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Abstract—This technical note presents strategies for systematic ways to
control mobile actuators in distributed wireless sensor and actuator net-
works. The efficiency, responsiveness, and service lifetime of the mobile ac-
tuators depend on the allocation of the workload to each individual actu-
ator. Starting from an initial deployment, the proposed distributed multi-
actuator control algorithm computes the load in each partition and uses the
load imbalance as a virtual force to dynamically move the actuators until
a balanced distribution is achieved. The load in each partition for an indi-
vidual actuator includes both the total travel cost to visit or contact all sen-
sors in the partition and the cost of servicing them. Finding the minimum
workload allocation to serve each partition is an NP-hard problem. There-
fore, efficient heuristics are proposed to do the partition, plan the path of
each actuator and calculate its workload. Simulation results demonstrate
the effectiveness of the proposed strategies.

Index Terms—Distributed control, load balancing, path planning, wire-
less sensor and actuator networks (WSANs).

I. INTRODUCTION

Wireless sensor networks (WSNs) have tremendous prospects due to
their capability of obtaining valuable information from locations that
are beyond human reach. Current research on WSNs often assumes
that the number of sensors in a network is sufficiently large to cover
the entire target area and maintain the network connectivity. However,
in many applications (such as space exploration), certain types of sen-
sors could be expensive, and hence it is impossible to have thousands
of them for deployment. In addition, since the sensors would have rela-
tively weak radios, inter-node separation is common in WSNs. Even if
the number of sensors is sufficient and the radio is strong enough, poor
deployment could also lead to bad network connectivity which makes
data communication or other tasks very hard. Therefore, many recent
WSN systems introduce powerful and even mobile actuators to en-
hance the existing network architectures. Unlike normal sensor nodes
(usually small, inexpensive and with limited communication, compu-
tation, and energy resources), actuators (e.g., mobile robots and un-
manned aerial vehicles) are resource rich devices with more energy,
higher communication power, and better processing capabilities. They
usually can perform much richer application-specific actions and in-
teract with their environment. Actuators and sensor nodes can commu-
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nicate among each other via wireless links and work collaboratively to
perform automated tasks requiring sensing and actuation capabilities.
This kind of WSNs is commonly referred to as wireless sensor and ac-
tuator networks (WSANs) [1], [2]. WSANs have great potential for a
wide range of applications, such as, environmental control, event detec-
tion, health-care, home automation, manufacturing, search and rescue,
etc. In many of those scenarios, mobile actuators can play important
roles in different tasks: area coverage [3], [4], localization and naviga-
tion [5], target detection [6], service discovery [7], fault-tolerance [8],
and data collection [9]–[13].

Previous research focuses on improvement of performance on a par-
ticular task in WSANs. In this technical note, instead we consider a
general scenario where multiple actuators are deployed in a large dis-
tributed sensor network. These actuators can move freely and offer lo-
gistic services (e.g. power supply, sensor calibration, coverage control)
and network services (e.g. data collection, hierarchical routing, time
synchronization) to large number of sensors. Each actuator travels back
and forth among the assigned sensors periodically to ensure the ser-
vices. In this scenario, the cost of performing the assigned task has
great effect on the outcome. Minimizing the cost will result in more
efficient utilization of often limited resources and quicker response to
urgent events. If the cost to service each sensor is constant and an ac-
tuator needs to visit the location of each sensor, then the total cost is
dependent on the total traveling distance of the actuator for connecting
all sensors. The minimization problem then is essentially a well known
traveling salesman problem (TSP) [14]. However, since in many cases
an actuator can serve a sensor remotely from a distance via wireless
links, the possible service points of the actuator lie within an area in-
stead of a point. This makes the path planning problem more difficult.
When there are multiple actuators deployed at the same time, the work-
load partition for each actuator also becomes a challenge. Unbalanced
load partition may lead to one or more actuators running out of their
resources first. Therefore, in this technical note, we study an integrated
path planning and load balancing problem for multi-actuator control in
WSANs.

The goal of our study is to find a work-load partition where each
actuator is only responsible for the task in its partition such that (1) the
workload of each actuator is minimized and (2) the workloads of all
actuators are approximately balanced or equal. To address this complex
control problem, we formally define two simplified sub-problems in
Section III:

• Minimum-Load Path Planning for Single Actuator. Given a fixed
partition, find a path formed by a sequence of turning positions,
such that (1) the actuator can service every sensor in this partition
and make the minimum number of stops; and (2) the path results
in the minimum total load or it approximates a minimal path.

• Load Balancing among Multiple Actuators. Given an initial set
of partitions of all actuators, find the new position of every actu-
ator and its corresponding partition, such that the standard devia-
tion of loads among all actuators is minimized or less than certain
threshold.

The two sub-problems are coupled together with the underlying
partition method which makes finding the optimal solution very
challenging. Several simplified versions of the problems are already
known to be NP-hard. Thus, we propose a complete set of heuristics
for these problems (Sections IV and V) and verify the performances
via simulations (Section VI).

II. RELATED WORK

We first review the current solutions for mobile actuator scheduling
problem in WSANs. In [9], multiple mobile nodes (called MULEs)
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are introduced to pick up data from sensors when in close range
and drop the data to access points. The MULEs take random walks
in the field. However, the randomness of the paths of MULEs does
not optimize or guarantee any performance. In [10], the routes of
mobile nodes are carefully designed such that the traffic demand is
met and the data delivery delay is minimized. A similar work in
[11] studies the speed control of a single mobile actuator for data
collection to minimize data delivery latency. All these methods focus
on minimizing the data delivery delay instead of the workload of
actuators. Recently, Xing et al. [12] study how to find a tour of
the mobile actuator no longer than a budget and a set of routing
trees that are rooted on the tour and connect all sensors, such that
the total length of the trees is minimized. In their solution, a set of
rendezvous points are picked based on an approximated Steiner tree,
and then a TSP solver is used to schedule the actuator to visit all
rendezvous nodes. All rendezvous nodes are sensor nodes and only
a single actuator is considered. Ma and Yang [13] also study how
to plan the paths of mobile actuators such that the length of data
gathering tour is minimized. They assume that the possible polling
points of actuators are finite, thus they can use a simple greedy
algorithm to find an approximated tour. In our study, we consider
infinite candidate polling points which makes our problem much
harder. For multiple actuators, they assume that each actuator can
only travel for certain length and the number of actuators is not fixed.
Their solution uses a spanning tree to partition the task for multiple
actuators. However, such partition could lead to uneven distribution
of workload among actuators. Nesamony et al. [15] study how to find
a shortest path for a single actuator to visit all sensors (represented
as disjoint circles). They link their problem with a NP-hard problem,
the traveling salesman problem with neighborhoods (TSPN) [16]. A
heuristic is proposed in [15], which starts with randomly selected
turning points inside the circles with certain visiting order, then
iteratively changes to better set of turning points to shorten the path,
until the path length stabilizes. They show that their method is more
efficient than the brute force method via simulations. However, their
method cannot handle the intersection of sensor transmission regions.
In our problem, the visiting area could be any shape via intersection
of circles. For a complete survey on mobile actuator scheduling in
WSANs, refer to [2, Ch.6].

III. PROBLEM STATEMENT

Different from previous work, we aim to study the integrated path
planning and load balancing problem among multiple actuators in a
WSAN. These actuators service a large number of sensor nodes for a
wide range of tasks such as data collection, sensor inspection, battery
charging, etc. Hereafter, we use the data collection as an example to
define our problem.

We assume that a set of � static wireless sensors, denoted by
� � ���� � � � � ���, are distributed in a two-dimensional region �.
Each sensor �� has an omni-directional antenna so that it can talk to
other sensors or actuators within a disk region centered at �� with
radius ��. Hereafter, we call �� the transmission range of ��. Via wire-
less links, an actuator does not have to go to the exact location of �� to
perform the data collection task. Instead, the actuator can collect the
data if it is within ��’s transmission range or within the transmission
range of a sensor who is connected with �� via a multi-hop relay. To
collect data from a sensor ��, an on-spot cost �� is spent by the actuator
during the contact with ��. Again �� could vary among different
sensors, depending on the sensing data they collect. If the multi-hop
relay is used for data aggregation among sensors, the communication
cost of such relay can be taken into account in the on-spot cost of these
sensors.

A set of � mobile actuators are deployed in the sensor network ���
��, denoted by� � �	�� � � � � 	��. The actuator nodes can move freely
in two-dimensional space and have the position information of all sen-
sors. We assume that each actuator node has a transmission range large
enough to communicate with other actuators via wireless links (i.e., the
network formed by actuators is connected). In the beginning of each
round, each actuator 	� is at an initial position 
�. By using any parti-
tion method, we can divide the region � into � partitions ��� � � � � �� .
Each actuator 	� will then be responsible only for the sensors in its
partition �� (sensors around 
�) and periodically perform data collec-
tion task for all sensors in ��. We applied a simple partition method,
Voronoi diagram [17], where all points in the partition �� are closer to
the position 
� of 	� than to positions of all other actuators. For each
actuator, its workload depends not only on the number of sensors it
serves but also on the distance it travels. Therefore, the total load ��

of actuator 	� contains two parts: the traveling cost which 	� spends
on the road and the total on-spot cost which 	� spends at each service
point to carry out certain task. We can safely assume that the traveling
cost � is linear to the travel distance of 	�. The total on-spot cost �� is
the summation of all on-spot cost of sensors whose data are collected
by the actuator. Therefore, �� � � � �� � � � � ��

�� .
The multi-actuator control problem we study in this technical note

aims to find a work-load partition such that (1) the workload of each
actuator is minimized and (2) the workloads of all actuators are approx-
imately balanced. The first goal can improve the response time of the
actuator to service requests by sensor nodes in its partition and mini-
mize the cost of each individual actuator, while the second goal tends
to extend the life time of the distributed sensor and actuator network
system by minimizing the over-utilization of some of the actuators and
under-utilization of others. To address this complex control problem,
we formally define the following two sub-problems and propose simple
but efficient solutions for them in the next two sections.

Sub-problem I: Minimum-Load Path Planning for Single Actu-
ator. Given a fixed partition�� of actuator 	� , 	�’s initial position

�, and all sensors belonging to ��, denoted by ��, find a path
�� formed by a sequence of turning positions � � ���� � � � � ���
where the actuator pauses and collects data from sensors, such that
(1) the actuator can communicate with every sensor in �� during
the trip and make the minimum number � of stops;1 and (2) the
path �� � 
��� � � � �� which the actuator will travel to collect
data has the minimum total load ��.
Sub-problem II: Load Balancing among Multiple Actuators.
Given an initial set of partitions ��� � � � � �� of all actuators (and
the loads of each actuator ��� � � � � �� which can be calculated by
the solution from sub-problem one), find new position 
� of every
actuator and corresponding partition, such that the loads �� of all
actuators under the new partitions are balanced. Particularly, we
aim to minimize the standard deviation of the loads among all
actuators.

Notice that these two problems are coupled together with the un-
derlying partition method. The result from Sub-problem I provides the
load estimate in each partition and affects the load balancing proce-
dure, while Sub-problem II takes the load estimation in each round
and changes the positions of actuators which affects the inputs of Sub-
problem I. Thus, the joint problem of actuator control is a very com-
plex and challenging task. If we define the actuator control problem
as a single optimization problem to minimize the maximum work load
of actuators, it will be very hard to solve it. Actually, just a special
case of the Sub-problem I, where every sensor has an arbitrarily small

1Notice that the minimum number of stops does not necessarily lead to the
minimum load. However, by adding this additional requirement, the optimiza-
tion problem is much easier to be solved. We leave the optimization problem
without this requirement as one of our future works.
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transmission range, is an NP-hard problem, TSP. Therefore, in this
technical note, we only focus on efficient heuristic solutions for both
sub-problems.

IV. MINIMUM-LOAD PATH PLANNING FOR SINGLE ACTUATOR

In this section, we describe the algorithm for computing
the minimum load of an actuator �� for servicing the sensors
�� � ���� � � � � ��� inside its partition ��. If we draw a circle around
each sensor �� � �� using its transmission range �� , then an actuator
has to get into the circle of a sensor in order to collect data from it
directly. If the disks of multiple sensors overlap, then the actuator can
simply go to the overlapping area and service all sensors involved. Let
� � ���� � � � � ��� denote the areas formed by the circles and their
intersections. If an area �� intersects the circle defined by sensor �� ,
we say that sensor �� can be covered by area �� .

There are two optimization problems in the minimum-load path
planning of the actuator. The first optimization problem is how to
select the minimum number of areas from � for the actuator to visit
to guarantee the coverage of all sensors within this partition. This
problem is actually the minimum set cover problem which aims to
find the minimum number of subsets to cover the whole space. The
minimum set cover problem is an NP-hard problem [14]. However,
there exist many heuristics for it. We adopted a classical greedy
heuristic (see Algorithm 1) for this problem. Fig. 1 illustrates an
example with 9 sensors. If some sensors can communicate with each
other, then it will suffice for the actuator to visit only one of these
sensors to pick up data. For this situation, these sensors’ transmission
ranges can be merged into a union area as a single area in the input
of Algorithm 1. For example the area ��

� in Fig. 1 is a union area of
�� and ��, since they are inside the transmission range of each other.
Notice that by asking the sensors to increase their transmission ranges,
the connectivity of the sensor network can increase, which will lead to
less areas the actuator needs to visit. This is a trade-off between the
communication cost plus power consumption at sensors and the power
consumption at the actuator.

Algorithm 1 Greedy algorithm to select the minimum number of
areas for covering sensors within a single partition ��

Input: A set of sensors �� � ���� � � � � ��� within �� and its
corresponding set of areas � � ���� � � � � ���.

Output: A subset of target areas � �
� ���

�� � � � � �
�

�� for the actuator
�� to visit.

1: Initially, set sensors uncovered, the uncovered counter 	 � 
,
� �

� �. Let the potential coverage �� of each area �� be the number
of circles intersecting with this area.

2: while 	� � � do

3: Select area �� with the largest potential coverage �� (using the
minimum ID of nodes in the area to break a tie) and add it into
the selected subset � �;

4: Mark all sensors covered by �� covered and let 	 � 	 � �� ;

5: Update �� for all adjacent areas �� to the number of intersected
circles from uncovered sensors.

6: end while

After selecting the areas for the actuator to visit, we need to decide
the exact turning points where the actuator shall visit. Since the posi-
tions of these turning points can affect the total length of the path that

Fig. 1. Example: 13 areas are defined as � by the 9 transmission ranges of �
and their intersections. Grey areas are the target areas selected by Algorithm 1.
Path � (red line) is generated by Algorithm 2.

it needs to visit, we have to consider the position selection problem
jointly with the path planning problem. In our approach, we try to find
a position in each selected area so that the total cost of the path trav-
eled by the actuator is minimum. This problem is actually related to the
TSPN [16]. Several approximation algorithms exist for TSPN, however
most of them are very complex and not practical. Our algorithm (Al-
gorithm 2) is an iterative algorithm in which at each step we add a new
turning point inside one of the unvisited areas such that the cost added
to the actuator path is minimized. Remember that serving each sensor
�� also incurs certain on-spot cost �� . Therefore, for each target area
��

� , we define an aggregated on-spot cost ��� � � �� 	
���� �� �
�� .

We consider the aggregated on-spot costs when we calculate the total
cost of a path. We have  target areas needed to be visited (output from
Algorithm 1). Our algorithm terminates after  rounds, since in each
round it adds a new turning point in the path that covers an unvisited
area. Fig. 1 also shows the path generated by Algorithm 2.

Algorithm 2 Path planning for actuator �� within partition ��

Input: A set of target areas � �
� ���

�� � � � � �
�

�� and their aggregated
on-spot costs ����� � � � � �

�

��, the initial position �� of actuator ��.

Output: A path �� � ���� � � ��� which the actuator �� shall visit and
total load �� of �� during its visiting.

1: Initially, set all areas ��

� unvisited and the unvisited counter 	 � .
Let the initial path �� � ���� with ����� ��	� � �.

2: while 	� � � do

3: For each edge on ������ in path �� and every unvisited area ��

� ,
we draw an ellipse which uses �� and ���� as its foci and is
tangent to ��

� . Let �� be the tangent point. See Fig. 2 for
illustration. If �� is selected to visit between �� and ����, the cost
added to the path�� will be ������
�����������������
��� .
When ���� � ��, the cost is ������ 
 ��� , since it is the last
hop in ��.

4: Select the unvisited area which adds the least cost to path ��

among all edges in ��. For example, in Fig. 2, ��

�, hence ��, is
a better choice than �� . Mark ��

� visited, and insert �� between
�� and ���� in ��. Thus the number of edges in the path
increases by one. 	 � 	 � �.

5: end while

6: return the final path �� (removing �� in the end) and its total cost
as the total load �� of ��
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Fig. 2. For each edge on � � in path � and every unvisited area � (or
� ), we draw the ellipse which uses � and � as its foci and is tangent to �
(or � ). Our algorithm selects the unvisited area which adds the least total cost
to path � . In this example, � is a better choice than � .

Fig. 3. Voronoi diagram for area partition and the virtual forces caused by load
imbalances between neighboring partitions.

V. LOAD BALANCING AMONG MULTIPLE ACTUATORS

Algorithm 1 and Algorithm 2 present strategies for minimum-load
path planning of a single actuator to cover all sensors in its partition. The
next step is to address the load balancing problem among multiple actu-
ators in the whole network. The basic goal of the multi-actuator control
algorithm is to partition the total area of distributed sensors into a given
number � of regions for each actuator to take care of so that we achieve a
more balanced load distribution among all actuators. The proposed con-
trol method uses classical Voronoi diagram as the partition method to
divide the network into � partitions and uses heuristic algorithms in the
previous section to estimate each actuator’s workload. The basic idea
of the control algorithm is quite simple, as illustrated in Fig. 3. Starting
with an initial partition, the algorithm employs a virtual force method to
iteratively compute and adjust the partitions to obtain a more balanced
load distribution. If a net non-zero virtual force acts on an actuator, it
will cause it to move in the direction of the force so as to modify the
load distribution for a better balance. After the actuators move in re-
sponse to the applied forces the working area is repartitioned and the
new load distribution is computed. This process is repeated iteratively
until a balanced load distribution is achieved among all the actuators
(i.e., the standard deviation �� of the load distribution is smaller than a
threshold value���). The detailed algorithm is given in Algorithm 3.

Algorithm 3 Distributed multi-actuator control algorithm for
workload balancing

Input: Initial location �� of actuator ��, and its partition ��.

Output: A sequence of new location �� of actuator ��.

1: Calculate the service load �� of �� using Algorithm 1 and
Algorithm 2 for serving �� in ��.

2: Exchange service load with adjacent actuators �� 	 �� 	 � � � 	 �� ,
where 
� is the number of neighboring actuators of ��.

3: while the standard deviation of load distribution is larger than the
threshold, i.e. �� � ��� do

4: Calculate the combined virtual force �� on �� �� �:
�

��� ��� � ��� �
��� �� . Here  is a scale factor and ��� ��

is the unit vector from �� to �� .

5: If �� � ��� then change the velocity of ��: �� �
�� � ��� � ������ � ��. Here ��� is a small threshold value,
the term ��� introduces some viscous force so that the
deployment can be quickly stabilized, � is a constant for the
mass of the actuator node, and �� is the time step size per
iteration.

6: Using �� update the new location of �� as follows:
�� � �� � �� � ��.

7: Exchange new location information with neighboring actuators
and calculate the new Voronoi diagram and update �� and ��.

8: Calculate the service load �� of �� using Algorithm 1 and
Algorithm 2, and exchange the service load with adjacent
actuators.

9: end while

VI. EXPERIMENTAL STUDY

A. Simulations of Path Planning Algorithms

We first carried out several simulation experiments to evaluate the
proposed path planning methods (Algorithm 1 and Algorithm 2) which
only consider the problem within one partition and with a single actu-
ator. In the simulation, all sensors have the same range �� and on-spot
cost ��. For simplification, the turning point �� of each selected area ��

�

is chosen to be the center of ��

� . However, this simplification does not
undermine the virtue of the proposed approach. In the simulation, we
compared the total load �� by the proposed approach with two tradi-
tional methods: simple greedy method and near-optimal solution from
TSP. In the simple greedy method, the actuator greedily selects the
nearest sensor to visit at each step and all turning points are positions
of sensors. This method has been used in [13]. The near optimal solu-
tion from TSP is obtained by a genetic algorithm [18] which aims to
visit all sensors using a minimum cost path.

We conducted simulation experiments to compare the three methods
with different settings. Fig. 4 shows the experimental results with a
fixed transmission range at 8 and different numbers of sensors (from 5
to 29). We can see that the total load increases almost proportionally
to the number of sensors. Among the three methods, our proposed ap-
proach can always achieve the smallest total load. Fig. 5 shows total
loads found by the three methods with a fixed number (20) of random
sensors and various transmission ranges (from 0 to 20). It shows that
for the simple greedy method and the genetic TSP method, the total
load does not vary much with regard to the transmission range, which
is caused by the fact that they always go to the locations of sensors
instead of using the overlapping transmission areas where data collec-
tion can be performed via wireless links. The total load found by the
proposed approach, however, steadily decreases with increasing trans-
mission range. This demonstrates that when the transmission range is
large, there is high probability of overlap, therefore traveling only to
the overlapping regions will save large amount of time and energy cost.
Notice that when the transmission range is small (�5), the genetic TSP
method can achieve better performance than our approach. However, it
is more complex and computationally expensive.
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TABLE I
SIMULATION RESULTS OF THE MULTI-ACTUATOR CONTROL ALGORITHM FOR LOAD BALANCING

Fig. 4. Load cost � of the actuator with regard to the number of sensors.

B. Simulations of Overall Actuator Control Algorithm

To evaluate the performance of our multi-actuator control algorithms
with the aim of approximately balancing the loads in the different par-
titions, we further performed a series of simulation experiments with
different configurations (various sizes of working area and numbers of
sensors). In the simulation runs of Algorithm 3 the initial velocities of
all the actuators are set to 0, the viscous friction constant � and the scale
factor � set to 0.5, and the actuators’ mass set to 1.0. We used a com-
bination of termination conditions for Algorithm 3. First, there is a set
maximum number of iterations of 1000. But if there is no appreciable
change in the load distributions within 100 consecutive iterations the
simulation is stopped. The algorithm also monitors the displacement
of the actuators and terminates if the maximum displacement of all the
actuators falls below a minimum threshold value of 0.001. Since we as-
sume that the actuators are fully connected, the synchronization costs
among them are ignored in simulations.

Table I summarizes the list of the test configurations considered in
the simulation experiments and the initial & final load distribution and
the standard deviations of the corresponding load partitions. In each
test scenario the locations of the sensors and the initial locations of
mobile actuators are generated randomly at the start of the simulation.
As can be observed from Table I, the initial random deployments of ac-
tuators results in load distributions with large differences in the service

Fig. 5. Load cost � of the actuator with regard to the transmission range.

load among the different partitions. This load imbalance is expressed
quantitatively by the standard deviations of the loads carried by the dif-
ferent actuators. As the actuator control algorithm iteratively proceeds
the load imbalance gradually reduces. The algorithm continues running
until a termination condition, specified by either a minimum standard
deviation or a maximum number of iterations without appreciable im-
provements, is satisfied. The standard deviation of the final load distri-
bution indicates how closely the loads between the different partitions
have been balanced. The results clearly show that our actuator control
algorithm significantly improves the balancing of the load distribution
among multiple actuators.

VII. CONCLUSION

In several real world WSAN application scenarios, where access to
the deployment area is very limited to humans, automatic service load
partitioning techniques are essential to guarantee longer service life-
time, efficient operation and improved response time. This technical
note presented complete control strategies for load balancing in dis-
tributed sensor networks equipped with mobile actuators to provide lo-
gistic and other services. Future work will closely study the trade-offs
between minimizing load imbalances and minimizing total service load
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in the entire network. Since a minimum load imbalance does not nec-
essarily lead to a minimum total service load, this optimization goal
requires some compromise between the two minimization criteria.
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Video Surveillance Over Wireless Sensor and
Actuator Networks Using Active Cameras
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Abstract—Although there has been much work focused on the camera
control issue on keeping tracking a target of interest, few has been done
on jointly considering the video coding, video transmission, and camera
control for effective and efficient video surveillance over wireless sensor
and actuator networks (WSAN). In this work, we propose a framework for
real-time video surveillance with pan-tilt cameras where the video coding
and transmission as well as the automated camera control are jointly op-
timized by taking into account the surveillance video quality requirement
and the resource constraint of WSANs. The main contributions of this work
are: i) an automated camera control method is developed for moving target
tracking based on the received surveillance video clip in consideration of
the impact of video transmission delay on camera control decision making;
ii) a content-aware video coding and transmission scheme is investigated to
save network node resource and maximize the received video quality under
the delay constraint of moving target monitoring. Both theoretical and ex-
perimental results demonstrate the superior performance of the proposed
optimization framework over existing systems.

Index Terms—Camera control, content-aware video coding and trans-
mission, video tracking, wireless sensor networks.

I. INTRODUCTION

Recently, as one type of the most popular wireless sensor and
actuator networks (WSANs) [1], [2], wireless video sensor networks
with active cameras have attracted a lot of research attentions and
been adopted for various applications, such as intelligent transporta-
tion, environmental monitoring, homeland security, construction site
monitoring, and public safety. Although significant amount of work
has been done on wireless video surveillance in literature, major chal-
lenges still exist in transmitting videos over WSANs and automatically
controlling cameras due to the fundamental limits of WSANs, such
as, limitations on computation, memory, battery life, and network
bandwidth at sensors, as well limitations on actuating speed, delay,
and range at actuators.

Some work has been focused on automated camera control for video
surveillance applications. In [3], an algorithm was proposed to provide
automated control of a pan-tilt camera by using the captured visual
information only to follow a person’s face and keep the face image
centered in the camera view. In [4], an image-based pan-tilt camera
control method was proposed for automated surveillance systems with
multiple cameras. The work in [5] focused on the control of a set of
pan-tilt-zoom (PTZ) cameras for acquiring closeup views of subjects
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