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Abstract—In delay tolerant networks (DTNs), the lack of
continuous connectivity, network partitioning, and long delays
make design of network protocols very challenging. Previous DTN
research mainly focuses on routing and information propagation.
However, with large number of wireless devices’ participation,
how to maintain efficient and dynamic topology of the DTN
becomes crucial. In this paper, we study the topology control
problem in a predictable DTN where the time-evolving network
topology is known a priori or can be predicted. We first model
such time-evolving network as a directed space-time graph which
includes both spacial and temporal information. The aim of
topology control is to build a sparse structure from the original
space-time graph such that (1) the network is still connected
over time and supports DTN routing between any two nodes; (2)
the total cost of the structure is minimized. We prove that this
problem is NP-hard, and then propose two greedy-based methods
which can significant reduce the total cost of topology while
maintain the connectivity over time. Finally, we illustrate how the
proposed methods can work for undirected DTNs. Simulations
have been conducted on both random DTN networks and real-
world DTN tracing data. Results demonstrate the efficiency of
the proposed topology control methods.

I. INTRODUCTION

Delay or disruption tolerant networks (DTNs) [1], [2] re-
cently have drawn much attention from networking researchers
since they have wide applications in challenging environments,
such as space communications, military operations, and sen-
sor networks. In DTNs, the lack of continuous connectivity,
network partitioning, and very long delays are the norm, not
the exception. Communication in DTNs is challenging as it
must handle time-varying links, long delays, and dynamic
topology. Recently, many routing schemes [3]–[10] have been
proposed for DTNs to take the intermittent connectivity and
time-varying topology into consideration. However, current
solutions for DTNs either use stochastic routing techniques
in which replicating messages are randomly forwarded or use
static prediction of future contact to select the next hop for
forwarding. All these solutions ignore temporal characteristics
of the network, thus they may lead to poor performance in
time-evolving DTNs.

Delay tolerant networks often evolve over time: changes of
topology can occur if some nodes appear, disappear, or move
around. Such dynamics over time domain are often ignored
in protocol design or simply modeled by pure randomness
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such as in the well-known random walk mobility model and
the random graph model. For example, in traditional ad hoc
networks, a network is usually modeled as a connected graph
with stable end-to-end paths and the effect of dynamic changes
in topology on protocol design is handled by continuous
monitoring and on-demand updates. However, in real-world
wireless networks, node mobility and the evolution of topology
heavily depend on both social and temporal characteristics of
the network and network participants. In many wireless net-
work applications (such as pocket switched networks based on
human mobility [11], [12], vehicular networks based on public
buses or taxi cabs [13], [14], sensor networks for wildlife
tracking [2], mobile social networks [15], [16], disaster-relief
networks, or space communication [17]–[19]), there are clear
socio-temporal patterns for both individual components and
network structure. For certain type of networks, the temporal
characteristics of topology could be known a priori or can be
predicted from historical tracing data. For example, it is easy to
discovery the temporal pattern of topology for a delay tolerant
network formed by public buses [13] or satellites [19] which
have fixed tours and schedules, or a mobile social network
consisting of students who share fixed class schedules. Recent
study [20] also shows that human mobility model can achieve
a 93% potential predictability. In this kind of time-evolving
and predictable DTNs, traditional communication protocols
designed for wireless networks may be inefficient due to time-
varying structure and long delays, or even fail to perform due
to the lack of continuous connectivity or network partitioning.
Figure 1 illustrates an example of such time-evolving DTN. It
is crucial to design new efficient protocols for this emerging
type of DTNs. Routing in these time-evolving and predictable
networks has been studied [21]–[25]. In this paper, we are
interested in how to smartly control the dynamic topology for
such time-evolving and predictable DTNs.

Network topology is always a key functional issue in de-
sign of wireless networks. For different network applications,
network topology can be controlled under different objectives
(such as power efficiency, fault tolerance, and throughput max-
imization). Topology control has been well studied in ad hoc
and sensor networks [27]–[32]. The focus of previous research
is mainly on how to construct a power efficient structure
from a static and connected topology. However, in DTNs, the
underlying topology is lack of continuous connectivity which
makes existing topology control algorithms useless. Therefore,
how to maintain efficient and dynamic topology of DTNs
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Fig. 1. A time-evolving DTN: (a) a snapshot of the network, (b) time-
evolving topologies of the DTN (a sequence of snapshots).

becomes crucial, especially with large number of wireless
devices’ participation.

In this paper, we study the topology control problem in
a time-evolving and predictable DTN by taking time-domain
topological information into consideration. Our major contri-
butions are summarized as follows:

∙ We first model the time-evolving DTN as a directed
space-time graph in which both spacial and temporal
information is preserved. We then define the topology
control problem which aims to build a sparser structure
(also a space-time graph) from the original space-time
graph such that (1) the network is still connected over
time and supports DTN routing between any two nodes;
(2) the total cost of the structure is minimized. Notice
that in some time-evolving and predictable DTNs (such
as the interplanetary space DTN [19]), maintaining dense
structure is too expensive. We also show that this new
topology control problem is a NP-hard problem, by
connecting it with directed Steiner tree problem [33].

∙ We propose two greedy-based methods which can sig-
nificant reduce the total cost of network topology while
maintaining the connectivity over time. Both methods
repeatedly add a set of edges into the topology to connect
one or multiple pairs of nodes in the space-time graph.
In each round, the first method basically adds one least
cost path to connect one pair of nodes, while the second
method adds a bunch of paths to connect multiple pairs.
The latter method can theoretically achieve an approxima-
tion of the optimal solution for topology control problem.

∙ We also discuss how to address the topology control
problem in undirected DTNs using the proposed greedy
methods. Basically, we present two methods to convert
an undirected DTN to a directed DTN in the format of
space-time graphs.

∙ Simulations have been conducted on both random DTN
networks and real-world DTN tracing data [34]. Results
demonstrate the efficiency of all proposed methods.

The rest of this paper is organized as follows. In Section II,
we summarize related works in topology control and DTNs.
In Section III, we formally define the space-time graph and
the topology control problem. Two topology control algo-
rithms for time-evolving DTNs are proposed in Section IV.

Then, topology control for undirected DTNs are discussed in
Section V. Section VI presents the simulation results of all
proposed algorithms. Finally, Section VII concludes the paper
by pointing out some possible future directions.

II. RELATED WORKS

A. Topology Control in Ad Hoc and Sensor Networks

Topology control has drawn a significant amount of research
interests in wireless ad hoc and sensor networks [27]–[32].
Primary topology control algorithms aim to maintain network
connectivity and conserve energy. Most topology control pro-
tocols for ad hoc and sensor networks can be classified into
two categories: geometrical structure-based and clustering-
based. In geometrical structure-based methods [30]–[32], a
geometrical structure is constructed based on location in-
formation by removing as many links as possible from the
original communication graph. Each node only selects certain
neighbors (neighbors in the constructed structure) for commu-
nication. In clustering-based methods [35]–[37], a hierarchical
structure is built using clustering formation as the virtual
backbone for routing and relaying packets for the network. All
these topology control protocols deal with topology changes
by re-performing the construction algorithm. Fortunately, most
of the construction algorithms are localized or distributed algo-
rithms, therefore the update cost is not expensive. However, all
of these methods assume that the underlying communication
graph is fully connected and they do not consider the time
domain knowledge of network evolution.

B. Routing in Delay Tolerant Networks

Existing research in DTNs mainly focuses on routing
[3]–[10]. Most of these DTN routing protocols belong to
three categories: message-ferry-based, opportunity-based and
prediction-based. In message-ferry-based methods [4], [5],
[38], systems usually employ extra mobile nodes as ferries
for message delivery. The trajectory of these message ferries
is controlled to improve delivery performance with store-
and-carry. All these approaches improve routing performance
with additional mobile nodes, although controlling these nodes
leads to extra cost and overhead. In opportunity-based schemes
[2], [6], [7], nodes forward messages randomly hop by hop
with the expectation of eventual delivery, but with no guaran-
tee. Generally, messages are exchanged only when two nodes
meet at the same place, and multiple copies of the same
message are flooded in the network to increase the chance
of delivery. Approaches in this category usually distribute
multiple copies in the network, to ensure a high reliability
of delivery. But they also bring in a high cost of buffer
occupancy and bandwidth consumption. Some DTN routing
protocols [8]–[10] use delivery estimation to determine a met-
ric for contacts relative to successful delivery, such as delivery
probability or delay, based on a history of observations. Most
of these protocols focus on whether two nodes will have
a contact without sufficiently considering when the contact
happens. Recently, Liu and Wu [21], [39] have proposed to use
estimated expected minimum delay as a delivery probability
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metric in DTNs with repetitive mobility. Liu and Wu [40]
also proposed a forwarding method applying a probabilistic
forwarding metric derived by modeling each forwarding as an
optimal stopping rule problem.

C. Modeling Time-Evolving Networks

How to model the time-evolving networks has been studied
in both mobile ad hoc networks [22]–[24] and delay tolerant
networks [21], [25]. Xuan et al. [22] first study the routing
problem in a fixed schedule dynamic network, where the
topology dynamics at different time intervals can be predicted.
They use evolving graphs to capture the evolving characteristic
of such dynamic networks. Here, an evolving graph is an
indexed sequence of subgraphs of a given graph, where the
subgraph at a given index point corresponds to the network
connectivity at the time interval indicated by the index number.
Recently, [24], [25] also use evolving graphs to evaluate
various ad hoc and DTN routing protocols. Shashidhar et
al. [23] study the routing problem in dynamic networks as
well. They use a space-time graph to model the network.
The space-time graph is a directed graph which captures both
the space and time dimensions of the network topology. We
adopt this model for this paper, and will introduce more about
it in the next section. In [21], Liu and Wu also model a
cyclic mobispace as a probabilistic space-time graph in which
an edge between two nodes contains a set of discretized
probabilistic contacts. All of these work only focus on the
routing problem in the dynamic networks modeled by either
evolving graphs or space-time graphs. In this paper, we will
investigate the topology control problem in these networks.

For our best knowledge, there is no previous results on
topology control in DTNs except for our recent work [26],
which studies how to build time-evolving structures preserving
spanner properties. This paper and [26] are the first attempts
to study topology control for time-evolving DTNs. We believe
that topology can be controlled more wisely and efficiently if
the network evolution over time is known.

III. MODEL AND THE PROBLEM

A. Space-Time Graph

In a DTN, different nodes corresponding to different indi-
vidual devices and edges represent interactions between them
over time. Since positions of individual nodes and the topology
co-evolve over time (as shown in the example of Figure 1),
traditional static graph model can not represent such evolution.
Thus, a sequence of static graphs is needed to model the
time-evolving DTN. As shown in Figure 1(b), each static
graph is a snapshot of nodes and their interactions observed
at certain time step. In this example there is no end-to-end
path between some node pairs inside one snapshot, and the
network is not connected in some snapshots (𝑡 = 1, 2, 3). The
dynamic network with a sequence of snapshots then describes
the evolution of interactions among nodes over a period of
time. In this paper, we use a space-time graph [23] to model
such a dynamic DTN.
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Fig. 2. Different graph models for the time-evolving network shown
in Figure 1: (a) a sequence of snapshots of the network at each time slot,
denoted by {𝐺𝑡}; (b) and (c) its corresponding aggregated graph model.
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Fig. 3. Space-time graph model from the same time-evolving network in
Figure 2: (a) the corresponding space-time graph 𝒢; (b) a space-time path (in
blue) from the source 𝑣2 to the destination 𝑣5.

Assume that the time is divided into discrete and equal time
slots, such as {1, ⋅ ⋅ ⋅ , 𝑇}. Let 𝑉 = {𝑣1, ⋅ ⋅ ⋅ , 𝑣𝑛} be the set
of all individual nodes in the network (which represents the
set of wireless devices). Let 𝐺𝑡 = (𝑉 𝑡, 𝐸𝑡) be a directed
graph representing the snapshot of the network at time slot 𝑡

and
−−→
𝑣𝑡
𝑖𝑣

𝑡
𝑗 ∈ 𝐸𝑡 if node 𝑣𝑖 can communicate to 𝑣𝑗 at time

𝑡. Then the dynamic network can be modeled as a union
of series of directed graphs {𝐺𝑡∣𝑡 = 1 ⋅ ⋅ ⋅𝑇}. Figure 2(a)
shows the sequence of snapshots of the network in Figure 1 at
each time slot. This representation of the network includes all
information from both spacial and temporal information of this
time-evolving network. However, most existing DTN protocols
are not designed for this model. Instead, they usually use a
standard aggregated representation as shown in Figure 2(b)
and Figure 2(c) where an edge exists between a pair of nodes
if they have interacted at any point during the time period. The
weight of such a link is the probability of the occurrence (or
the fraction of the occurrence over the total/historical period)
of the link. For example, link −−→𝑣1𝑣3 exists in two time slots out
of total four slots, thus its weight is 0.5. Many DTN routing
protocols [3], [8] estimate this contact probability based on
past history and use it to select forwarding nodes. However,
such aggregated view discards temporal information about the
timing and order of interactions. For example, based on the
aggregated model, there is a path from 𝑣4 to 𝑣2 via 𝑣1. But
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link −−→𝑣4𝑣1 only exists in the last time slot when link −−→𝑣1𝑣2 is
already broken. Thus, path 𝑣4𝑣1𝑣2 cannot be used for packet
delivery from 𝑣4 to 𝑣2.

Now we convert the sequence of static graphs {𝐺𝑡∣𝑡 =
1 ⋅ ⋅ ⋅𝑇} into a space-time graph 𝒢 = (𝒱, ℰ), which is a
directed graph defined in both spacial and temporal space.
See Figure 3 for illustration. In the space-time graph 𝒢, 𝑇 +1
layers of nodes are defined and each layer has 𝑛 nodes, thus
the vertex set 𝒱 = {𝑣𝑡

𝑗 ∣𝑗 = 1, ⋅ ⋅ ⋅ , 𝑛 and 𝑡 = 0, ⋅ ⋅ ⋅ , 𝑇} and
there are 𝑛(𝑇 +1) nodes in 𝒢, i.e., ∣𝒱∣ = 𝑛(𝑇 +1). Two kinds
of links (spatial links and temporal links) are added between
consecutive layers in ℰ . The space between consecutive layers

is a time slot. A temporal link
−−−−→
𝑣𝑡−1
𝑗 𝑣𝑡

𝑗 (those horizontal links in
spacial Figure 3) connects the same node 𝑣𝑗 across consecutive
(𝑡−1)th and 𝑡th layers, which represents the node carrying the

message in the 𝑡th time slot. A spatial link
−−−−→
𝑣𝑡−1
𝑗 𝑣𝑡

𝑘 represents
forwarding a message from one node 𝑣𝑗 to its neighbor 𝑣𝑘 in
the 𝑡th time slot (i.e., −−→𝑣𝑗𝑣𝑘 ∈ 𝐸𝑡). By defining the space-time
graph 𝒢, any communication operation in the time-evolving
network can be simulated on this directed graph. As shown in
Figure 3(b), a path from 𝑣0

2 to 𝑣4
5 shows a particular routing

strategy to deliver the packet from 𝑣2 to 𝑣5 in the network
using 4 time slots. 𝑣2 holds the packet for the first time slot,
then passes it to 𝑣3 at 𝑡 = 2, etc.

Space-time graph model captures both the space and time
dimensions of the network topology. It increases the com-
plexity of protocol design (introducing a new dimension of
time domain), but also provides more choices of routes/links
for selection (enjoying efficient combinations of spacial and
temporal links). We further assume that for each direct link
𝑒 ∈ ℰ there is a cost 𝑐(𝑒), which is the energy cost associated
with transiting a message on that link (transiting it from one
node to the other node on a spacial link or holding a message
within one node over a temporal link). The total cost of a
space-time graph 𝑐(𝒢) is the summation of costs of all links
in 𝒢, i.e., 𝑐(𝒢) = ∑

𝑒∈𝒢 𝑐(𝑒). Given the cost of links, we can
also define the shortest path 𝑃 (𝑢, 𝑣) as the least cost path from
𝑢 to 𝑣 in 𝒢. The total cost of such path is denoted by 𝑐(𝑢, 𝑣),
which is the summation of costs of all links in path 𝑃 (𝑢, 𝑣).

B. New Topology Control Problem

We now can define the topology control problem (TC) on
space-time graphs. The aim of topology control is constructing
a sparse space-time graph ℋ, which is a subgraph of the origi-
nal space-time graph 𝒢, such that (1) ℋ is still connected over
the time period 𝑇 ; and (2) the total cost of ℋ is minimized.
Notice that in some time-evolving and predictable DTNs (such
as the interplanetary space DTN [19]), maintaining dense
structure is too expensive, thus a connected subgraph is more
cost efficient. Here connectivity has a different definition from
that of a static graph. We define that a space-time graph ℋ
is connected if and only if there exists at least one directed
path for each pair of nodes (𝑣0

𝑖 , 𝑣𝑇
𝑗 ) (𝑖 and 𝑗 in [1, 𝑛]). This

can guarantee that the packet can be delivered between any
two nodes in the network over the period of 𝑇 . Notice that a
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Fig. 4. Topology control on time-evolving network (the one shown in
Figure 1): (a) a new connected subgraph ℋ of 𝒢 (green links are removed
links from Figure 3(a)); (b) its corresponding sequence of static graph with
less links than the one of Figure 2(a).

connected space-time graph does not require connectivity in
each snapshot. Hereafter, we assume that the original space-
time graph 𝒢 is always connected. Figure 4 shows an example
of topology control on the space-time graph in Figure 3(a).
After topology control, 16 directed links are removed from the
original space-time graph. Not all snapshots are connected, but
every node can find the space-time path to any other node. It is
interesting to see that there is no spacial link remaining in the
last time slot, since every node can be reached by any other
node using only three time slots. This example demonstrates
the efficiency of topology control over time domain.

Notice that the newly defined topology control problem is
different with the standard space-time routing [22], [23], which
aims to find the most cost-efficient space-time path for a pair
of source and destination. The topology control problem aims
to maintain a cost-efficient and connected space-time graph for
all pairs of nodes. The paths inside the constructed graph are
not the least cost paths for routing. Therefore, our goal is not
to optimize the routing performance but the cost efficiency of
the topology. However, studying the tradeoff between topology
control and cost-efficient routing is one of our future work. In
addition, we only consider the connectivity from the first time
slot 0 to the last time slot 𝑇 , thus we assume that packets are
generated at time 0. In reality, if a packet arrives in the middle
of the period 𝑇 , it may not be able to reach the destination in
the end of 𝑇 . However, in many time-evolving and predictable
DTNs (such as the interplanetary space DTN [19] or the cyclic
mobispace [21]), the mobility process of network is periodic
and the routing is repeated. Thus, the delivery of packets is
still guaranteed in such case.

The topology control problem for space-time graph is much
harder than the one for a static graph. For a static graph
without time domain, a spanning tree can achieve the goal of
keeping connectivity. However, in a space-time graph, simply
applying the spanning tree in each snapshot is not a solution,
since the network in each snapshot may not be connected at
all. On the other hand, a spanning tree or spanning forest of the
whole space-time graph is not a direct solution either, since it
connects each node in every snapshot, which is not necessary
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Fig. 5. Reduction from (a) the directed Steiner tree problem to (b) our TC
problem on space-time graphs. Here the blue structures are the corresponding
solutions in DST and TC.

and a waste of many links. Such method is neither optimal
nor even near optimal.

We now prove the NP-hardness of our TC problem on
space-time graphs by using a reduction from the directed
Steiner tree (DST) problem [33], which is a known NP-hard
problem. The DST problem is the following: given a directed
graph 𝐺 = (𝑉, 𝐸) with weights on the edges, a set of nodes
𝑄 ⊆ 𝑉 , and a root node 𝑣𝑟, find a minimum weight out-
branching tree 𝒯 rooted at 𝑣𝑟, such that all node in 𝑄 are
included in 𝒯 .

Theorem 1: Our newly defined topology control problem on
space-time graphs is a NP-hard problem.

Proof: We show how to reduce the DST problem into
the TC problem on space-time graphs. Given an instance
of DST with graph 𝐺 = (𝑉, 𝐸), the set of nodes 𝑄 =
{𝑣𝑞1 , 𝑣𝑞2 , ⋅ ⋅ ⋅ , 𝑣𝑞𝑚} need to reach and the root 𝑣𝑟, we can
construct an instance of TC problem on a space-time graph 𝒢
as follows. First, all nodes 𝑣1, ⋅ ⋅ ⋅ , 𝑣𝑛 ∈ 𝑉 will be the nodes
in each snapshot in the space-time 𝒢. Assume that 𝐷 is the
longest hop count of a directed path (no loop) from 𝑣𝑟 to other
nodes, thus 𝐷 < 𝑛. The constructed space-time 𝒢 has 𝐷 + 2
time slots, i.e., 𝐷 + 3 layers of nodes. For the first time slot
(𝑡 = 1), all nodes 𝑣0

𝑖 are connected to 𝑣1
𝑟 with cost 0. For

the last time slot (𝑡 = 𝐷 + 2), node 𝑣𝐷+2
𝑟 and nodes 𝑣𝐷+2

𝑞𝑖
are connected to their corresponding nodes in 𝐷 + 3 layer,
and node 𝑣𝐷+2

𝑞1 is also connected all other nodes (not 𝑣𝑟 and
not in 𝑄) in 𝐷 + 3 layer. All links in the last time slot have
cost of 0. For each time slot except for the first and the last,
both temporal links and spatial links are added based on 𝐺.
All temporal links have cost of 0, while spatial links have the
same costs as those in 𝐺. By this construction, it is easy to
find a solution of TC with the same cost in 𝒢 for any solution
of DST in 𝐺, and vice versa. Figure 5 shows an example
with 𝑣1 as the root and 𝑄 = {𝑣2, 𝑣5}. The blue structures are
one set of solutions. Since the construction of 𝒢 can be done
in polynomial time and DST problem is NP-hard, the TC on
space-time graphs is also NP-hard.

IV. TOPOLOGY CONTROL FOR DIRECTED

DELAY-TOLERANT NETWORKS

Since TC over space-time graphs is NP-hard, in this section,
we propose two efficient heuristics to construct a sparse
structure that fulfills the connectivity requirement over a space-
time graph. Both algorithms are based on greedy algorithms,
one has theoretical bound on its performance while the other
one is practically more efficient.

A. Greedy Algorithm based on Least Cost Path

One naive method for maintaining the network connectivity
is to take the union of several shortest path trees 𝑇𝑖 rooted at
each node 𝑣0

𝑖 at the initial snapshot. Each tree 𝑇𝑖 is the union
of shortest paths from 𝑣0

𝑖 to 𝑣𝑇
𝑗 for 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑛. Obviously,

the resulting graph still keeps the network connectivity. The
time complexity of this method is 𝑛×𝑂(∣ℰ∣+ ∣𝒱∣ log(∣𝒱∣)) =
𝑂(𝑇𝑛3 + 𝑇𝑛2 log(𝑇𝑛)) since 𝑛 times of Dijkstra’s algorithm
are running on the space-time graph with (𝑇 +1)𝑛 nodes and
at most 𝑇𝑛2 edges. Hereafter, we refer this method as shortest
path tree method (SPT).

Algorithm 1 Greedy Algorithm based on Least Cost Path

1: ℋ ← 𝜙; 𝑋 = {(𝑣0
𝑖 , 𝑣𝑇

𝑗 )} for all 𝑖 and 𝑗 in [1, 𝑛].
2: while 𝑋 ∕= 𝜙 do
3: find the least cost paths for every pair nodes in 𝑋 , and

assume 𝑃 (𝑣0
𝑖 , 𝑣𝑇

𝑗 ) has the least cost among these paths.
4: if 𝑒 ∈ 𝑃 (𝑣0

𝑖 , 𝑣𝑇
𝑗 ) then

5: ℋ ← 𝑒; 𝑐(𝑒) ← 0.
6: end if
7: 𝑋 ← 𝑋 − (𝑣0

𝑖 , 𝑣𝑇
𝑗 ).

8: end while
9: return ℋ

However, the structure built by the shortest path tree method
may contain more links than necessary. Therefore, we propose
a new greedy algorithm (as shown in Algorithm 1) to further
improve the performance. The basic idea is quite simple and as
follows. Initially, we need to connect 𝑛2 pair of nodes in 𝑋 . In
each round we pick the least cost path between a pair nodes in
𝑋 which is the minimum among all least cost paths connecting
any pair of nodes in 𝑋 as shown in Figure 6(a). Then we add
all edges in this path into ℋ, clear the costs of these edges to
zeros, and remove this pair from 𝑋 . This procedure is repeated
as shown in Figure 6(a)-(c). After 𝑛2 rounds, all pair nodes
(𝑣0

𝑖 , 𝑣𝑇
𝑗 ) are guaranteed to be connected by paths in ℋ. It is

clear that the output of this method is much sparser than the
one of shortest path tree method. We refer this method as
greedy method based on least cost path (GrdLCP). The time
complexity of this algorithm is 𝑂(𝑇𝑛5 + 𝑇𝑛4 log(𝑇𝑛)) since
in each round 𝑛 times of Dijkstra’s algorithm are running on
the space-time graph and there are 𝑛2 rounds.

Notice that both SPT and GrdLCP may not lead to the
optimal solution. Figure 7 shows such an example: a network
with two nodes (𝑣𝑎 and 𝑣𝑏) and two time slots. Both SPT and
GrdLCP generate a structure with total cost 22 as shown in
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Level 0 Level T Level 0 Level T Level 0 Level T

(a) Step 1 - GrdLCP (b) Step 2 - GrdLCP (c) Step 3 - GrdLCP

Level 0 Level T Level 0 Level T Level 0 Level T

(d) Step 1 - GrdLDB (e) Step 2 - GrdLDB (f) Step 3 - GrdLDB

Fig. 6. Illustrations of Algorithm 1 and Algorithm 2: (a-c) Algorithm 1 repeatedly adds one least cost path into the topology to connect one pair of nodes
in 𝑋 . (d-f) Algorithm 2 repeatedly adds one bunch with least density into the topology to connect multiple pairs of nodes in 𝑋 . Both algorithms terminate
when all pairs of nodes in 𝑋 are connected.
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Fig. 7. An example: (a) original space-time graph; (b) output of all greedy-based algorithms (SPT, GrdLCP, and GrdLDB); and (c) optimal solution of
topology control. Black links are final links in each solution.

Figure 7(b) (since they will first pick the path/bunch including−−→
𝑣0
𝑏𝑣1

𝑏 and
−−→
𝑣1
𝑏𝑣2

𝑏 ), while the optimal solution is a structure with
total cost 20 (Figure 7(c)). However, GrdLCP and SPT can
perform well when the network is much denser and with more
nodes. Our simulations in Section VI confirm this.

B. Greedy Algorithm based on Least Density Bunch

Next, we present another more complex greedy algorithm
(as shown in Algorithm 2) which is inspired by a method
proposed by Charikar et al. [41] for directed generalized
Steiner network (DGSN) problem [42]. The DGSN problem
is also a NP-hard problem and defined as follows. Given a
directed graph 𝐺 and a set of 𝑋 = {(𝑎𝑖, 𝑏𝑖)} of 𝑘 node pairs,
find the minimum cost subgraph 𝐻 of 𝐺 such that for each
node pair (𝑎𝑖, 𝑏𝑖) ∈ 𝑋 , there exists a directed path from 𝑢𝑖 to
𝑣𝑖 in 𝐻 . Since the space-time graph 𝒢 is a directed graph, our
topology control problem is a special case of DGSN problem
with 𝑋 = {(𝑣0

𝑖 , 𝑣𝑇
𝑗 )} for all 𝑖, 𝑗 ∈ [1, 𝑛]. In this case, the

number of node pairs is 𝑘 = 𝑛2. For the DGSN problem, the
current best approximation guarantee is 𝑂(𝑘1/2+𝜖) by [42].
However, their method is very complex.

The main idea of our greedy algorithm (Algorithm 2) is to

find good bunches repeatedly instead of finding least cost paths
repeatedly. Here, a bunch 𝐵 is a structure connected certain
pair of nodes in 𝑋 as shown in Figure 8. In this figure, the edge
between any two nodes 𝑢 and 𝑣 (such as 𝑢𝑖 and 𝑝, 𝑝 and 𝑞, or
𝑞 and 𝑤𝑖) is a virtual edge which represents the shortest path
𝑃 (𝑢, 𝑣) from 𝑢 to 𝑣 in 𝒢. The cost of 𝑃 (𝑢, 𝑣) is 𝑐(𝑢, 𝑣). We
use 𝑠[𝑢𝑖, 𝑤𝑖] to represent the cost of 𝑃 (𝑢𝑖, 𝑝) plus 𝑃 (𝑞, 𝑤𝑖).
Thus, the total cost of bunch 𝐵 which connects 𝑙-pair of nodes
in 𝑋 is 𝑐(𝐵) = 𝑐(𝑝, 𝑞)+𝑠[𝑢1, 𝑤1]+𝑠[𝑢2, 𝑤2]+ ⋅ ⋅ ⋅+𝑠[𝑢𝑙, 𝑤𝑙].
Further, let 𝑑(𝐵) = 𝑐(𝐵)/𝑙 be the density of this bunch, which
implies how much cost is used to connect 𝑙 pairs of nodes. The
greedy algorithm considers all possible bunches and greedily
selects the bunch with the smallest density in each round.
After a bunch is selected, all edges in the bunch is added
to the subgraph ℋ and 𝑋 is also updated accordingly. The
algorithm terminates until all 𝑛2 pairs of nodes are connected
by bunches. The output is the union of selected bunches.
Figure 6(d-f) show the procedure. We refer this method as
greedy method based on least density bunch (GrdLDB).

The time complexity of this algorithm is roughly
𝑂(𝑇 2𝑛6 log 𝑛), since the outer while-loop runs 𝑛2 times in
the worst case; the outer for-loop runs 𝑂(𝑇 2𝑛2) times; and
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Algorithm 2 Greedy Algorithm based on Least Density Bunch

1: ℋ ← 𝜙; 𝑘 = 𝑛2; 𝑋 = {(𝑣0
𝑖 , 𝑣𝑇

𝑗 )} for all 𝑖 and 𝑗 in [1, 𝑛].
2: while 𝑋 ∕= 𝜙 do
3: 𝑑 ← ∞;𝐵 ← 𝜙.
4: for all pairs (𝑝, 𝑞) ∈ 𝒱 × 𝒱 do
5: for all pairs (𝑣0

𝑖 , 𝑣𝑇
𝑗 ) ∈ 𝑋 do

6: 𝑠[𝑣0
𝑖 , 𝑣𝑇

𝑗 ] ← 𝑐(𝑣0
𝑖 , 𝑝) + 𝑐(𝑞, 𝑣𝑇

𝑗 ).
7: end for
8: sort all 𝑠[𝑣0

𝑖 , 𝑣𝑇
𝑗 ] in increasing order of 𝑠, and let

(𝑢𝑙, 𝑤𝑙) refer to the 𝑙th pair in this sorted list.
9: for 𝑙 going from 1 to 𝑘 do

10: 𝐶 ← 𝑐(𝑝, 𝑞)+𝑠[𝑢1, 𝑤1]+𝑠[𝑢2, 𝑤2]+⋅ ⋅ ⋅+𝑠[𝑢𝑙, 𝑤𝑙].
11: if 𝐶/𝑙 ≤ 𝑑 then
12: 𝑑 ← 𝐶/𝑙; 𝑘1 = 𝑙;
13: 𝐵 ← 𝑃 (𝑝, 𝑞) + 𝑃 (𝑢1, 𝑝) + 𝑃 (𝑞, 𝑤1) + ⋅ ⋅ ⋅ +

𝑃 (𝑢𝑙, 𝑝) + 𝑃 (𝑞, 𝑤𝑙).
14: end if
15: end for
16: end for
17: ℋ ← ℋ+ 𝐵; 𝑘 = 𝑘 − 𝑘1;
18: 𝑋 ← 𝑋 − {(𝑢1, 𝑤1), ⋅ ⋅ ⋅ , (𝑢𝑘1, 𝑤𝑘1)}.
19: end while
20: return ℋ
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Fig. 8. Illustration of a bunch connecting 𝑙 pairs of nodes. Here, each arrow
represents a directed shortest path. The total cost of this bunch is 𝑐(𝐵) =
𝑐(𝑝, 𝑞) + 𝑠[𝑢1, 𝑤1] + 𝑠[𝑢2, 𝑤2] + ⋅ ⋅ ⋅+ 𝑠[𝑢𝑙, 𝑤𝑙].

the sorting can be done in 𝑂(𝑛2 log 𝑛). Notice that an all-
to-all shortest path algorithm need to be performed once to
prepare 𝑐(𝑢, 𝑣) for all nodes 𝑢 and 𝑣 in the beginning of
the algorithm. However, time needed for such algorithm is
much less than 𝑂(𝑇 2𝑛6 log 𝑛). Though with larger time com-
plexity than GrdLCP and SPT, GrdLDB algorithm has a nice
property in theory: it can achieve approximation-guarantee in
term of the total cost compared with the optimal solution.
In [41], Charikar et al. proved that the greedy algorithm
based on bunch selection can give an approximation ratio of
𝑂(𝑘2/3 log1/3 𝑘) for the directed generalized Steiner network
problem. Therefore, we have the following theorem for our
topology control problem, since 𝑘 = 𝑛2.

Theorem 2: Algorithm 2 (GrdLDB) gives an approximation
ratio of 𝑂(𝑛4/3 log1/3 𝑛) for the topology control problem in
directed space-time graph.

Notice that Algorithm 2 will also lead to the non-optimal

solution for the example shown in Figure 7.

V. TOPOLOGY CONTROL FOR UNDIRECTED

DELAY-TOLERANT NETWORKS

So far we consider a directed delay-tolerant network where
the static graph in each snapshot 𝐺𝑡 is a directed graph. There-

fore, directed links
−−−−→
𝑣𝑡−1
𝑖 𝑣𝑡

𝑗 and
−−−−→
𝑣𝑡−1
𝑗 𝑣𝑡

𝑖 in the space-time graph
𝒢 are independent to each other and have individual costs. In
other words, it is possible that only one of such link exists

in 𝒢 (as the example in Figure 7) or 𝑐(
−−−−→
𝑣𝑡−1
𝑖 𝑣𝑡

𝑗) ∕= 𝑐(
−−−−→
𝑣𝑡−1
𝑗 𝑣𝑡

𝑖)
even they both exist. Similarly, the output of topology control
algorithm can use just one of these two links in the resulting
topology (as shown in Figure 4). However, in some network
applications, the connection between nodes is necessary to
be symmetric and undirected. Therefore, in this section, we
consider an undirected delay-tolerant network where each 𝐺𝑡

is an undirected graph. For each edge 𝑣𝑡
𝑖𝑣

𝑡
𝑗 in 𝐺𝑡, it only has

one cost. Let 𝑐𝑡𝑖,𝑗 represent this cost. In this situation, both

directed links
−−−−→
𝑣𝑡−1
𝑖 𝑣𝑡

𝑗 and
−−−−→
𝑣𝑡−1
𝑗 𝑣𝑡

𝑖 in the space-time graph need
to be kept or removed simultaneously. The cost of such two
links is just one value 𝑐𝑡𝑖,𝑗 instead of two values. Notice that the
space-time graph 𝒢 is always a directed graph. Here undirected
or directed is for the static graph of 𝐺𝑡 in each snapshot. To
make the proposed algorithms work on the undirected delay-
tolerant networks, we then propose two methods to convert
the undirected network into a directed network.

A. Converting Method One - Double Cost

The first method is straightforward. Consider the sequence
of static undirected graph {𝐺𝑡}. For an undirected link 𝑣𝑡

𝑖𝑣
𝑡
𝑗 ∈

𝐺𝑡, we set the costs of the corresponding pair of spatial links

(
−−−−→
𝑣𝑡−1
𝑖 𝑣𝑡

𝑗 and
−−−−→
𝑣𝑡−1
𝑗 𝑣𝑡

𝑖 ) both to 𝑐𝑡𝑖,𝑗 (as shown in Figure 9(a)).
We call this converted space-time graph 𝒢. Then proposed
methods can be still applied. If the output of such algorithm
only uses one of the spatial links, we add the other in the
final output too. Notice that now the cost considered by our
algorithm for path/bunch selection (or the total cost of the
output structure) is different from the real cost to support such
structure.

Next, we prove an important lemma which can still guar-
antee the approximation of our approach.

Lemma 1: For topology control problem, the cost of opti-
mal solution 𝑂𝑝𝑡𝐴 in the original undirected graph {𝐺𝑡} is
less than or equal to twice of that of optimal solution 𝑂𝑝𝑡𝐵
in the converted space-time graph 𝒢.

Proof: Consider the solution of 𝑂𝑝𝑡𝐵 first. If
−−−−→
𝑣𝑡−1
𝑖 𝑣𝑡

𝑗 ∈
𝑂𝑝𝑡𝐵 but

−−−−→
𝑣𝑡−1
𝑗 𝑣𝑡

𝑖 /∈ 𝑂𝑝𝑡𝐵 , we can construct a new solution

𝑆𝐵 by adding
−−−−→
𝑣𝑡−1
𝑗 𝑣𝑡

𝑖 into 𝑂𝑝𝑡𝐵 . Clearly, 𝑐(𝑆𝐵) ≤ 2𝑐(𝑂𝑝𝑡𝐵).
Notice that from this new solution 𝑆𝐵 , we can construct
a feasible solution 𝑆𝐴 of the topology control problem in
the original undirected graph {𝐺𝑡} by keeping 𝑣𝑡

𝑖𝑣
𝑡
𝑗 ∈ 𝑆𝐴

if and only if both
−−−−→
𝑣𝑡−1
𝑖 𝑣𝑡

𝑗 and
−−−−→
𝑣𝑡−1
𝑗 𝑣𝑡

𝑖 are in 𝑆𝐵 . It is
clear that 𝑐(𝑆𝐴) ≤ 𝑐(𝑆𝐵) since the total cost of 𝑆𝐴 only
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Fig. 9. Illustration of construction of spacial links in the space-time graph:
(a) converting method one - doubling the cost; (b) converting method two -
adding new nodes.

counts one cost for both directed links. At last, since 𝑂𝑝𝑡𝐴
is the optimal solution of the topology control problem in
the original undirected graph, 𝑐(𝑂𝑝𝑡𝐴) ≤ 𝑐(𝑆𝐴). Therefore,
𝑐(𝑂𝑝𝑡𝐴) ≤ 𝑐(𝑆𝐴) ≤ 𝑐(𝑆𝐵) ≤ 2𝑐(𝑂𝑝𝑡𝐵).

This lemma implies that Algorithm 2 can still achieve
𝑂(𝑛4/3 log1/3 𝑛) for the topology control problem in undi-
rected graph by using our converting method one.

B. Converting Method Two - New Graph

The second method converts the sequence of static undi-
rected graph {𝐺𝑡} into a new space-time graph by introducing
new nodes. For a undirected link 𝑣𝑡

𝑖𝑣
𝑡
𝑗 ∈ 𝐺𝑡, we first add two

new nodes 𝑣𝑡−1
𝑖𝑗 at (𝑡 − 1)th layer and 𝑣𝑡

𝑖𝑗 at 𝑡th layer. Then

five directed links
−−−−−−→
𝑣𝑡−1
𝑖 𝑣𝑡−1

𝑖𝑗 ,
−−−−−−→
𝑣𝑡−1
𝑗 𝑣𝑡−1

𝑖𝑗 ,
−−→
𝑣𝑡
𝑖𝑗𝑣

𝑡
𝑖 ,

−−→
𝑣𝑡
𝑖𝑗𝑣

𝑡
𝑗 ,

−−−−→
𝑣𝑡−1
𝑖𝑗 𝑣𝑡

𝑖𝑗

are added in the space-time graph. The costs of the first four

links are set to zero, while 𝑐(
−−−−→
𝑣𝑡−1
𝑖𝑗 𝑣𝑡

𝑖𝑗) = 𝑐𝑡𝑖,𝑗 . Figure 9(b)
illustrates this procedure. It is obvious that there is one-to-
one mapping between the constructed space-time graph and
the original undirected network. Then our proposed methods
can be directly applied on the constructed directed space-time
graph and their output can be easily converted back to an
undirected topology for the undirected graph sequence. The
only drawback of this method is introducing additional nodes
and links which may increase the size of the input for our
algorithms.

VI. SIMULATIONS

In this section, we will evaluate our proposed topology
control algorithms, namely, Greedy Algorithm with Least Cost
Path (GrdLCP) and Greedy Algorithm with Least Density
Bunch (GrdLDB), by comparing their performances with
Shortest Path Tree method (SPT). We implement all these
three algorithms in a simulator developed by our group.
The underlying time-evolving networks are either randomly
generated from random graph model or directly extracted from
Cambridge Haggle tracing data [34]. All the networks are
directed DTNs, thus we only test our algorithms on directed
networks in this section. In all simulations, we take two
metrics as the performance measurement for any topology
control algorithm:

∙ Total Cost: the total cost of the constructed topology ℋ
(output of the algorithm), i.e., 𝑐(ℋ) =

∑
𝑒∈ℋ 𝑐(𝑒).

(a) SPT (b) GrdLCP (c) GrdLDB

(d) SPT (e) GrdLCP (f) GrdLDB

Fig. 10. Topologies generated over the same random network: green links
are removed links from the original graph 𝒢, while black links are the ones
kept by each algorithm. (a-c): 𝑝 = 0.1, (d-f): 𝑝 = 0.8.

∙ Total Number of Edges: the total number of edges in
the constructed topology ℋ, i.e., ∣ℋ∣. Here, ∣𝒢∣ denotes
the number of edges of graph 𝒢.

For all the simulations, we repeat the experiment for multiple
times and report the average values of these metrics. It is clear
that a desired topology should have small total cost and small
number of edges.

A. Simulations on Random Networks

We first generate a sequence of static random graphs {𝐺𝑡}
to represent the time-evolving DTN. Here, we first consider a
DTN with 10 nodes (𝑛=10) and spreading over 10 time slots
(𝑇 = 10). For each time slot 𝑡, we randomly generate the graph
𝐺𝑡 using the classical random graph generator. Basically, for
each pair of nodes 𝑣𝑖, 𝑣𝑗 , we insert the edge of −−→𝑣𝑖𝑣𝑗 with a
fixed probability 𝑝. The cost of each inserted edge is randomly
chosen from 1 to 5. After generating {𝐺𝑡}, we convert it into
its corresponding space-time graph 𝒢 with 𝑛(𝑇 + 1) nodes.
Then all three topology control algorithms (SPT, GrdLCP,
GrdLDB) take the same 𝒢 as the input.

Figure 10 shows the constructed topologies in space-time
graph format from all three algorithms when 𝑝 = 0.1 and 0.8.
It is clear that GrdLCP selects fewer edges than the other two
algorithms. However, all of them can remove large portions
of links to save energy while guarantee the connectivity over
space-time graph (there are paths from all nodes in the first
time slot to those in the last time slot). Notice that when the
density of network is larger (with larger 𝑝), such saving is
more visible.

We then increase the network density by rising 𝑝 from
0.1 to 1.0. Small value of 𝑝 leads to a sparse DTN, and
𝑝 = 1.0 implies that the topology in each time slot is a
complete graph. For each setting, we generate 50 random
networks and report the average performance of topology
control among them. Figure 11 shows the ratio between
the total cost/number-edges of the generated graph ℋ and
that of the original graph 𝒢 when 𝑝 increases. This ratio
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Fig. 11. Simulation results on random networks with different density. The
cost (or edge number) of ℋ is divided by the cost (or edge number) of 𝒢,
which illustrates how much saving achieved by the topology control algorithm,
compared with the original network without topology control.

implies how much saving achieved by the topology control
algorithm, comparing to the original network without topology
control. From the results, all topology control algorithms can
significantly reduce the cost of maintaining the connectivity.
Even with the least density (𝑝 = 0.1), all algorithms can save
more than 50% cost and around 50% edges. For 𝑝 = 1.0, more
than 95% cost is saved. In most cases, GrdLDB and GrdLCP
can achieve better efficiency than SPT. However, GrdLCP has
a clear advantage over GrdLDB. Even though GrdLDB has
the theoretical approximation bound, GrdLCP performs much
better in practice. With increasing density of the network, the
ratio of cost decreases. This indicates that more saving can
be achieved by all topology control algorithms with dense
networks.

We also preform simulations on networks with different
size and different time length. The results and conclusions
are similar, thus they are ignored here due to space limit.

B. Simulations on Tracing Data

Recently, there are tremendous efforts in the wireless net-
work research community on measuring, recording, and releas-
ing tracing data from real-world wireless networking systems.
Taking such advantage, we also use real-world wireless tracing
data to evaluate our topology control algorithms. Particularly,
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Fig. 12. Simulation results on networks from Cambridge Haggle [34] tracing
data. Results are averages over 13 small networks.

we select a data set from the Cambridge Haggle data set
[34] which is available at CRAWDAD [43]. In this data set,
connections among 78 mobile iMote Bluetooth nodes carried
by researchers and additional 20 stationary nodes are recorded
over 4 days during IEEE InfoCom 2006. In our simulations,
we only consider the 78 mobile nodes and the first half of the
period in the tracing data. We divide the time period of the
tracing data into 50 time slots. For each time slot 𝑡, if there is
a contact trace which is overlapping with this slot, we add a
spacial link between the two corresponding nodes in 𝐺𝑡. For
each round of simulation, we extract a slice of the network
which contains 10 mobile nodes. Costs are again randomly
generated from 1 to 5 for both spacial and temporal links.
Then topology control algorithms are performed over these 10-
node DTNs. In our simulation, 13 rounds of simulations are
conducted and average measurements are plotted in Figure 12.
The same conclusions can be drawn from these results: (1) all
algorithms can reduce the cost remarkably (more than 95%);
(2) SPT has the largest cost among three methods, while
GrdLCP has the best performance in practice.

VII. CONCLUSION

We study topology control problem in a predictable time-
evolving DTN modeled by a space-time graph. We first prove
that it is NP-hard, then propose two greedy-based methods
which can significant reduce the cost of topology while
maintain the connectivity over time. We also present two tech-
niques which can convert undirected DTNs into directed DTNs
such that our proposed methods can still work. Simulation
results from random networks and real-world tracing data both
demonstrate the efficiency of our methods. We believe that this
paper presents the first step in exploiting topology control for
time-evolving DTNs.

Some possible future works include the following problems:
(1) to design more efficient algorithms with lower complexity
to achieve connectivity over space-time graphs; (2) to inves-
tigate how to adapt the constructed structure to unexpected
changes in the network such as node failures; (3) to study
how to perform efficient topology control when the links are
unreliable.
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