
Whistle: Synchronization-Free TDOA for Localization

Bin Xu∗, Ran Yu∗, Guodong Sun∗, Zheng Yang†
∗Department of Computer Science and Technology

Tsinghua University, Beijing, China
† TNLIST, School of Software, Tsinghua University

Email: {xubin,sgdcs}@tsinghua.edu.cn; {yuran00,hmilyyz}@gmail.com

Abstract

Localization is of great importance in mobile and
wireless network applications. TDOA is one of the
widely used localization schemes, in which a to-be-
located object emits a signal and a number of receivers
record the arriving time of the signal. By calculating
the time difference of different receivers, the location
of the object is estimated. In such a scheme, receivers
must be precisely synchronized; even slight noises are
completely unacceptable for centimeter-level localiza-
tion. Previous studies have shown that existing time
synchronization approaches for low-cost devices are
insufficiently accurate and basically infeasible for high
accuracy localization. In our scheme (called Whistle),
several asynchronous receivers record a target signal
and a successive signal that is generated artificially.
By two-signal sensing and sample counting techniques,
high time resolution can be achieved. This design
fundamentally changes TDOA in the sense of releasing
the synchronization requirement and avoiding many
sources of inaccuracy. We implement Whistle on com-
mercial off-the-shelf (COTS) cell phones. Through ex-
tensive real-world experiments in indoor and outdoor,
quiet and noisy environments, the mean error is 10∼20
centimeters in a 9× 9× 4m3 3D space.

1. Introduction

The proliferation of wireless and mobile devices has
fostered the demand for context-aware applications, in
which location is often viewed as one of the most
significant contexts. To know the location of a wireless
device, a number of ranging techniques are developed,
including Received Signal Strength (RSS), Time of
Arrival (TOA), Time Difference of Arrival (TDOA),
and so on. Among them, high accuracy localization
can be achieved by measuring TDOA information of
acoustic or radio signals. In existing TDOA systems,

an object to be located emits a signal and a number
of receivers at fixed positions record the arriving time
of the signal. By calculating the time difference of
different receivers, the location of the object can be
further determined.

Actually there is another category of localization
methods in the literature also named “TDOA”, which
uses a combination of signals of different propagation
speeds. Taking Cricket [24] as a typical example, a
sender emits ultrasound and RF signals simultane-
ously; while a receiver records the arrival time of
them. The difference of two timestamps can be further
used to calculate the sender-receiver distance. Different
from multi-modal signal TDOA, in this study, we
consider time difference as the difference of the arrival
times of a same signal at different receivers [7], [8],
[10], [31], [33]. In such a scheme, time synchronization
among receivers is needed in previous approaches.

Many synchronization solutions for low-cost wire-
less devices are designed, such as RBS [6], TPSN [11],
FTSP [20], GTSP [29], providing a common timescale
for local clocks of nodes in a network for many appli-
cations. Generally, synchronization is obtained based
on a series of beacon message exchanges. When a node
generates a timestamp and sends it to another node for
synchronization, unfortunately, the packet carrying the
time-stamp often suffers from several kinds of delay
before it reaches the receiver and is decoded. The
delay prevents the receiver from correctly setting its
local clock. Fikret et al. [27] decomposes the time
uncertainties into four components:

• Send time: Time spent to generate a beacon
message at the sender.

• Access time: Delay at the medium access control
(MAC) layer before actual transmission.

• Propagation time: Time spent for a message to
be transmitted in the air from a sender’s network
interface to a receiver’s.

• Receive time: Time needed for a receiver to
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receive and decode the message, and report it to
upper layer applications.

Some synchronization solutions can remove one or
two components above, but not all of them [11] [29].
What’s worse, even a solution that can handle the four
components properly is still not perfect due to clock
skew and drifting. Thus, synchronization is often not a
one-time task and needed to be carried out frequently
during the lifetime of nodes, which introduces substan-
tial costs in many aspects. Under this circumstance,
the insufficiency of existing synchronization solutions
makes high accuracy localization extremely challeng-
ing, especially for low-cost or COTS devices.

In this research, we propose Whistle, a new design
of TDOA localization without time synchronization.
High time resolution is achieved through the follow-
ing key techniques: two-signal sensing and sample
counting. The similar idea has been proposed by
BeepBeep [23] for accurate ranging. First, receivers
record both the source signal and the successive signal
(called two-signal sensing). After the recording stage,
each receiver counts the number of samples between
these two sounds and derives the elapsed time between
the two sounds (called sample counting). Then each
receiver reports its results to an Access Point (AP),
which uses the results to calculate the time difference
of the target signal’s arrival at different receivers.
Finally, Whistle can locate the sound source according
to the TDOA measurements.

Compared with other TDOA systems using spe-
cialized hardware, Whistle achieves low cost, rapid
deployment, and widespread use simultaneously. Con-
cretely, the main contributions of this study are as
follows.

• Synchronization-free. Whistle changes the
scheme of TDOA fundamentally, releasing the
synchronization requirement and avoiding many
sources of inaccuracy founded in other TDOA
approaches.

• High accuracy. Time resolution relies on the sam-
pling rate of receivers. Using 44.1 kHz sampling
rate, Whistle has a time measuring accuracy of
0.023 ms. Such a sound recording rate is sup-
ported by most of microphones of COTS devices,
like cell phones, MP3 players, sensor motes, etc.

• We implement Whistle on six COTS smart
phones. Through extensive real-world experi-
ments in indoor and outdoor, quiet and noisy
environments, the mean location error is 10∼20
centimeters in a 9 × 9 × 4m3 3D space, which
satisfies the requirement of a large number of
applications.
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Figure 1: Location computation by TDOA

The rest of the paper is organized as follows. Section
2 presents an overview of basic TDOA schemes and
the Whistle. The Whistle design is discussed in Section
3. We build up a testbed to evaluate the performance
of Whistle in Section 4. In Section 5, we review
the related work. Finally, we conclude this study and
discuss future work in Section 6.

2. Preliminaries

2.1. TDOA Localization

TDOA measurement gives the difference of the time
a signal arriving at different reference nodes. A TDOA
measurement Δtij and the coordinates of reference
nodes i and j define one branch of a hyperbola whose
foci are at the locations of reference nodes i and j.
Hence, the unknown node must lie on the hyperbola.
Thus, localization based on TDOA measurement is
also called hyperbolic positioning. In two-dimensional
space, measurements from a minimum of three ref-
erence nodes are required to uniquely determine the
location of an unknown node, as illustrated in Fig. 1.

Due to measurement noises and redundant receivers,
we seldom solve the non-linear TDOA equations di-
rectly. Instead, researchers have developed several esti-
mators [7], [8], [10], [13], [28], [31]. Comparing these
methods, in this study, we adopt Chan’s method [33]
because it produces high accuracy with proper compu-
tational complexity.

2.2. System Overview

In the design of Whistle, the object to be located
is required to be able to emit some kind of signals,
which demonstrate the existence of the object. Sound
signal is suitable for a large range of devices, such
as cell phones, PDAs, sensor motes, or all kinds of
events that make sounds. In this study, we choose a
sound source as the to-be-located object. In fact, the
techniques developed here can be applied for other
scenarios.
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Figure 2: A star-like topology of receivers

Definition 1: S is an acoustic source locating at a
fixed position in a limited 3D space and can generate
an omni-directional sound signal that lasts for a speci-
fied period. For convenience, we also use S to denote
the emitted signal.

In Whistle, We assume that the signal S can
be mathematically described in advance. Technically,
Whistle does not rely on any specific form of acoustic
signals and can be accordingly used for general pur-
poses.

In the view of hardware, Whistle involves an acous-
tic source and several receivers. Receivers are deployed
at known locations, serving as the basic infrastructure
of a TDOA system. Each receiver has a basic set
of hardware, including a speaker, a microphone, and
wireless connectors, such as Bluetooth or WiFi. Unless
explicitly pointing out, the words node and receiver
are exchangeable henceforth. Fig. 2 shows a star-like
network topology of Whistle. Receivers, in recording
mode, capture sound signals and transmit the time-
related information to an access point. The AP relays
that information to a laptop for further processing.

Using a laptop in Whistle is optional. If we use a
node to replace the AP and the laptop, the network
model described above is changed into a purely star-
like model.

3. The Design of Whistle

3.1. Measuring TDOA by TD2S

As TDOA is important, we describe how to accu-
rately measure it in Whistle. Fig. 4 shows a typical time
sequence of two Whistle nodes A and B. Let tA1 and
tB1 denote the arriving time of S at the microphones
of A and B, respectively. The TDOA measurement is
exactly tB1 − tA1, if nodes are synchronous. But in
Whistle, nodes maintain clocks independently. Even
using a perfect synchronization scheme, however, we
still cannot obtain the exact value of TDOA. Due to

ta
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Figure 3: An illustration of transmissions of two sig-
nals

the latency of software and hardware, node A detects
S at tA2 instead of tA1. The same latency occurs at
node B. Many experimental studies demonstrate that
such latencies are inevitable and unpredictable [23].
Hence, tA2 − tA1 and tB2 − tB1 are not necessarily
the same (basically different from each other), which
prevents using tB2 − tA2 as the estimate of tB1 − tA1.

To eliminate the uncertainties and errors mentioned
above, we introduce a system sound S′ to avoid time
synchronization.

Definition 2: After receiving the source sound sig-
nal S, one of the receivers will emit another sound
signal S′, which is called the system sound signal. The
node emitting S′ is called base node.

With the help of the system sound S′, we develop
a method to measure tB1 − tA1. As shown in Fig. 4,
after a specified time interval τ , node A, as the base
node, emits S′ from its speaker at time tA3 according
to its own clock.

Theorem 1: For all non-base nodes, they always
detect the system sound signal S′ after the source
sound signal S.

Proof: Let S be the sound source, a the base node,
and b a non-base node. Assume that ta and tb are the
propagation time of S from s to a and from s to b,
respectively. In addition, the propagation time of S′

from a to b is denoted by tc. Finally, we use tab as the
time span lasting from emitting S at s and receiving
S′ at b.

The locations of s, a and b construct a triangle in
Fig. 3, or lie in a straight line. In both cases, we
have tb ≤ ta + tc due to triangle inequality. Since
the base node encounters a delay between receiving
S and emitting S′, we have tab > ta + tc. Therefore,
tab > tb can be obtained, meaning that any non-base
node b always firstly senses S, then S′.

As shown in Fig. 4, S′ is emitted from A’s speaker
at tA3, and arrives at the microphones of A and B at
tA4 and tB3, respectively. A and B’s CPUs detect S′

at tA5 and tB4, respectively. According to Theorem 1,
tB3 is always later than tB1. We define the TD2S
value of one node as the elapsed time between the
arrival of S and the arrival of S′ at the node. Obviously,
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Figure 4: Time lines of node A and B

TA2S = tA4− tA1, TB2S = tB3− tB1. The distance of
A’s speaker to B’s microphone (denoted by dAB) is a
constant since both A and B fix at known locations.
In addition, the distance between A’s speaker to its
own microphone (denoted by dAA) is also a constant.
Let TAB denote the TDOA value of A and B, i.e.,
TAB = tB1 − tA1. TAB can be expressed using TA2S

and TB2S , as illustrated in Eq. (1).

TAB = tB1 − tA1

= (tB3 − tA3)− (tB3 − tB1) + (tA3 − tA1)

= (tB3 − tA3)− (tB3 − tB1)

+ (tA4 − tA1)− (tA4 − tA3)

=
dAB

v
− (tB3 − tB1) + (tA4 − tA1)−

dAA

v
= k1 − TB2S + TA2S − k2

(1)

In Eq. (1), k1 and k2 are defined as dAB

v and dAA

v ,
respectively. Since both k1 and k2 are constant, only
TA2S and TB2S are needed to calculate TAB. The sig-
nificance of Eq. (1) is that TDOA can be calculated by
TD2S values which can be measured independently
by asynchronous nodes. The next challenge is how to
calculate the TD2S accurately.

3.2. Calculating TD2S Accurately

In Fig. 4, since latencies are unpredictable, tA4−tA1

is not necessarily equal to tA5 − tA2. Therefore, for a
node, using two CPU timestamps to calculate a TD2S
(traditional synchronization methods often do in this
way) is not promising.

Recall that nodes are in the recording state and
samples at a fixed frequency (fHz). In other words,
every 1

f second, a node senses and translates signals
into a real or complex number by its A/D converter. For
example, when the signal S arrives at the microphone
of a node X , X is recording the i-th sample data.
After some latency, X’s microphone detects the signal
S′ when its sample counting goes to j (j > i
according to Theorem 1). Now, we can obtain TX2S ,
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Figure 5: One example case of S and S′

the TD2S of node X and have TX2S = j−i
f . Thus, we

eliminate the uncertainties that are inherent in the time
synchronization and CPU-timestamp based methods.
Basically, a higher sampling rate results in a higher
accuracy. In this paper, the sampling rate is 44.1kHz,
which is supported by most COTS devices.

3.3. Detecting Sound Signals

Another critical challenge in Whistle’s design is:
how to detect both arrivals of the sound signals S and
S′?

We assume that both S and S′ use the same form of
sound signal that is known as a priori. If the signal has
a good auto-correlation property, it is easy and accurate
to determine the peak relevant to the arrival of S by
correlating it with the known signal. Specifically, after
cross-correlation, the two maximal peaks represent the
time-of-arrival of S and S′ in theory, and the latter one
is S′ according to Theorem 1 (as shown in Fig. 5).

In practice, the highest peak can not always repre-
sent the arrival of signal because of multi-path effects
and other uncertainties; we choose the earliest sharp
peak in a shadow window of ω0 points right before the
maximal peak instead. We use two parameters: height
and average slope. Average slope is calculated as

P =
Ypeak − Yvallay

Xpeak −Xvallay
(2)

Xvallay is the nearest valley point before the peak.
Only the peak whose height is larger than Ymaxpeak×
THY and slope is larger than Pmaxpeak×THP would
be chosen. In our implementation, we empirically set
ω0 = 5000, THY = 0.5, THP = 0.5.

Generally, we can use any signal with good autocor-
relation property as the reference signal. Considering
the properties of the built-in speaker and microphone
of a cell phone, in this paper, we select the linear
chirp signal (sounds like a whistle) with the frequency
changing from 2kHz to 6kHz as S and S′, the duration
of the chirp signal is set to 50ms.
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3.4. Filtering TD2S Outliers

We have shown a method using TD2S to calculate
TDOA. But sometimes, because of the instability of
sound recording, we get wrong TD2S from defective
recording which can be attributed to obstacles between
S and receivers or background noises. Since when and
where S being emitted are unknown, it is difficult to
give a range which the real value of TD2S should
locate in. But still we can use a method to tell wrong
TD2Ss from the other: majority decision.

Suppose that the sound source M emits S at t, while
the base node N emits S′ at t′. Receivers A and B
both record the two signals. Thus, the TD2Ss of both
receivers have the following relation:

|ΔTD| = |TA2S − TB2S |

= |((t′ + dAN

v
)− (t+

dAM

v
))

− ((t′ +
dBN

v
)− (t+

dBM

v
))|

=
|(dAN − dBN )− (dAM − dBM )|

v

≤ |dAN − dBN |+ |dAM − dBM |
v

≤ 2dAB

v

(3)

Providing D is the maximum distance among all
receivers in localization (because we have positions
of Ni, D can be easily got), for an arbitrary pair of
receivers, we have |ΔTD| ≤ 2D

v . So when we get
correct TD2Ss of all receivers to form a set D and
sort it, we have TD2Smax − TD2Smin ≤ 2D

v .
If most of the TD2Ss are correct and a few have

significant error, elements in D can be divided into
three categories: (1) a majority of elements which are
in an interval whose length is shorter than 2D

v ; (2) a
few elements which are outside of this interval; and
(3) the other elements. For arbitrary elements a in (1)
and b in (2), |a− b| > 2D

v .
In this case we can judge category (2) as error

TD2Ss, and only use category (1) to localize S.
Obviously, category (1) must have sufficient nodes to
calculate, or we have to use the whole set to get a result
which usually has large errors. This kind of division
bases on the assumption that most of the TD2Ss are
correct. Such a method works well in practice.

Obviously, this method needs redundant nodes.
More nodes bring extra localization or measuring cost,
but enlarge the set of category (1) and enhance the
accuracy of localization. In fact, there is a trade-off
between cost and performance. We empirically find

N0 N1 N2 N3 N4

t0
t1

t2
t3

t4

S
t

t′t′0

t′1 t′2 t′3 t′4

Figure 6: An illustration of the emissions and recep-
tions of both source sound signal S and system sound
signal S′. N0 is the base node.

that 2 ∼ 3 redundant nodes can increase location
accuracy significantly.

3.5. Framework Design

After discussing the details of Whistle, we present
the Whistle framework design in this section. As
mentioned in Section 2.1, we need M(M ≥ 5) nodes
for 3D localization. Without loss of generality, let N0

be the base node and Ni(1 ≤ i ≤ M − 1) be a non-
base node (N0 is not always the nearest to S). Whistle
has three steps:

In step one, nodes start recording, and receive S
by their own microphones. As illustrated in Fig. 6,
the signal S is emitted at time t, which will arrive at
N0, N1, . . . , and NM−1 at time t0, t1,. . . and tM−1,
respectively. Note that the time point t or ti(0 ≤ i ≤
M −1) in Fig. 6 is regarding to the absolute time line,
instead of the time line maintained by any individual
node Ni(0 ≤ i ≤ M − 1).

In step two, the base node N0 will emit a system
sound signal S′ at time t′ (as shown in Fig. 6) after it
detects S. The signal S′, of course, will arrive at each
node after some latency. A node Ni(0 ≤ i ≤ M − 1)
records the time t′i of S′ arriving at Ni. Every node
maintains a recording Ri which includes both S and
S′. Correlating Ri with the reference signal, using the
method mentioned in Section 3.3, we have t′i − ti.
For node Ni, the TD2S value (t′i − ti) depends only
on Ni’s own clock, provided that the clock of Ni is
accurate in a term longer than the period of the sound
occurrence.

In the last step, the value of TD2S will be delivered
to a node or an AP for deriving accurate TDOA
values, based on which the location of the sound source
can be finally determined.
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4. Experimental Evaluation

In this section, we evaluate the performance by a set
of experiments on a real testbed.

4.1. Prototype Configuration

To build a prototype, we use eight cell phones
consisting of six Dopod P800, one O2 XDA Atom
and one SonyEricsson XPeria. Each of them has a
pair of built-in speaker and microphone, and a WiFi
module. We use the O2 cell phone as the base node ,
the Sony cell phone as the sound source, and all other
Dopod cell phones as receivers. The signals S and S′

are designated to the linear chirp sound.
We organize these eight cell phones and an AP

(TP-LINK) into a star-like network where all cell
phones connect directly to an AP (seen Fig. 2). The
AP relays received data to a laptop(Lenovo T60) for
location computation. A high performance cell phone
can replace the laptop and AP and serve as a hub
connecting the other cell phones.

Using the Windows Mobile 6.0 SDK, we develop
the software level of Whistle. For convenience, we
implement a recorder in software level that can enter
and quit the recording status periodically and save
automatically the recorded sound data into a file with
the wav format.

4.2. Source of Errors

We summarize possible sources of errors in this
section. In Whistle, we get TDOA from TD2S first,
and solve the equations according to TDOA. Errors
may come from both steps. The main factors are as
below:

• Signal to noise ratio (SNR) - Environmental
noises will always be recorded. If the energy of
the transmit signals is limited or the frequency
of noises is close to the signals, it is difficult to
detect the arrival time of the signals.

• Multi-path effects - Because of reflection, an
acoustic signal may reach a receiver via different
paths. Though we take the earliest peak instead
of the highest peak to deal with multipath effects,
sometimes the right time point cannot be caught.

• Equation solving - Chan’s method performs well
when the TDOA measurement errors are small.
However, as the errors increase, the performance
degrades. In the experiments, we find that al-
though a majority of TDOA errors are below
0.4ms, a small potion of relatively large errors
contribute a lot to the location error.
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Figure 7: Deployment of receivers and acoustic sources
in 2D case. Unit:cm

Except for some negligible factors, like the propa-
gation speed variation of sound, there are still other
factors that may influence localization accuracy. We
plan to use the schemes like [35] to infer hidden failure
reasons and detect possible faulty components in the
future.

4.3. Settings of Test Environment

Whistle was evaluated in both 2D and 3D scenarios.
In each scenario, according to the error sources men-
tioned above, we intentionally conduct the experiments
in three environments:

• Case 1-Outdoor, quiet: Whistle is deployed out-
side a large gymnasium.

• Case 2-Outdoor, noisy: The location is same to
Case 1, but loudspeaker plays music nearby.

• Case 3-Indoor, quiet: A hall of size about
9m×9m×4m.

In the following parts, we use “Normal” to denote
Case 1, “Noisy” to Case 2, and “Inside” to Case 3.
Through the comparison of three environments, we are
expected to reveal the effect of a single factor (noise
or multi-path effect).

We place the sound source at 16 different points in
each environment, and collect 10 repeated samples of
measuring data at each point. So totally we have 960
different samples under the 2D and 3D deployments.
Since temperature may change significantly from start
to end, we record temperature once S changes its
position. The model of sound speed in use is formally
described as vair = 331.3 + 0.6× θ m/s in [1]. The
parameter θ represents the air temperature in Celsius.
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Figure 9: Outlier number. Figures at top and bottom
represent the outlier number of 10 samples in 2D and
3D cases, respectively.

For 2D or 3D, in all environments, we have the
same deployment of Ni and S. Since sound attenuates
rapidly when transmitting in the air, our method is
distance-restricted, so we do our work in an about
9m×9m×4m space. We depict 2D deployment in
Fig. 7 and 3D in Fig. 8, the red points represent
the different acoustic source locations and have been
labeled with different number, the blue points represent
different receivers. Critical distances are all labeled in
the deployment picture. Our sound source positions
only occupy 1/4 of the space because it is symmetrical.

For simplicity, we use the number associated with
the sound source point as experimental sequence to
denote the corresponding test in the following section.

4.4. Outlier Number

In the experiment, we find some results with ex-
tremely large errors; those errors are from obviously
failed experiments which can not get enough eligible
TDOAs. These results significantly lower positional
accuracy but are of little value and can be easily
separated from other results. So we identify the results
with the absolute errors greater than 1m as outlier and
exclude them from the results to be used in accuracy
evaluation.

For example, in a case where a location S1, obtained
by Whistle, is (10, 20, 30) and the exact sound source
S = (8, 22, 30), |xS1 − xS | = 2m > 1m shows that
the result of S′ is an outlier.

Fig. 9 shows the number of outliers of the 10 sam-
ples in every point of experiments. It is obvious that
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Figure 10: CDF of position errors in 2D and 3D cases

there are only very few outliers in most experiments.
The outlier number of inside scene in 3D case is
the largest, but even in this scene, the percentage of
outlier is only 12.5%. The largest outlier number in
the 3D inside scene suggests that WSN localization
in indoor environment is vulnerable due to multi-
path and obstacles, so researchers often resort to other
equipments in this case. For example, Lionel M. NI et
al. [18] propose a location sensing prototype system
named LANDMARC that uses RFID for locating ob-
jects inside buildings. The similar idea can be used in
our future work to enhance our system’s resistance in
indoor environments.

In the figure we can see that 2D experiments have
much less outliers than 3D. We can explain it with
the conclusion which we get from Section 3.4 that
more redundant nodes bring higher accuracy. The 2D
case has one more redundant node than 3D, so it is
easier for 2D to avoid outliers. It is observed that both
noise and multi-path cause more outliers. In 3D case
multi-path gives stronger interference than 2D.

4.5. Positional Errors

Fig. 10 depicts the cumulative density function
(CDF) of the positional errors in 2D and 3D case. The
mean position error and some thresholds can be seen

in Tab.1 and Tab.2. The pictures and tables reveal a
mean error of 10 ∼ 20 cm in 3D case and 10 ∼ 21
cm in 2D case. They demonstrate that whistle achieves
high accuracy in all environments.

We can see that results in normal environments
are not always the best. Though noise and multi-
path increase the number of outliers, they do not di-
rectly enlarge errors of right results. The consequences
of 3 environments are quite similar. We think that
our system resists multi-path because of the efficient
method for finding the first peak (seen in Section 3.3),
and resists noises because of the good autocorrelation
property of chirp signal.

Table 1: 2D critical data

Indicator(cm) Normal Noisy Inside

mean error 20.0 20.3 13.7
50% error 12.7 18.8 10.9
90% error 38.1 33.7 29.9

std 12.8 10.9 12.1
outlier percentage 1.25% 5% 0.6%

Table 2: 3D critical data

Indicator(cm) Normal Noisy Inside

mean error 14.7 14.4 15.2
50% error 13.7 13.8 12.8
90% error 22.8 21.9 28.2

std 6.2 7.4 9.9
outlier percentage 2.5% 5% 12.5%

5. Related Work

Many range-based localization algorithms have been
proposed within a few past decades. Existing work
basically use three types of measurements of acoustic
signals: TDOA [24], [19], [32], [9], DOA (direction
of arrival) [22], [14], [12], [15] and received signal
energy [25], [26], [4], [21], [3].

Cricket [24] is a TDOA based localization system. It
uses concurrent wireless communication and ultrasonic
signal to determine the TDOA value between two
nodes referring to their own CPU timestamps. Mahajan
et al.’s work [19] uses TDOA measurements to solve
a linear equations system similar to ours. Since their
TDOAs are measured by CPU timestamps, clock syn-
chronization is needed. Moreover, their work is evalu-
ated only by simulation. The work in [32] employs 8
microphones to obtain the TDOA information, which is
further used to estimate the bearings of sound sources.

Motivated by the applications of monitoring ani-
mals in field, the work in [2], [12] implements and
evaluates a sound source localization system called
ENSBox [12] and employs it to localize marmot alarm-
calls. ENSBox is a DOA-based platform, integrating

767



an ARM processor, a sensor array, a wireless radio
connector, and precise self-calibration of array position
and orientation.

An energy-based localization system is proposed in
[4], in which the positions of speakers are estimated
using an ad hoc microphone array setting and the
maximum likelihood estimation method. In [21], a
set of methods based on energy measurement are
developed, compared, and contrasted. Particularly, a
weighted direct least-squares formulation is presented,
which incorporates the dependence of unknown param-
eters leading to high performance.

BeepBeep [23] is an acoustic-based ranging system
with high accuracy. It measures the distance of two
cell phones using only their microphones, speakers,
and WiFi connection, without leveraging any pre-
planned infrastructure. In BeepBeep ranging system,
two cell phones emit the same sound signal (Beep)
successively, then each phone computes the elapsed
time between the two time-of-arrivals (ETOA). With
the two ETOAs, the distance between the two phones
can be obtained. Both the two nodes of BeepBeep
must actively participate the ranging process, so the
scheme of BeepBeep can be used for TOA localization,
but not for TDOA inherently because the to-be-located
object (or event) does not necessarily cooperate with
receivers. Whistle extends BeepBeep and develops new
techniques for TDOA localization.

Though range-based localization methods can get
high accuracy, they often need expensive equipments
and have strict connectivity requirements. Some classic
range-free algorithms like DV-hop [5] and APIT [30]
are proposed to implement localization in more exten-
sive circumstances. DV-hop uses the average distance
of each hop and hop counts to calculate the real
distance between two nodes, so DV-hop has better
performance in isotropic WSNs. APIT makes tests to
know whether the unknown node is inside the triangle
formed by different anchor nodes, and obtains the
intersected region of all the triangles that cover the
unknown node, then sets the centroid of that region
as the result. APIT has high accuracy but has strict
requirements for connectivity. Mo Li et al. [17] reveal
that these range-free schemes fail in anisotropic WSNs
with possible holes, and propose the Rendered Path
(REP) protocol that is the only protocol for locating
sensors with constant number of seeds in anisotropic
WSNs.

Several techniques have been proposed for solv-
ing non-linear TDOA equations. Fang [7] reduced
the computation to the solution of a quadratic or a
quartic equation, but his method can not make use of
extra measurements from extra receivers to improve

position accuracy. More general methods with extra
receivers can be found in [10], [28]. They provide
closed-form solutions, but their estimators are not un-
biased and optimum. Abel [13] proposes a divide and
conquer (DAC) method which can achieve optimum
performance and unbiased estimator when the data
vector is appropriately subdivided, but DAC requires
quiet large Fisher information and is difficult to be
implemented. The Taylor-series method [31], [8] can
get high accuracy at reasonable noise levels, but it
is computationally intensive because of its iterative
course and finding a proper initial point to avoid
the convergence problems is not easy. The method
proposed by Chan [33] is noniterative and gives an
explicit solution, and attains the Cramer-Rao lower
bound near the small error region. This method also
has a higher noise threshold than DAC. In short,
the method balances computational complexity and
accuracy, and is accordingly adopted in our work.

6. Conclusion

In this paper, we propose an acoustic source local-
ization framework, Whistle. As a TDOA based system,
Whistle changes the scheme of TDOA fundamentally,
by releasing the synchronization. In Whistle, several
asynchronous receivers record a target signal and a
system signal. High time resolution is achieved through
two-signal sensing and sample counting. Real-world
experiments are conducted on a testbed system consist-
ing of COTS cell phones. Experiment results show that
Whistle has a mean location error of 10∼20 centime-
ters in a 9×9×4m3 3D space. To summarize, Whistle
achieves low cost, rapid deployment, and widespread
use simultaneously.

Our ongoing work are: (1) extending Whistle for
larger wireless sensor networks, in which a large
number of nodes are organized in an ad-hoc manner.
There may be quite a lot new problems including error
control and localizability [36] in this multi-hop WSN.
Besides, we may have to construct a self-adaptive
WSN topology like [16], for some nodes may run out
of energy earlier than the other. Finally, we should
pay particular attention to the factors that restrict the
WSN’s scale and lifetime proposed by Yuan He et
al. [34] ; (2) trying to use ordinary sound or voice in-
stead of a signal that can be mathematically described,
and see if we can find some new method for detecting
its arrival accurately. (3) using RF signal instead of
acoustic signal. UWB signal is our first choice, as it
offers high time resolution. We will implement Whistle
on a UWB localization system and see its effects.
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