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Abstract—Web service search has been a serious concern for 
service-oriented software development. The challenge is how 
to find the right Web services efficiently and effectively for a 
given development task. There have been many efforts on 
developing techniques or systems to search services. Though 
effective in certain scenarios, existing techniques do not form 
systems for public use; or are based on one query modal--
keyword query, which cannot give the matched services 
accurately. In this paper, we introduce proposed multimodal 
query search, where users can use keyword and file as query 
or custom the query. The multimodal query is based on an 
innovative similarity measure approach, which incorporates 
both semantic information and structural information of Web 
services. Our experiments and test cases validate the 
effectiveness of the approach. Compared with the alternative 
system Seekda, it is able to obtain much higher search 
accuracy with keyword query (with a match rate of 2-4 times 
higher than that of Seekda). The custom search can achieve 
100% top-3 match rate, while Seekda fails in most cases using 
keywords. 

Keywords-Web service search, multimodal query, similarity, 
semantic 

I.  INTRODUCTION 
Benefiting from the notion of interoperability and 

reusability, Web service and service-oriented architecture 
(SOA) has attracted millions of developers to use services 
for software development. 70% of the most popular 
Facebook apps leverage one or more Amazon AWS [32] 
services. One critical challenge of SOA is to search existing 
online Web services which can fulfill requirements, before 
developing any new software.  

To support easy locating of right web services, Universal 
Description, Discovery and Integration (UDDI) standard 
was proposed for registering and searching Web services. 
However, UDDI has not been widely adopted in the way its 
designers had hoped. IBM, Microsoft, and SAP announced 
they closed their public UDDI nodes in 2006. Other than 
UDDI, extensive researches have been done in web service 
search; however, most of them fail to form system for public 
use. 

Nowadays, the situation becomes more and more critical, 
as Web services are flourishing on the Web, but without an 
effective mechanism to search them. Conventional search 
engines such as Google and Bing can be used for document 
search, but do not provide specialized support for Web 
service search. To the best of our knowledge, Seekda [12] is 

the most comprehensive search engine for Web Service 
nowadays. However, Seekda only provides keyword search, 
which makes its search quality far from satisfactory. For 
example, assume that a developer wants to search a Web 
service with the function of sending email. If he types “send 
email” in Seekda, the first matched Web service is a Short 
Message Service (SMS). If he inputs “email” in Seekda, the 
first Web service is for email validation.  

Studies have shown that keyword-based queries 
significantly limit the expressiveness of users and, therefore, 
degrade the effectiveness of search [33]. In the case of 
searching Web services, using only keywords to express the 
function of a Web service is problematic. As a consequence, 
it may take developers a considerable amount of time and 
effort to discover the right set of keywords through a trial-
and-error process. The keyword search is insufficient for 
locating right Web services. Meanwhile, there is multimodal 
query in other search cases. Such as in Google image search, 
users can upload an image file as query to search images. In 
this case, it is easy for users to express query by using image 
file. 

 
Figure 1.  Scenario of Multimodal Query in Web Service Search 

In this paper, we present an approach where multimodal 
query (file and keywords) is advantageous. Figure 1 
provides the scenario of how a user can search Web services 
with multimodal query. Firstly, a user can simply input 
keywords as query and press the “Go” button. Secondly, if 
the user finds keywords insufficient to express his query, he 
can upload a WSDL file or input the URL of a WSDL as 
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query by pressing the “Similarity Search” button. Thirdly, if 
the user cannot find an existed WSDL file as query, he can 
also customize his query. By pressing the “Custom Search” 
in Figure 1, the user can type in more information such as 
input and output of operation, which facilitates the 
expression of service’s function in query. 

In this paper, we implemented a multimodal-query Web 
services search system: SMiner (http://sminer.org). The first 
advantage of multimodal query is its high accuracy. 
Multimodal query can express the need of service function 
well, which significantly improves the search accuracy. The 
second advantage is its ease of use in query. If a user wants 
to search a service to replace the old one, he can use the old 
WSDL file as query to get most similar new ones. He 
needn’t type many keywords in the query. 

Technically, the major contributions of this paper are: 
� An innovative similarity measure approach between 

Web services is proposed. The approach measures the 
similarity between Web services both semantically and 
structurally. Using the approach, SMiner ranks Web 
services according to similarities. 

� SMiner provides multimodal query for Web service 
search with high accuracy. Multimodal query for Web 
service includes keyword search, similarity search and 
custom search. Using these search functions, efficient 
and accurate Web services discovery is achieved. 

The rest of paper is organized as follows. Section 2 
presents the overview of the SMiner system. Section 3 
introduces the model we used for the similarity measure. 
Section 4 shows the measure approach between Web 
services based on the proposed model. Section 5 introduces 
the adoption of clustering algorithm. In section 6, a set of 
test cases and experiments are shown to validate the 
effectiveness of the approach. Section 7 discusses related 
works. At last section 8 gives conclusion and future works. 

II. SYSTEM OVERVIEW 
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Figure 2.  Overview of the Service Searching System 

The SMiner system proposed in this paper mainly has 
three parts, Web services collection, description documents 
preprocessing and model based mining. 

The first part is to collect distributed Web services 
description from the Internet. A crawler has been 
implemented for this purpose. Based on our experience, a 
portion of Web services on the Internet are not usable. A 
Web services validator is thus needed. We develop a 
validator to verify the availability of Web services. The 
validator invokes each crawled Web service to see whether 
the Web service is available. Unavailable Web services are 
removed. 

When Web services collection is completed, description 
documents for Web services are stored. However, to use 
these description documents for similarity measure and 
clustering, documents preprocessing has to be done first. 
There is lots of noisy information in the description 
documents. The information extractor extracts useful 
information from description documents. As the content of 
description documents are written in different language, 
such as Chinese or English. We use Google Translate [13] 
to unify the language to English. 

A model is used to describe the functionalities of 
services. The effectiveness of similarity measure and 
cluster lies heavily on whether the model captures the 
characteristics of services. After careful observation and 
consideration, we propose a light weighted model for 
similarity measure of Web services. We will introduce the 
model and service  similarity measure approach in 
following sections. The integrator is in charge of 
assembling useful information extracted from description 
documents into the model. Finally, the cluster divides the 
Web services on the basis of similarity measure. 
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Figure 3.  Search Process 

As shown in Figure 3, the system provides three search 
functions for users, including keyword search, similarity 
search and custom search. When a user submits a search 
query, the system transforms the query into the lighted 
weighted model. Then service similarity is calculated on 
the basis of cluster results. Through similarity measure, the 
system first finds out the most similar clusters for the query, 
then get the most similar Web services from the most 
similar clusters. At last, the system responds the query with 
the matched Web services. 
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III. SMINER MODEL 

A. LIGHT WEIGHTED MODEL 
Before measuring the service similarity, it is necessary 

to define a model to describe the functionalities of each 
service. Description documents for a Web service has 
plenty of information about the functionality offered by the 
Web service. First, it has semantic information which can 
express the functionality, such as service name and 
message name. And it also has structural information which 
can reflect the functionality, such as input/output messages 
corresponding relationship and structure of types. We 
propose a light-weighted model (see Figure. 4) which takes 
in both semantic and structural information.  

The model includes elements of service. Generally, a 
Web service consists of a set of operations. Operation has 
three parts, Binding, Input Message and Output Message, 
corresponding to how the operation is called, what 
parameters it expects and what data structures it returns. 
Input Message and Output Message are both comprised of 
several Message Parts. Each element in the model has its 
own attributes, for example Service has service name and 
service documentation. 
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Figure 4.  Service Model 

In the next subsection, we will show how to extract 
content from service description to form elements of the 
model. 

B. ELEMENT EXTRACTION 
The extraction has three steps as shown in Figure 5. 

WSDL
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Word
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Stopword
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Figure 5.  Extraction Process 

Document Parsing: Description document for Web 
services is usually XML based. We use DOM [16] to 
manipulate description document, thus we can extract useful 
information and do not destroy structural information. In 
addition, parsing in this way also accomplishes tag removal 
as DOM does not extract tags out. 

Word Splitting: Different from text processing, which 
splitting words by space, we also consider the programming 
naming specification. Service names, message names, etc. 
may be composed of several meaningful words, such as 
QueryService for service name and 
GetPortalSearchInfoSoapIn for message name. The words 
are splitted by capital letter and special character (such as 
“_”). 
Stopwords Removal: Stopwords are words that appear so 
frequently that they lose their usefulness for search. To 
remove the stopwords, this paper adopts LUCENE 
stopwords plus some special stopwords for services. For 
example, “out” may frequently appears in output message 
names while has no semantic meaning. 

TABLE I.  WEB SERVICES STOPWORDS LIST EXAMPLES 

Web Service 
stopwords 

“out”, “soap”, “soap12”, “http”, “get”, 
“post”, “request”, “response” 

After extraction we get elements in the model. Then we 
infer relations among these elements through word matching. 
Using relations among the elements to integrate them, the 
model is generated from Web services description.  

Following code gives out a Web services description 
example, the operation GetLastTradePrice has input 
message GetLastTradePriceInput and output message 
GetLastTradePriceOutput. GetLastTradePriceInput and 
GetLastTradePriceOutput both have message part 
TradePrice. And through binding tag, we know that the 
operation can be called using SOAP. 

<types> 
… 
           <element name="TradePriceRequest"> 
… 
           </element> 
           <element name="TradePrice"> 
… 
           </element> 
… 
</types> 
… 
<message name="GetLastTradePriceOutput"> 
        <part name="body" element="xsd1:TradePrice"/> 
</message> 
<message name="GetLastTradePriceOutput"> 
        <part name="body" element="xsd1:TradePrice"/> 
 </message> 
… 
<portType name="StockQuotePortType"> 
        <operation name="GetLastTradePrice"> 
           <input message="tns:GetLastTradePriceInput"/> 
           <output message="tns:GetLastTradePriceOutput"/> 
        </operation> 
 </portType> 
… 
<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType"> 
         <soap:binding style="document" 
transport="http://schemas.xmlsoap.org/soap/http"/> 
… 
</binding> 

IV. SIMILARITY MEASURE APPROACH 

A. OPERATION ORIENTED MEASURE 
On the basis of the model, we use an operation oriented 

approach to measure the similarity between Web services. 
Suppose a Web service A has n operations, PA1,..,PAn, the 
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operation similarity degree of A to B (another Web service, 
which has m operations PB1,..,PBm) is defined in formula (1). 

n

mjPPSimMax
BASOP

n

i
BjAiOP ))),..,1)(,((

),( 1
�
�

�
�  (1) 

Each operation in A can find a most similar operation in 
B, namely with which the operation has the maximal 
similarity degree among operations in B. The operation 
similarity degree of A to B is equal to the average of these 
maximal similarity degrees. An example is given out in 
Table . P1 and P2 are operations of A. P3, P4 and P5 are 
operations of B. The operation similarity of A to B is 0.8. 

TABLE II.  OPERATION SIMILARITY MEASURE EXAMPLE 

 P3 P4 P5 
P1 0.1 0.5 0.9 
P2 0.7 0.3 0.1 

We notice that the operation similarity degree of A to B 
may be different from the operation similarity degree of B 
to A. In the example above, the operation similarity degree 
of B to A is 0.7.  

The overall similarity degree of A to B is weighted sum 
of operation similarity degree and semantic description 
(service name and service documentation) similarity degree, 
as shown in formula (2). 

),(),(),( 21 BASSDBASOPBASimS �� ��  (2) 
In the next subsections we will introduce semantic 

description similarity measure and operation similarity 
measure. 

B. SEMANTIC SIMILARITY MEASURE 
Service name, service documentation etc are vectors of 

words and have useful semantic information. We adopt 
Normalized Google Distance (NGD) [17] to measure the 
similarity between word vectors. 

Specifically, NGD between two words x and y is 
defined in formula (3). 

)}(log),(min{loglog
),(log)}(log),(max{log),(
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�
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In formula (3), M is the total number of web pages 
searched by Google; f(x) and f(y) are the number of hits for 
search words x and y, respectively; and f(x, y) is the number 
of web pages on which both x and y occur. 

For word vector V1 and V2, the similarity degree 
between V1 and V2 is defined as following. 
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Semantic description contains service name and service 
documentation in the model, SSD is the average of service 
name vector similarity degree and service documentation 
vector similarity degree. Formula (5) gives out definition of 
SSD, continues with notation in former formulas. 

)()(),( ,2,1 BSdocASdocWVBSnameASnameWV VVSimVVSimBASSD �� ��  (5) 

C. OPERATION SIMILARITY MEASURE 
The similarity degree between operations is composed 

of five part, operation name similarity degree, operation 

documentation similarity degree, input message similarity 
degree, output message similarity degree and binding 
similarity degree. The definition is given in formula (6). 

T
OP WXPPSim �),( 21  (6) 

Where both X and W are vectors. X is the vector of 
similarity of each part of service P1 and P2, as shown in 
formula (7). W is the weight vector of similarity (Cf. Eq. 8). 
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Operation name similarity degree and operation 

documentation similarity degree can be calculated using 
formula (4). 

Input messages and output messages are very important 
parts of operation and they have plenty of useful 
information, both semantic and structural. Input message 
and output message similarity degree are measured in the 
same way, which considers both semantic and structural 
information, as shown in formula (9) and (10). The 
similarity degree between input messages is the sum of 
word vector similarity degree for their names and structural 
similarity degree. 

),(),(),(
212121 21 IIMsgpIMsgpSTIMsgNpIMsgNpWVppIN SSSimVVSimInInSim 

 ��  (9) 

Similar to formula (9), the similarity between output 
messages is (10). 

),(),(),(
212121 11 OIMsgpOMsgpSTOMsgNpOMsgNpWVppOUT SSSimVVSimOutOutSim �� ��  (10) 

The messages (both input messages and output 
messages) consist of one or more logical message parts. 
The logical parts are usually defined using XSD. Message 
parts are elements, and they can be as simple as a simple 
type or as complex as an array of other elements. Each 
element has a name attribute and a type attribute. They are 
both a good candidates for similarity measure.  

XSD has defined various simple types; elements are 
composed from these simple types. For every message in 
Web services, we extracted all simple types to form a type 
vector T. The message structural similarity degree is 
calculated on the type vectors extracted from messages as 
shown in formula (11). 
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The structural similarity degree between messages is 
type match count divided by average type number. For 
instance, if type vector for message 1 is {string, float, 
boolean} and type vector for message 2 is {string, float, 
float}, the structural similarity degree between messages is 
2/3=0.66. And if type vector for message 2 changes to 
{string, string, string}, the structural similarity degree is 
1/3=0.33. 

This structural similarity measure between messages 
makes sense, as there are many seemed different elements 
or messages are actually have the same structure due to 
developers’ various programming style.  For example, 
following two TradePrice elements have the same structure. 

<element name="TradePrice"> 
        <complexType> 
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          <all> 
            <element name="parameter" type="string"/> 
          </all> 
        </complexType> 
 </element> 
<element name="TradePrice" type="string"> 

Moreover in another example, Message1 and Message2 
in the following code also have the same structure. 

<complexType name="Item"> 
          <all> 
             <element name="quantity" type="int"/> 
              <element name="product" type="string"/> 
          </all> 
</complexType> 
<message name=”Message1”> 
         <part name=”part1” element=”tns:Item”> 
</message> 
… 
<element name="Quantity" type="int"> 
<element name="Product" type="string"> 
<message name=”Message2”> 
         <part name=”part1” element=”tns:Quantity”> 
         <part name=”part2” element=”tns:Product”> 
</message> 

There are multiple protocols and message formats for 
Web services binding, including SOAP, HTTP GET, HTTP 
POST and MIME. As shown in formula (12), the similarity 
degree between bindings equals to protocol match count 
divided by average protocol number. 
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For example, if P1 can be invoked using SOAP and 
HTTP GET, P2 can be called using SOAP. Binding 
similarity degree of P1 and P2 is 2/3. If P2 can be called 
using both SOAP and HTTP POST, Binding similarity 
degree of P1 and P2 is 0.5. 

Operation similarity measure takes into account 
semantic description (operation name and operation 
document), how the operation is called (binding), what 
parameters the operation expects (input message) and what 
data structures the operation returns (output message), to 
measure similarity between operations in a comprehensive 
way (both semantic information and structural information 
is considered). Similarity measure between Web services 
makes use of operation similarity measure plus service 
level semantic similarity measure, thus making similarity 
measure between Web services more accurate. 

As we view every part of the information as equally 
important, we set the parameter as following: 

,5.0,2.0,2.0,8.0 15432121 �������� �					��
5.0,5.0,5.0 21212 ����� ��

� . Effectiveness of the 

setting is validated by test cases and experiments, all the 
search functions have good accuracy. 

In the next section we will introduce the clustering 
algorithm based on similarity measure. 

V. CLUSTRING 
As there are tons of thousand Web services, if we 

calculate the similarity degree for every pair of Web 
services, it will be computationally intolerable. Thus we 
use K-MEANS [18] clustering algorithm to cluster similar 

Web services based on the similarity measure discussed 
above, to enhance the efficiency. 

In general, K-MEANS aims to partition n objects into k 
clusters to minimize the within-cluster sum of distance. K-
MEANS usually is composed of the following four steps: 
(1) Place k objects as center objects; (2) Assign each object 
to the set that has the closest center objects; (3) When all 
objects have been assigned, recalculate the k center objects; 
(4) Repeat step (2) and (3) until the center objects no longer 
move. 

The clustering algorithm is carried out as following. 
To determine the number of clusters k and the initial 

center objects, we analyze thousands of Web services on 
the Internet and identify more than two hundred categories. 
We relax the category number to three hundred, namely we 
cluster Web services into 300 sets. We select 300 Web 
services, which involve considerate manual effort (we 
endeavor to select Web services from different categories 
to make the chosen Web services as not similar as possible), 
as center Web services for 300 sets. 

Then assign each Web service into the set to which it is 
the closest (namely most similar to the center Web service 
in the set).  

Formula (13) is used to find the new center Web services 
for sets. Center Web service in a set has minimal sum of 
other Web services’ similarity degrees to it.  

ij
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oj

SetS
ojjSet

SetSallfor

SSSimSSSimSMean
ioio

i

�

�� ��
��

),(),(: **  (13) 

The clustering continues assigning Web services and 
updating center Web services, until the center Web services 
stay stable. 

VI. TEST CASE AND EXPERIMENT 
Multimodal search, including keyword search, similarity 

search and custom search, is provided on the basis of the 
similarity measure algorithm. In this section we validate the 
effectiveness of these functions through a set of test cases 
and experiments. 

A. Keyword Search 
For keyword search, to find Web services, user just 

needs to type a word or a phrase.  The typed word or phrase 
is put into the model presented above (in this case, Service 
Name and Service Documentation are set to be the typed 
word or phrase, the other parts of the model are empty). 
Then through the proposed similarity measure proposed, 
we can get Web services that are most similar to the typed 
word or phrase. 

To validate the keyword search, we conduct 
comparative experiments with Seekda. For example, we 
use “send email” as the example keywords. The goal is to 
find out Web services for email sending. Table  gives out 
top 20 available Web services of this searching in Seekda.  
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TABLE III.  WEB SERVICES RANKINGS FOR “SEND EMAIL” 

Service Name WSDL URL  Seekda 
Ranking 

SMiner 
Ranking 

Standard  
Ranking 

SendSMSWorld http://www.webservicex.com/sendsmsworld.asmx?WSDL 1 16 17 
SendSMS http://www.webservicex.net/SendSMS.asmx?wsdl 2 18 16 

Communication http://www.zeta-uploader.com/webservices/communication?WSDL 3 20 11 
SendSMS http://www.webservicex.com/SendSMS.asmx?WSDL 4 17 15 

fax http://www.webservicex.com/fax.asmx?wsdl 5 14 13 
SendEmailService http://www.abysal.com/soap/AbysalEmail.wsdl 6 2 5 

fax http://www.webservicex.net/fax.asmx?wsdl 7 15 14 
SendMail http://www.zim.co.il/SendMail.asmx?WSDL 8 8 6 

webservice http://smsbug.com/api/webservice.asmx?wsdl 9 19 20 
Email_x0020_a_x0020_Friend http://www.discovertheponds.com/ThePonds/ws/EmailAFriend.asmx?WSDL 10 5 8 

SendEmail http://www.gottunnel.com/SVOEmailWS/SendEmail.asmx?WSDL 11 1 4 
WebServices http://ser02.2sms.com/WebServices/1.0/SMSService.asmx?WSDL 12 13 18 
EmailService http://madrid.vitalab.tuwien...2/services/EmailService?wsdl 13 3 7 

SendMail http://www.armymkt.com.br/WebServices/SendMail.asmx?WSDL 14 9 10 
FaxService http://webservices.venali.net/fax/1.0/faxservice.asmx?WSDL 15 10 19 

UMSEmailService https://secure.ums.no/soap/email/1.2/?wsdl 16 11 1 
timeDateEmail http://www.vbtrain.net/samplewebprojects/Web%20Interaction%20Sample/ti

meDateEmail.asmx?wsdl 
17 4 9 

Tiscali_x0020_Email_x0020_Services http://webservices.tiscali.com/EmailServices.asmx?wsdl 18 12 2 
EmailSenderService http://www.mysweetpeace.co.uk/web_services/emailer_ws.wsdl 19 7 12 

SendToAFriend http://www.allenandunwin.com/Messaging/SendToAFriend.asmx?WSDL 20 6 3 

Then we invite 10 graduate students (4 PhD candidates 
and 6 masters) to rank the 20 Web services according to the 
relevance to the keywords through manual reading and 
understanding. The most well accepted ranking is also 
shown in Table . And we use this ranking as standard 
ranking (the column of Standard Ranking). At last we rank 
the 20 Web services using keyword search proposed in the 
paper. Also, the ranking result of the system is provided in 
Table  (the column of SMiner Ranking). To quantitatively 
measure the result, we use formula (14) to calculate the 
difference between standard ranking and Seekda Ranking(or 
SMiner Ranking). S represents a Web service. The Set 
corresponds to the 20 Web services. Rankings denotes Web 
service S’s ranking in Seekda or SMiner. StandardRankings 
means Web service S’s ranking in standard ranking. 

)Standard( sSetS s RakingRankingD ��� �
 (14) 

A smaller D means smaller difference with standard 
ranking, which also means better ranking result. Based on 
Table III, DSeekda is 170 and DSMiner is 80, which means 
SMiner Ranking is more closer to the standard ranking 
compared with Seekda Ranking. And the maximal Dmaximal 
is the reversed ranking of standard ranking, which is 200. So 
the match rate of Seekda is (1- DSeekda/ Dmaximal)=15%, and 
the match rate of our system is (1-DSMiner/ Dmaximal)=60%. 
Our system improves match rate by 3 times. 

We also carry out other comparative experiments with 
different keywords in the similar manner; we find that 
SMiner is able to obtain a much higher search quality (with 
a match rate of 2-4 times higher than that of Seekda). 

B. Custom Search 
Keyword search is still insufficient to find the most 

accurate Web services (as shown in Table , the top-3 
accurate Web services is ranked 11, 12 and 6). This because 

keyword search sometimes cannot express users’ need. It is 
almost impossible to get the most accurate Web services 
using such little information.  

To overcome this, custom search is also provided by our 
system. Custom search allows user to type in more 
information about the Web services he wants, not only 
keywords description about the Web services. 

Service Name:"Send Email" 
Service Description:”Send email to others” 
Inputs parameters:  
            name="from" type="s:string" 
            name="to" type="s:string" 
            name="subject" type="s:string" 
            name="body" type="s:string" 
            name="attachment" type="s:base64Binary" 
            name="from" type="s:string"  
            name="cc" type="s:string"  
            name="bcc" type="s:string"  
Output parameters: 
            name="result" type="s:string"  

Custom search allows user to type in service description, 
input message names, input message types, output message 
names and output message types about the Web services he 
wants. In the same scenario, if we set the information as 
shown in the above codes, the first Web service found is 
UMSEmailService, the second Web service is 
timeDateEmail and the third Web service is SendToAFriend. 
Namely we find the most accurate Web services through 
custom search.  

Custom search achieve 100% top-3 match precision for 
all of the experiments (we carry out 5 experiments), while 
Seekda has 0% top-3match precision. 

C. Similarity Search 
In addition to keyword search and custom search, 

similarity search is also offered by the system. Using 
similarity search, user needs to input a Web service (URL of 
the Web service WSDL or a WSDL file), and similarity 
search returns Web services that are similar to the given 
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Web service. Then user could select from these similar Web 
services to get the most appropriate Web services.  

The similarity search is implemented through similarity 
measure and clustering discussed in the above sections. It 
returns the cluster the given Web service belongs to. 

We conduct experiments to shown that the result of 
clustering is accurate; namely the similarity search is 
accurate. 

We perform a manual classification of the WSDL 
documents to serve as a comparison point for the clustering 
algorithm. We distinguish the following clusters: “Excel 
Service”, “Imaging”, and “Email”. “Excel Service” includes 
Web services through which we can manipulate an excel 
spreadsheet remotely, Web services in “Imaging” provide 
picture management and “Email” is consist of email related 
Web services .Due to page limit we do not list these clusters. 

We use two commonly used criteria in information 
retrieval to evaluate the effectiveness of our clustering, 
namely precision and recall. Precision can be seen as a 
measure of exactness or fidelity, and recall is a measure of 
completeness. 

},..,{},,..,{ ''
1

'
1 mn SSCSSC ��  (15) 

As shown in formula (15), S and S’ both denote Web 
services. C and C’ are both Web service clusters. C is the 
returned cluster and C’ is the manual identification cluster 
(standard cluster).  

��
��

 
(16) 

Formula (16) gives out definitions for precision and 
recall. Precision is the number of correct Web services in C 
divided by the number of Web services in C, recall is the 
number of correct Web services in C divided by the number 
of Web services in C’. 

The results of clustering are given out in Table . 

TABLE IV.  CLUSTERING RESULTS 

Cluster Precision Recall 
Excel Service 100% 91.6% 

Imaging 95% 87.5% 
Email 96.4 84.4 

We could not calculate the precision and recall for all 
the clusters got from clustering, as we could not manually 
identify all the standard clusters. From the results shown in 
Table , we can see that our clustering has very high 
precision and recall, which mean the clusters got from 
clustering is very close to the standard clusters. Thus we can 
get that the similarity search discussed in this paper is 
accurate. 

Through these test cases and experiments we can see 
that all the three search functions could accurately find Web 
services the user wants. This validates the effectiveness of 
the system. 

VII. RELATED WORK 
UDDI: UDDI is part of core Web services standard and 
current is industry standard for Web services discovery. It is 
low accuracy as it focuses mainly on keywords matching 
and is inefficient as there are multiple UDDI registries (user 
has to search in one UDDI after another). 
Semantic Web Services Discovery: To overcome the 
limitation of keywords matching, several semantic 
descriptions are proposed. These descriptions, which 
include WSDL-S, OWL-S and WSMO, use ontologies to 
enhance the service description. A lot of discovery 
approaches are proposed on the basis of these descriptions. 
Paolucci [1] regards service match as a logic inference task. 
Cardoso [2] and Skoutas [3] propose to use the similarity 
between requested and offered inputs and outputs, which is 
calculated by comparing classes in associated domain 
ontology, for service discovery. Further, Bellur [4] 
calculates similarity between requested and offered inputs 
and outputs using bipartite graphs. Klusch [5] and Kaufer [6] 
propose to discovery service in a hybrid way, 
complementing logic based reasoning with matching based 
on syntactic similarity computations. In the paper of 
Skoutas [7], approach to discovery service using multi-
criteria dominance relationships, which include keywords, 
semantic, parameters, etc, is proposed. 

However, plenty of Web services do not possess these 
semantic descriptions, which make aforementioned 
discovery approaches not practical in reality. 
Web services similarity measure and clustering: Using 
basic WSDL, several similarity measure and clustering 
methods are discussed to facilitate Web services discovery. 
Dong [8] proposes to calculate inputs/outputs similarity of 
Web services, then to cluster Web services for service 
discovery. Wu [9] proposes a service property model, which 
divides properties of Web services into four categories, and 
calculating the similarity upon the model. Liu [10] extracts 
useful information from WSDL, which includes Web 
services name, Web services abstract and etc. On the basis 
of the extracted information, text mining methods are used 
to cluster Web services. Elgazzar [11] improves Liu’s work 
by introducing weight for extracted information and 
applying the approach to existing Web services. 

However, these approaches do not take structural 
information of Web services into account. As WSDL is a 
well defined XML schema, description for Web services in 
WSDL is well structured. The ignorance of structural 
information will lead to information lost inevitably. 
Moreover, just like the approaches in semantic Web service 
discovery, these approaches are not implemented into 
practical systems for public use. 
Web Services Search Engine: Although prevalent search 
engines, for example Google and Bing provide some 
specific searches, such as Image search and music search, 
they do not provide specific Web services engine. It is very 
hard to use them for service discovery. 
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Web service registries, such as webservicex and 
xmethods, focus on listing available Web services publicly. 
Webservicex doesn’t provide search function. Xmethods 
only provides a poor keyword search, which only returns 
few Web services for query. Using “send email” as keyword 
it will return an empty list. Seekda [12] is currently the most 
comprehensive global search engine for Web services. 
However, Seekda only offers keyword search which leads to 
low accuracy. Because keyword search could not capture 
the users’ search need well. 

VIII. CONCLUSION AND FUTURE WORKS 
In this paper, we study the problem of Web services 

search. We investigate the available Web services on the 
Web, and find that using keywords as query is not adequate 
for service search. Then we propose a comprehensive 
approach, which incorporates both semantic information and 
structural information of Web services. Besides keyword 
search, the system implemented similarity search and 
custom search. We evaluate the effectiveness of the 
approach on more than 10000 services. Compared to Seekda 
with the same searching tasks, SMiner is able to obtain a 
match rate 2-4 times higher than Seekda. And custom search 
can achieve 100% top-3 match rate in these searching tasks. 

The problem of Web services search is a basic and 
critical problem of service computing. There are many 
potential future directions of this work, such as composite 
service search when a single service cannot satisfy the query 
and integrating the approach into IDE to facilitate SOA 
developing in design-time and run-time. 
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