q. Part refers
to a part in the input message definition of p0. If the message
definition contains only one part, then the part attribute
can be omitted. The enclosed XPATH expression is the core
part of a locator. In this example, the XPATH expression
selects the root element ProductID. Transform may also
contain two optional attributes: multiplicity and part.
Multiplicity is the quantifier of the output of this
transform, and part refers to a part in the output message
definition of p. In our schema definition, a transform can
be implemented in three ways: XPATH, XSLT, and scripts
(such as javascript, beanshell, etc.), which correspond to
three possible subelements of transform: xpath, xslt,
and script. In the example, the transform is implemented
by a simple XPATH expression, which extracts a list of
ProductIDs from the output document of p. Note that
multiple mapping elements may be specified within one
mappings group. This allows some particular semantics to
be expressed on the combination of the enclosed mapping

elements (i.e., SDLs), for example, the complete attribute of
mappings, which indicates whether the combination of the
grouped mapping elements is complete to construct
the input document of p0. Obviously, in this example, the
complete attribute should be true.

The final part is some extensibility elements (i.e.,
xs:any), which correspond to the annotation part of the
SDL model. In principle, any valid XML snippets can be
inserted here. In the example, we simply add a weight

and a description to this SDL.

3.2 Embedding SDL into WSDL

As the XML representation of SDL contains references to
entities defined in WSDL documents, such as messages and
operations, it is a natural idea to embed SDLs into the
WSDL documents that contain the referred entities.
Fortunately, the extensibility of WSDL provides an easy
way to achieve this integration.

A WSDL document can be logically divided into three
parts [5]: XML schema, abstract description, and concrete
description. The XML schema defines concepts/types in
the domain and should be fully shared and reused. The
abstract description defines portType, operation, and message
based on imported XML schemas. The concrete description,
containing definitions of binding, service, and port, describes
service instances of the imported abstract descriptions.
Obviously, the distinction between definition-level and
instance-level SDLs is very well matched to this logical
structure. Fig. 7 gives an illustration of our integration
solution.

Technically, the W3C schema of WSDL [6] allows certain
WSDL elements containing extensibility elements. How-
ever, the WS-I Basic Profile 1.1 defines more relaxed
extensibility rules. That is, every WSDL element may have
extensibility elements and extensibility attributes. So, in
principle, SDLs can be put under any element of WSDL;
however, in order to prevent confusion, definition-level
SDLs are usually specified under operation, while instance-
level SDLs are usually specified under port.
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There might be two ways to embed SDL in WSDL. The
first one is inline embedding. In this way, we put SDL
declarations directly under WSDL elements. The other
option is to specify SDL in external files, and then import
these files into WSDL under appropriate elements.

3.3 Discussion

With this XML implementation of SDL, people of various
roles are able to describe data correlations among web
services according to their respective scopes, and share SDLs
with others. For example, here, we are going to list three
possible roles that may involve in the creation of SDLs. First,
a service provider may create SDLs among his own services
and business partners’ services, and publish them together
with service descriptions. Second, an independent organiza-
tion may create and collect SDLs of his particular interests,
and share SDLs freely or as a commercial service. Third, an
end user of services (probably a service composer) may
create and collect SDLs into his own database for future
reference or sharing with his colleagues.

Regarding the issue of maintenance, SDLs are supposed to
be created and maintained in a decentralized manner just as
hyperlinks, so there will not be such problems that massive
SDLs need to be maintained at anyone side. For example, a
service provider only needs to maintain the SDLs published
by himself, which obviously will not be a huge cost.

4 THE SDG MODEL

Beginning from this section, we will present an application
of SDL in the domain of data-driven automatic service
composition. Research in service composition covers a
variety of topics, among which automatic composition is a
major branch. Automatic service composition (a.k.a. service
synthesis) aims to create service compositions that can
satisfy given constrains such as temporal behaviors [7], [8],
pre/postconditions [9], [10], and input/output attributes
[2], [11]. We particularly focus on a class of automatic
service composition problems in which each service opera-
tion is modeled as a black box with a set input attributes and
a set of output attributes, and the composition task is
required to generate a composite service that produces the
set of desired attributes by consuming the given attributes.

The composition task solely focuses on matchmaking of
service I/O attributes, but does not take other factors, such
as data semantics and functional semantics, into account;
therefore, we use the term “data-driven” to capture the
characteristic of such kind of service composition problems.

SDG, proposed by Liang and Su [2], [1], is a domain model
for data-driven automatic service composition problems.
Our application first combines SDL with SDG, and presents a
new proposal, the SDGþ model, which extends the expres-
sive power of SDG to include attribute quantifiers, attribute
transforms, and explicit dependencies. Then we make use of
SDGþ to improve the performance of our composition
solution for WS-Challenge 2007. In the rest of this section,
we give an introduction to SDG and present a formalism of
this model. Details of the SDGþmodel and its application in
WS-Challenge will be given in the next two sections.

4.1 Introduction to SDG

SDG is an AND/OR graph that shows all the possible
input-output dependencies among different services. With-
in SDG, services are modeled as operation nodes with an
input set and an output set, which contain attributes as their
elements. Attributes are abstraction of data entities/objects.
An attribute can be a simple attribute or a composite
attribute. Composite attribute is composed of a set of simple
attributes and composite attributes, while simple attribute is
logically atomic [2].

Fig. 8 gives an example of SDG.2 In the figure, the
attribute node, represented by a circle, is OR node, which
means that all the directed edges connected to it are
logically ORed. The operation node, represented by a
rectangle, is AND node, which means that all the directed
edges connected to it are logically ANDed. An intuitive
explanation is that all the input attributes have to be
satisfied before the operation can be invoked. On the other
hand, a particular attribute node can be produced by any
operation node that has the attribute in its output set.

Regarding composite attribute, it can be decomposed
into subattributes, which can then be fed into operation
nodes. However, there is no such an assumption that the
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Fig. 7. Embed SDL into WSDL.

Fig. 8. An intuitive example of SDG.

2. Whether a shape is filled or not does not have any special meanings.
The unfilled subgraph simply serves as a prototype of the abstract SDG
shown in Fig. 10a.



aggregation of all the subattributes is semantically equal to
the composite attribute, so a composite attribute cannot be
solved by solving all of its subattributes. For example, in
Fig. 8, Hotel cannot be solved by solving HotelID and
Description.

In SDG, a “dependency” is a directed path between two
operation nodes, for example, the path from Simple Hotel

Recommend to Hotel to HotelID to Hotel Reserva-

tion in Fig. 8. It is obvious that a dependency is essentially
a data correlation between two operations, and has a similar
logical structure to SDL.

Given a set of known attributes and a set of required
attributes, Liang has introduced a search algorithm to
construct composite service templates, which is a subgraph
of the AND/OR graph. The search algorithm starts from the
starting node, a virtual AND node that is connected with all
the required attribute nodes. The algorithm terminates at
the termination node, another virtual AND node that
connects to all the known attribute nodes and is considered
to be solved.

Based on the SDG model, Liang proposed a semiauto-
matic service composition method, which is an iterative
procedure consisting of two phases: 1) an automatic search
algorithm to find composition candidates and 2) human
evaluation. The search algorithm tries to find a solution
graph with minimal cost (a minimal number of operation
nodes and data nodes). When a solution graph is found, it is
presented to the requester for evaluation. If the requester
rejects the solution, the search algorithm will be applied
again to find another solution. If no solution graph can be
found or the requester rejects all the solutions, some “to-be-
explored” operation nodes, which produce the required
attributes directly or indirectly, will be added. Then, the
search algorithm can be applied again.

4.2 A Formalism of SDG

In this section, we give a formal definition of SDG to make
further discussion rigorous and clear. First, we introduce
the following concepts in SDG:

. a, a0, ai: attributes.

. p, p0, pi: service operations. Unlike service operation
in SDL, here, the input/output of a service operation
is a set of attributes instead of a document. We say
that a set of attributes is a special form of a
document that consists of elements. The difference
is that a document is not supposed to have a
combinative structure, while a set of attributes is
combinative to automatic composition algorithms.

. a! a0: attribute relation, which means that a0 is a
direct subattribute of a.

. p! a: output relation, which means thatpproducesa.

. a! p: input relation, which means that p consumes a.

Obviously, an SDG is composed of relations including
a! a0, p! a, and a! p, so we give the definition of SDG
as follows:

Definition 2 (SDG). SDG is a triple (RD, RO, RI ), where:

. RD ¼ fða; a0Þ j a! a0g.

. RO ¼ fðp; aÞ j p! ag.

. RI ¼ fða; pÞ j a! pg.

This definition abstracts an SDG as three sets of binary
relations in which RD is an abstraction to the data model,
while RO and RI are abstractions to the definitions of
service I/O. Next, we give the definition of dependency
in SDG.

Definition 3 (Dependency). A dependency in a given SDG
(RD, RO, RI) is a triple (p, p0, �), where:

. � is a sequence of attributes a1; a2; . . . ; an�1; an in
which ðai; aiþ1Þ 2 RD; 1 � i < n� 1.

. ðp; a1Þ 2 RO.

. ðan; p0Þ 2 RI .

Intuitively, dependency (p, p0, �) is a directed path in
SDG from p to p0, which looks like p! a1 ! a2 ! � � �
! an�1 ! an ! p0. Usually, we denote dependency in a
more intuitive and compact form: p!� p0.

According to Definitions 2 and 3, given an SDG G, we
may derive a set of dependencies, denoted by �ðGÞ. This is
an implicit way to express dependencies (data correlations).
Its expressive power is restricted according to the discus-
sions given in Section 1. Particularly, in the domain of data-
driven automatic service composition, the fourth restriction,
regarding heuristic information associated with data corre-
lations, is the most critical.

5 THE SDGþ MODEL

Although SDG is powerful enough to model a variety of
data-driven service composition problems such as WS-
Challenge, we argue that it is not perfect yet and may be
improved on several aspects to handle more complicated
requirements. In this section, we figure out three problems
exposed in SDG, and propose our solution extensions,
respectively, which are attribute quantifier, attribute trans-
form, and explicit dependency. Finally, we conclude the
SDGþ model from the proposed extensions.

5.1 Attribute Quantifier

The first problem is that SDG does not provide a
mechanism to specify the quantity of an attribute. In SDG,
there are two types of attributes: simple attribute and
composite attribute. Simple attribute is a data entity/object
that has a system predefined primitive data type, while
composite attribute is composed of a set of simple and
composite attributes [2]. Obviously, this simple metadata
model misses something to express the quantity of an
attribute. Suppose that there are two service operations:
One provides a hotel search service that returns a list of
Hotel attributes and the other one provides a hotel
reservation service that takes a Hotel attribute as the
input. In this case, the relationship between the Hotel

attribute and the list of Hotel attributes is supposed to be
irrelevant. As a result, if there is not a service operation that
takes the list as its input and returns one Hotel attribute
from the list, these two service operations are unable to be
composed, although actually they are highly interrelated.

Referring to the quantifiers introduced in SDL, we may
specify a quantifier q to describe the quantity of the I/O
attributes of a service operation, e.g., p! aq and aq ! p.
Also, each subattribute can be associated with a quantifier,
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e.g., a! a0q. If no quantifier is specified, the default
quantifier is 1.

With attribute quantifier, the relationship between
Hotel, an attribute, and Hotel�, a list of Hotel attributes,
can be clearly addressed. As a result, dependencies between
service operations producing Hotel� and service opera-
tions consuming Hotel will be exploited, while this is
irrealizable in SDG.

After introducing attribute quantifier, we need to
consider the issues about matchmaking on quantifiers.
Before that, we need to define an operation on quantifiers,
� : Q�Q 7! Q; Q ¼ f1; ?; �;þg. The semantics of this
operation is that given aq and a! a0q

0
, the quantity of a0 is

q � q0. Obviously, the high boundary and low boundary of
q � q0 are easy to calculate. For example, regarding � � ?,
the low boundary is 0, the high boundary is 1, so
� � ? ¼ �. Detailed rules of this operation are given in
Table 1. It can be proved that this operation is commutative
and associative by exhaustive enumeration.

Having this operation defined, we are ready to discuss

two issues on matching attribute quantifiers. First, we need to

compute the quantifiers of the subattributes produced by a

service operation. For example, given a dependency p!� p0 in

SDG, if we extend it with attribute quantifiers, then each

attribute on the dependency path will have a quantifier

associated with it: p! aq1

1 ! aq2

2 ! � � � ! aqn�1

n�1 ! aqnn ! p0.

Referring to the semantics of the quantifier operation, it is

easy to see that the quantifier of an according to this path is

q1 � q2 � . . .� qn�1 � qn. We denote this indirect output

relation by p!� aq1�q2�...�qn�1�qn
n . Furthermore, as the quanti-

fier operation is associative, the quantifier of an can be

specified in another form q1 � q� in which q� ¼ q2 � q3 � . . .

�qn�1 � qn. q� is a multiplicity factor of �, if we treat � as a

special form of attribute transform (refer to Section 5.2).

Second, given p!� aq and aq
0 ! p0, we need to decide

whether q and q0 can be matched. Unfortunately, this is
usually an application-specific issue. There are no general
rules to make decisions. In this paper, we use a Boolean
function Mðq; q0Þ to define quantifier matching policies. For
example, a simple policy may be defined as

Mðq; q0Þ ¼ true if q ¼ q0;
false if q 6¼ q0:

�

If we require that the quantifier of the provided attribute is
“larger” than the quantifier of the required attribute
according to partial order þ > 1 > � > ?, then the matching
policy may be defined as

Mðq; q0Þ ¼

true if ðq ¼ þÞ _
ðq ¼ 1 ^ q0 6¼ þÞ _
ðq ¼ � ^ q0 6¼ þ ^ q0 6¼ 1Þ _
ðq ¼ ? ^ q0 ¼ ?Þ;

false; otherwise:

8>>>><
>>>>:

5.2 Attribute Transform

The second problem of SDG is about its modeling method
of relations on attributes, and can be explained from two
aspects.

First, SDG recognizes the simple subattribute-of relation
between two attributes by introducing a hierarchical
metadata model; however, we argue that the hierarchical
structure of an attribute is actually unnecessary to SDG-
based composition algorithms. Consider the example shown
in Fig. 9. According to the semantics of SDG, the structure of
attribute a1 shown in Fig. 9a is logically equal to the version
shown in Fig. 9b, in which attribute a1 has an additional
direct subattribute a3, which is also an indirect subattribute
of a1. In fact, SDG only concerns whether an attribute is
contained in another one, no matter it is directly or indirectly
contained. So, the attribute relations shown in Fig. 9c are
essentially required by SDG-based composition algorithms.

Second, considering the complexity of data model and
data heterogeneity in real-world scenarios, the underlying
mapping rules between two attributes may be very
complicated. Although the subattribute-of relation may
logically serve as an abstract form to express attribute
relations like “attribute a2 can be retrieved or constructed
from a1,” it cannot clearly address noninclusion relations
between two attributes.

To solve this problem, referring the concept of transform
in SDL, we introduce the second extension to SDG, attribute
transform. In our perspective, each attribute is treated as a
logically independent data entity, and the relations on
attributes are built through attribute transform, which is
defined as follows:

Definition 4 (Attribute Transform). An attribute transform is
a mapping T : a 7! a0m, where:

. a is the input attribute of the transform.

. a0 is the output attribute of the transform.

. m, a quantifier, is the multiplicity factor of the
transform. The default value of m is 1.

Attribute transform is a similar concept to “transform” in
SDL, but the input/output objects are different. The input
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TABLE 1
Operation Rules of q � q0

Fig. 9. Structural information is unnecessary.



and output of “transform” are document and element,
respectively, while the input and output of attribute
transform are both attribute. Considering that “attribute”
and “element” are parallel concepts, it is obvious to see that
attribute transform is a special form of transform, as
attribute transform can only express relations between
two attributes, while “transform” can express relations
between a set of attributes (including one attribute) and
another attribute. Again, like “transform” in SDL, we do not
assume the uniqueness of attribute transform either. For
example, in Fig. 9b, there are two paths (�) from a1 to a3,
which may correspond to two attribute transforms.

It is a natural idea that given T1 : a1 7! a2 and
T2 : a2 7! a3, we can derive another attribute transform by
function composition: T ¼ T2 � T1 : a1 7! a3. However, we
do not intend to support composition of attribute transform
in our extended model because this will lead to hierarchical
structures among attributes again, and introduce additional
complexity into the model. Our standpoint is that all the
detailed issues about attribute transform, including crea-
tion, composition, etc., should be shifted to works dedicated
to these topics, while we simply assume that those works
will generate a set containing all the possible transforms
over the given attributes.

Given p! aq and T : a 7! a0m, we say that p can produce

a0 indirectly by mapping its output attribute a to a0. And

according to the semantics and rules of quantifier operation

defined in Section 5.1, the quantifier of a0, when being

produced by p, is q �m. We denote this indirect output

relation by p!T a0q�m, which can then be used to construct

dependencies by matching input relations such as

a0q�m ! p0. But before that, a quantifier matching policy

will need to be defined first.
With attribute transform, the structural information of

attributes can be dropped, as the relations on attributes can
now be modeled by attribute transform instead of the
hierarchical structure. At the same time, the assumption of
“integrated ontology space” is no longer needed, as
attribute transform enables mappings on heterogeneous
data in principle.

Also note that the sequence � in a dependency (see
Definition 3), which extracts subattributes from a given
attribute, is a special form of attribute transform. And the
quantifier q� we have computed in Section 5.1 just
corresponds to the multiplicity factor of attribute transform.

5.3 Explicit Dependency

The third problem is that SDG specifies dependencies in an
implicit way, and its express power is restricted (refer to
Section 4.2). To solve this problem, we propose the concept
of explicit dependency to define dependencies with explicit
declarations like SDL.

Definition 5 (Explicit Dependency). An explicit dependency
is a quadruple (p, p0, T , w), where:

. T : a! a0m is an attribute transform.

. p is a service operation, p! aq.

. p0 is a service operation, a0q
0 ! p0.

. w is the weights associated with this dependency.

The explicit dependency quadruple can also be denoted

by p)
T

A
p0. It is obvious that explicit dependency is a special

form of the SDL model. This can be explained from the

following aspects:

1. Attribute transform is a special form of “transform”
in SDL.

2. Service operation particularly refers to service
definition in SDG.

3. The weight w is a special form of annotation.
4. SDG models service input/output as a set of

attributes, so the locator L in SDL has no counterpart
in the definition of explicit dependency.

5.4 Definition of SDGþ
So far we have introduced three extensions to the SDG
model, which are attribute quantifier, attribute transform,
and explicit dependency. In this section, we will give a
formal definition of SDGþ and a comprehensive compar-
ison of SDG and SDGþ.

First, we have the following concepts in SDGþ:

. a, a0, ai: attributes.

. p, p0, pi: service operations.

. q, q0, qi, m: quantifiers.

. T , T 0, Ti: attribute transforms.

. A, A0, Ai: annotations.

. p)
T

A
p0: explicit dependency.

. p! aq: output relation, which means that p pro-
duces a, and the quantifier is q.

. aq ! p: input relation, which means that p consumes
a, and the quantifier is q.

Based on these concepts, we give the definition of SDGþ.

Definition 6 (SDGþ). An SDGþ is a quintuple (RO, RI , �, �,

M), where:

. RO ¼ fðp; a; qÞ j p! aqg.

. RI ¼ fða; p; qÞ j aq ! pg.

. � is a set of attribute transforms.

. � is a set of explicit dependencies.

. M is a quantifier matching function.

Referring to the definition of SDG (Definition 2), SDGþ
introduces three new items: 1) a set of attribute transforms
�, which essentially corresponds to the relation set RD of
SDG, 2) a set of explicit dependencies �, and 3) a quantifier
matching function M that is used to derive dependencies.

Similar to dependency derivation in SDG, we can also
derive dependencies from an SDGþ. We use the term
“dependencyþ” to indicate the dependencies derived from
SDGþ.

Definition 7 (Dependencyþ). A dependencyþ in a given
SDGþ (RO, RI , �, �, M) is a triple (p, p0, T ), where:

. T 2 �, T : a 7! a0m.

. ðp; a; qÞ 2 RO.

. ða0; p0; q0Þ 2 RI .

. Mðq �m; q0Þ ¼ true.
The dependency+ triple can also be denoted by p!T p0,

which formally looks like p!� p0, a dependency in SDG.
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A comprehensive comparison of SDG and SDGþ is given
in Table 2. On the whole, the comparison is categorized into
two levels: 1) basic level, which includes the basic items in
SDG and SDGþ, and 2) derived level, which includes the
items that can be derived from the basic items.

Fig. 10 gives a visual comparison of SDG and SDGþ.

The SDG shown in Fig. 10a is an abstract form of the

unfilled subgraph of Fig. 8, and its corresponding SDGþ
representation is given in Fig. 10b in which the hierarchical

structure of a1 is converted into attribute transforms, and

the input/output edges of operation nodes are all

associated with a quantifier. Moreover, we add an explicit

dependency p1 )
T2

A
p3 to show how to override the implied

dependencyþ, particularly p1 !
T2
p3 in this case.

6 SOLUTION FOR WS-CHALLENGE 2007

In this section, we give an application of SDGþ, which takes
advantage of explicit dependency in SDGþ to improve the
performance of our solution for WS-Challenge 2007.

6.1 Introduction to WS-Challenge

WS-Challenge3 is a competition of automatic service compo-
sition organized by annual conference of the IEEE CEC/EEE.
The composition problem defined by WS-Challenge requires
the inputs of a service operation to be satisfied by the outputs
of some other service operations (see Section 6.2 for details),
which is a typical data-driven service composition problem.
As far as we know, WS-Challenge is the first attempt in the
research community of web services to establish a bench-
mark on automatic service composition.

WS-Challenge defines two kinds of composition tasks:
syntactic composition and semantic composition. Syntactic
composition matches service I/O by attribute names (the
name attribute of the part element), while semantic
composition matches service I/O by attribute types (the
type attribute of the part element). Both of them can be well
modeled by SDG. Adopting SDG, we developed a
composition algorithm for WS-Challenge 2006 [12], which
won the championship of performance4 in syntactic
composition and the fourth place for performance of
semantic composition. Of course, there are various methods
to solve the WS-Challenge problem [13], [14], [15], [16], [17],
[18]. Using SDG is just one of the possible solutions.

As discussed above, the composition problem defined by
WS-Challenge can be well modeled by SDG, as the data sets
of WS-Challenge are quite simple, and there are no
requirements to use attribute quantifier, attribute transform,
or explicit dependency. However, we also noticed that
according to a given data set, which corresponds to an SDG
G, the set of the implied dependencies, �ðGÞ, is fixed. It
means that the result of the dependency construction
procedure can be reused across every composition request
on this data set. This is the key idea of our improved
solution. In fact, this is the origin of the idea of explicit
dependency and even SDL, although explicit dependency is
just a serialization of �ðGÞ in this application.

6.2 Problem Definition

The goal of WS-Challenge is to find all the composition
solutions as quickly as possible. Each composition solution
is a chain of service operations as shown in Fig. 11. If the
input and output sets given in the composition request are
denoted by Ireq and Oreq, respectively, and the service
operations in the chain are denoted by pk, 1 � k � n, and
the input and output sets of pk are denoted by Ik and Ok,
respectively, then for syntactic composition, the following
conditions must hold for the chain: 1) Ik 	 Ok�1 [ Ireq,
1 < k � n, 2) I1 	 Ireq, and 3) On 
 Oreq.

For semantic composition, the subattribute-of relation
needs to be handled additionally. Given X, a set of
attributes, we may derive a new set that contains X and
all the direct and indirect subattributes of the elements in X.
If such a set is denoted by bX, then for semantic composition,
the following conditions must hold for the chain:
1) Ik 	 bOk�1 [ bIreq, 1 < k � n, 2) I1 	 bIreq, and 3) bOn 
 Oreq.

6.3 The Baseline Solution

We use our program for WS-Challenge 2006 as the baseline
solution. The overall flow of this solution is shown in Fig. 12
in which all the services are indexed by a hash map, MapO,
which associates an attribute with all the service operations
that can produce the attribute. Note that the service
operations that can produce the compatible attributes of
the given attribute (a.k.a. its superattributes) are not
included in the associated data; instead, these services
may be retrieved by lookup MapD, another hash map that
associates an attribute with its direct superattributes.

For each service operation p in the service chain, as
shown in Fig. 11, the dependency construction module first
constructs dependencies in the form of p0 !a p by lookup
Mapt against a, one input attribute of p, and also against the
superattributes of a. Then the set of dependencies that goes
through a can be retrieved as a union of all the returned
results. Finally, the composition algorithm module computes
the precedents of p by intersecting the sets of dependencies
that go through each of its input attributes (the attributes
contained in the given Ireq are ignored). In this way, the
service operation chain can be constructed iteratively.

Note that the dependency construction module is actually a
part of the composition algorithm in our solution for WS-
Challenge 2006. However, in order to show the differences
between the 2006 solution and the 2007 solution, this
conceptual module is abstracted. This module is the key to
our improved solution for WS-Challenge 2007, as the
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Comparison of SDG and SDGþ

3. http://www.ws-challenge.org.
4. WS-Challenge ranks a solver on two aspects: performance and

architecture.



output of this module can be reused across every composi-
tion request on the same data set, and time consumption of
this module is remarkable according to the whole flow.

6.4 The Improved Solution

The improved solution for WS-Challenge 2007 is shown
together with the baseline solution in Fig. 12. In detail, we
developed a preprocessing procedure that constructs
dependencies for each service operation and saves them
onto an on-disk database for reuse. In this way, the
dependency construction module is bypassed by lookup
another hash map, Map�, which takes service operation
as its key, and the data associated with the key are a set of
lists, where each list contains the dependencies that go
through a particular input attribute of the key.

After running the preprocessing procedure, the composi-
tion algorithm module may retrieve dependencies directly
from Map�, so according to a given request, the time cost
on dependency construction, denoted by tc, is eliminated,

while at the same time, the additional cost of lookup Map�,
denoted by tl, is introduced. On the whole, the overall/
effective time saving, denoted by te, is tc � tl. Assume that
the time costs of the baseline solution and the improved
solution spent on processing the given request are tb and to,
respectively, then we have tb � to ¼ te ¼ tc � tl. It is reason-
able to evaluate the improved solution by an effectiveness
factor �, defined as follows:

� ¼ te
tb
¼ 1� to

tb
:

Clearly, larger � indicates better results.
Moreover, two additional time costs need to be con-

sidered in the improved solution.
The first is the time cost of the preprocessing procedure,

denoted by tp. Although it is possible that te > tp (e.g.,
request No. 11 in Fig. 13d), in most cases, tp will be larger
than te, the average of te, because the preprocessing
procedure needs to construct all the possible dependencies,
not to mention other costs such as the creation of Map�.
Fortunately, the preprocessing procedure runs only once
for each data set. Once preprocessing is finished, all the
subsequent requests on the data set will be benefited, and
hopefully, the preprocessing cost will be compensated
after dtp=tee runs. According to the competition rules of
WS-Challenge, each set of requests will be run five times,
so this improved solution is valid on this standpoint.

The second is the additional overhead of disk I/O for
serializing and deserializing Map�. Like the preprocessing
cost, the cost of serializing Map� occurs only once for each
data set. However, the cost of deserializing Map� occurs
every time the composition program is started and
initialized. If the composition program runs as a daemon,
then this cost can also be compensated with the increase of
the number of composition requests.5

Strictly speaking, the preconstructed dependencies are
not explicit dependencies, as they are simply the serial-
ization of all the implied dependencies of the given data set
and do not have well adjusted weights. However, as they
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Fig. 11. A chain of service operations.

Fig. 12. Baseline solution and improved solution.

Fig. 10. A visual comparison of (a) SDG and (b) SDGþ.

5. Our program for WS-Challenge 2007 does not work as a daemon, so
every time it is started, the time costs on deserializing Map� will bring
some negative impacts to the results. We will fix this problem in future
versions.



have been specified and stored in an explicit way, we think
that their potential of expressiveness has been fundamen-
tally expanded.

6.5 Experiments

We use four data sets from previous WS-Challenge
competitions to evaluate the improved solution. The
hardware platform is Celeron 1 GB, 512 MB RAM, and
the software environment is Debian Linux (Sarge6). All
timings are retrieved through the gettimeofday API.

Information about the four data sets is shown in Table 3.
The first two data sets come from WS-Challenge 2005,
while the last two data sets come from WS-Challenge 2006.
WS-Challenge 2005 does not support type inheritance in
XML Schema, so the values of the “Sub-attr. Rel.” column

of the first two data sets are zero. The preprocessing time

cost of each data set is given in the last column, and each is

an average of five runs.
The experiment results are shown in Fig. 13. All the time

values are counted after program initialization has been

finished, which means that the maps discussed in Sections 6.3

and 6.4 have been constructed or have been deserialized into

the memory. We can see that there is no significant

improvement on performance for the first two data sets,

while for the last two data sets from WS-Challenge 2006, the

improvement is quite impressive.
As the data sets from WS-Challenge 2005 do not support

type inheritance, the dependency construction module only

needs to lookup MapO one time for each input attribute of a

service. The cost is nearly the same as directly retrieving

preconstructed dependencies, so te is very small, sometimes
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Fig. 13. Experiment results. (a) #1: composition1-20-32. (b) #2: composition2-100-32. (c) #3: composition_config_small. (d) #4: composition_
config_large.

TABLE 3
Data Set Information

6. http://www.debian.org/releases/sarge.



even negative. Simply speaking, the improved solution is
totally inapplicable to the data sets of WS-Challenge 2005.

However, the data sets from WS-Challenge 2006 support
type inheritance. Given an attribute, the dependency con-
struction module needs to lookup not only the services that
can produce the given attribute, but also all the services that
can produce the superattributes of the given attribute. Thus,
the number of the lookup operations increases rapidly. For
example, in data set #4 that contains nearly one million
subattribute-of relations, there might be thousands of super-
attributes (i.e., subtypes) for a given attribute. Moreover, in
data set #4, the number of types (the key of MapD and
MapO) is much larger than the number of services (the key
of Map�), which makes the lookup operation on Map�

much faster than that on MapD and MapO. As a result, te is
significantly increased, so is the effectiveness factor �. WS-
Challenge 2007 also supports inheritances in XML schema,
and shares the data sets with WS-Challenge 2006, so this
improved solution is valid. With this improved solution as
well as many other improvements on program code and
architecture, we finally won the championship of perfor-
mance in the competition of WS-Challenge 2007.

One interesting phenomenon in the experiment results is
that te of request No. 11 of data set #4 is notably larger than
298 ms, the preprocessing time cost of the data set. This
occurs because dependencies are discarded across iterations
in the baseline solution, so some dependencies may be
constructed more than one time. This suggests that the
sharing of dependencies is important even to the processing
of a single composition request.

Also note that this improved solution is general to data-
driven service composition algorithms. For example, in WS-
Challenge 2008, although the problem definition is shifted
from constructing service chains to constructing service
graphs, this improved solution is still applicable. And it is
obvious that the more complicated service data correlations
are, the more improvements on performance will be made.

7 RELATED WORK

Service data correlations are usually expressed in an
implicit way in related works. The most straightforward
way is to deduce data correlations by matchmaking on data
models used for service I/O. In addition to the SDG model
proposed by Liang and Su [2], [1], Oh et al. [11] adopted
STRIPS, the input language of an automated solver (also
called STRIPS) for AI-planning, to model a kind of data-
driven service composition problem. The input/output
attributes of a service operation in the STRIPS model are
modeled as the pre/postconditions of a state in which the
corresponding service operation can be invoked. A poly-
nomial-time algorithm, WSPR, is proposed to solve the
STRIPS model. In SWORD [9], the I/O of a service is
divided into “Data” and “Condition” parts, and a rule-
based expert system is adopted to create desired service
composition automatically. The WS-Challenge participants
proposed various methods to solve the challenge problem
by traversing the data correlations implied by the data sets
[13], [14], [15], [16], [17], [18].

As data models are usually not strict on data semantics,
people of the semantic web services [19] community suggest
a variety of methods to model service I/O with ontology.

The METEOR-S [20] project proposed two annotation
frameworks for WSDL, WSDL-S [21], [22] and SAWSDL
[23], [24]. Unlike these two annotation frameworks, OWL-S
[25] and WSMO/WSML [26], [27] try to establish standards
that build service descriptions directly on ontology. Given
ontology annotations and descriptions, we can deduce data
correlations by reasoning on ontology of service I/O, which
will be more powerful than matchmaking on data models, as
ontology is designed to be reasonable.

However, no matter data correlations are implied by
ontology or by data models, their expressive power is
limited due to the restrictions presented in Section 5.3.
Thus, the key contribution of this work is that we figured
out this fundamental problem, and proposed a method to
specify service data correlations by using explicit declara-
tions, and that is the basis of the two models, SDGþ and
SDL, proposed in this paper.

Also we noticed that there are some works that provide
the mechanism to specify data correlations explicitly, for
example, the XLink [28] specification and the Active XML
[29], [30] project. However, both of them focus on data
correlations among documents, which is significantly
different from data correlations among service operations.

8 CONCLUSION

Service data correlation is essentially a possible dataflow
between two service operations, which is an important kind
of information to service composition and related tasks such
as service discovery and selection. However, service data
correlations are usually expressed implicitly through service
definitions and data models, or informally described in
technical documents written in natural languages. In such
ways, the power of data correlation cannot be fully
recognized and leveraged. In this paper, we proposed two
models, SDL and SDGþ, to describe data correlations among
service operations. SDL is a general purpose model dedi-
cated to service data correlation modeling, while SDGþ, a
combination of SDL and SDG, is a domain model, which
particularly focuses on data-driven service composition.

Despite the details of these two models, we say that the
key idea underlying them is explicit declaration of data
correlations. We have shown in the paper that SDL is highly
comparable to hyperlink; further, to some extent, hyperlink
is a kind of explicit data correlation declaration, which is
usually expressed in a loose manner and is supposed to be
complete to its target. From this viewpoint, we believe that
explicit declaration is a general purpose concept for data
correlation modeling. With explicit declaration, people may
create dedicated models to describe complex data correla-
tions among various entities, such as webpages, web
services, distributed objects, which are the core components
of SOC applications.
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