
Towards Multimodal Query in Web Service Search

 Bin Xu, Sen Luo, Kewu Sun
Department of Computer Science and Technology

Tsinghua University
Beijing, China

{ xubin, luos, kewusun}@keg.cs.tsinghua.edu.cn

Abstract—Web service search has been a serious concern for
service-oriented software development. The challenge is how
to find the right Web services efficiently and effectively for a
given development task. There have been many efforts on
developing techniques or systems to search services. Though
effective in certain scenarios, existing techniques do not form
systems for public use; or are based on one query modal--
keyword query, which cannot give the matched services
accurately. In this paper, we introduce proposed multimodal
query search, where users can use keyword and file as query
or custom the query. The multimodal query is based on an
innovative similarity measure approach, which incorporates
both semantic information and structural information of Web
services. Our experiments and test cases validate the
effectiveness of the approach. Compared with the alternative
system Seekda, it is able to obtain much higher search
accuracy with keyword query (with a match rate of 2-4 times
higher than that of Seekda). The custom search can achieve
100% top-3 match rate, while Seekda fails in most cases using
keywords.

Keywords-Web service search, multimodal query, similarity,
semantic

I. INTRODUCTION
Benefiting from the notion of interoperability and

reusability, Web service and service-oriented architecture
(SOA) has attracted millions of developers to use services
for software development. 70% of the most popular
Facebook apps leverage one or more Amazon AWS [32]
services. One critical challenge of SOA is to search existing
online Web services which can fulfill requirements, before
developing any new software.

To support easy locating of right web services, Universal
Description, Discovery and Integration (UDDI) standard
was proposed for registering and searching Web services.
However, UDDI has not been widely adopted in the way its
designers had hoped. IBM, Microsoft, and SAP announced
they closed their public UDDI nodes in 2006. Other than
UDDI, extensive researches have been done in web service
search; however, most of them fail to form system for public
use.

Nowadays, the situation becomes more and more critical,
as Web services are flourishing on the Web, but without an
effective mechanism to search them. Conventional search
engines such as Google and Bing can be used for document
search, but do not provide specialized support for Web
service search. To the best of our knowledge, Seekda [12] is

the most comprehensive search engine for Web Service
nowadays. However, Seekda only provides keyword search,
which makes its search quality far from satisfactory. For
example, assume that a developer wants to search a Web
service with the function of sending email. If he types “send
email” in Seekda, the first matched Web service is a Short
Message Service (SMS). If he inputs “email” in Seekda, the
first Web service is for email validation.

Studies have shown that keyword-based queries
significantly limit the expressiveness of users and, therefore,
degrade the effectiveness of search [33]. In the case of
searching Web services, using only keywords to express the
function of a Web service is problematic. As a consequence,
it may take developers a considerable amount of time and
effort to discover the right set of keywords through a trial-
and-error process. The keyword search is insufficient for
locating right Web services. Meanwhile, there is multimodal
query in other search cases. Such as in Google image search,
users can upload an image file as query to search images. In
this case, it is easy for users to express query by using image
file.

Figure 1. Scenario of Multimodal Query in Web Service Search

In this paper, we present an approach where multimodal
query (file and keywords) is advantageous. Figure 1
provides the scenario of how a user can search Web services
with multimodal query. Firstly, a user can simply input
keywords as query and press the “Go” button. Secondly, if
the user finds keywords insufficient to express his query, he
can upload a WSDL file or input the URL of a WSDL as

2012 IEEE 19th International Conference on Web Services

978-0-7695-4752-7/12 $26.00 © 2012 IEEE

DOI 10.1109/ICWS.2012.42

272

2012 IEEE 19th International Conference on Web Services

978-0-7695-4752-7/12 $26.00 © 2012 IEEE

DOI 10.1109/ICWS.2012.42

272

query by pressing the “Similarity Search” button. Thirdly, if
the user cannot find an existed WSDL file as query, he can
also customize his query. By pressing the “Custom Search”
in Figure 1, the user can type in more information such as
input and output of operation, which facilitates the
expression of service’s function in query.

In this paper, we implemented a multimodal-query Web
services search system: SMiner (http://sminer.org). The first
advantage of multimodal query is its high accuracy.
Multimodal query can express the need of service function
well, which significantly improves the search accuracy. The
second advantage is its ease of use in query. If a user wants
to search a service to replace the old one, he can use the old
WSDL file as query to get most similar new ones. He
needn’t type many keywords in the query.

Technically, the major contributions of this paper are:
� An innovative similarity measure approach between

Web services is proposed. The approach measures the
similarity between Web services both semantically and
structurally. Using the approach, SMiner ranks Web
services according to similarities.

� SMiner provides multimodal query for Web service
search with high accuracy. Multimodal query for Web
service includes keyword search, similarity search and
custom search. Using these search functions, efficient
and accurate Web services discovery is achieved.

The rest of paper is organized as follows. Section 2
presents the overview of the SMiner system. Section 3
introduces the model we used for the similarity measure.
Section 4 shows the measure approach between Web
services based on the proposed model. Section 5 introduces
the adoption of clustering algorithm. In section 6, a set of
test cases and experiments are shown to validate the
effectiveness of the approach. Section 7 discusses related
works. At last section 8 gives conclusion and future works.

II. SYSTEM OVERVIEW

Preprocessing

Crawler

Validator

WS

WS WS

Translator

WSDL
Documents

Extractor Integrator

Cluster

Cluster
Result

User

Collecting Mining

Figure 2. Overview of the Service Searching System

The SMiner system proposed in this paper mainly has
three parts, Web services collection, description documents
preprocessing and model based mining.

The first part is to collect distributed Web services
description from the Internet. A crawler has been
implemented for this purpose. Based on our experience, a
portion of Web services on the Internet are not usable. A
Web services validator is thus needed. We develop a
validator to verify the availability of Web services. The
validator invokes each crawled Web service to see whether
the Web service is available. Unavailable Web services are
removed.

When Web services collection is completed, description
documents for Web services are stored. However, to use
these description documents for similarity measure and
clustering, documents preprocessing has to be done first.
There is lots of noisy information in the description
documents. The information extractor extracts useful
information from description documents. As the content of
description documents are written in different language,
such as Chinese or English. We use Google Translate [13]
to unify the language to English.

A model is used to describe the functionalities of
services. The effectiveness of similarity measure and
cluster lies heavily on whether the model captures the
characteristics of services. After careful observation and
consideration, we propose a light weighted model for
similarity measure of Web services. We will introduce the
model and service similarity measure approach in
following sections. The integrator is in charge of
assembling useful information extracted from description
documents into the model. Finally, the cluster divides the
Web services on the basis of similarity measure.

Custom Search

Cluster

Cluster Cluster

Cluster

Light Weighted
Model

Model-based
Similarity
Measure

Transform

Cluster Results

Key Word Search

Similarity Search

Service Name

Figure 3. Search Process

As shown in Figure 3, the system provides three search
functions for users, including keyword search, similarity
search and custom search. When a user submits a search
query, the system transforms the query into the lighted
weighted model. Then service similarity is calculated on
the basis of cluster results. Through similarity measure, the
system first finds out the most similar clusters for the query,
then get the most similar Web services from the most
similar clusters. At last, the system responds the query with
the matched Web services.

273273

III. SMINER MODEL

A. LIGHT WEIGHTED MODEL
Before measuring the service similarity, it is necessary

to define a model to describe the functionalities of each
service. Description documents for a Web service has
plenty of information about the functionality offered by the
Web service. First, it has semantic information which can
express the functionality, such as service name and
message name. And it also has structural information which
can reflect the functionality, such as input/output messages
corresponding relationship and structure of types. We
propose a light-weighted model (see Figure. 4) which takes
in both semantic and structural information.

The model includes elements of service. Generally, a
Web service consists of a set of operations. Operation has
three parts, Binding, Input Message and Output Message,
corresponding to how the operation is called, what
parameters it expects and what data structures it returns.
Input Message and Output Message are both comprised of
several Message Parts. Each element in the model has its
own attributes, for example Service has service name and
service documentation.

ServiceService
Name

Operation

Binding Input Message Output
Message

Protocol Message
Name

Operation
Documentation

Service
Documentation

1..*

0..11

1 0..1

0..* 0..1 0..1

1..*
1

1..* 11..*

Operation
Name

Message
Part

Figure 4. Service Model

In the next subsection, we will show how to extract
content from service description to form elements of the
model.

B. ELEMENT EXTRACTION
The extraction has three steps as shown in Figure 5.

WSDL
Parsing

Word
Splitting

Stopword
Removal

Figure 5. Extraction Process

Document Parsing: Description document for Web
services is usually XML based. We use DOM [16] to
manipulate description document, thus we can extract useful
information and do not destroy structural information. In
addition, parsing in this way also accomplishes tag removal
as DOM does not extract tags out.

Word Splitting: Different from text processing, which
splitting words by space, we also consider the programming
naming specification. Service names, message names, etc.
may be composed of several meaningful words, such as
QueryService for service name and
GetPortalSearchInfoSoapIn for message name. The words
are splitted by capital letter and special character (such as
“_”).
Stopwords Removal: Stopwords are words that appear so
frequently that they lose their usefulness for search. To
remove the stopwords, this paper adopts LUCENE
stopwords plus some special stopwords for services. For
example, “out” may frequently appears in output message
names while has no semantic meaning.

TABLE I. WEB SERVICES STOPWORDS LIST EXAMPLES

Web Service
stopwords

“out”, “soap”, “soap12”, “http”, “get”,
“post”, “request”, “response”

After extraction we get elements in the model. Then we
infer relations among these elements through word matching.
Using relations among the elements to integrate them, the
model is generated from Web services description.

Following code gives out a Web services description
example, the operation GetLastTradePrice has input
message GetLastTradePriceInput and output message
GetLastTradePriceOutput. GetLastTradePriceInput and
GetLastTradePriceOutput both have message part
TradePrice. And through binding tag, we know that the
operation can be called using SOAP.

<types>
…
 <element name="TradePriceRequest">
…
 </element>
 <element name="TradePrice">
…
 </element>
…
</types>
…
<message name="GetLastTradePriceOutput">
 <part name="body" element="xsd1:TradePrice"/>
</message>
<message name="GetLastTradePriceOutput">
 <part name="body" element="xsd1:TradePrice"/>
 </message>
…
<portType name="StockQuotePortType">
 <operation name="GetLastTradePrice">
 <input message="tns:GetLastTradePriceInput"/>
 <output message="tns:GetLastTradePriceOutput"/>
 </operation>
 </portType>
…
<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
…
</binding>

IV. SIMILARITY MEASURE APPROACH

A. OPERATION ORIENTED MEASURE
On the basis of the model, we use an operation oriented

approach to measure the similarity between Web services.
Suppose a Web service A has n operations, PA1,..,PAn, the

274274

operation similarity degree of A to B (another Web service,
which has m operations PB1,..,PBm) is defined in formula (1).

n

mjPPSimMax
BASOP

n

i
BjAiOP))),..,1)(,((

),(1
�
�

�
� (1)

Each operation in A can find a most similar operation in
B, namely with which the operation has the maximal
similarity degree among operations in B. The operation
similarity degree of A to B is equal to the average of these
maximal similarity degrees. An example is given out in
Table . P1 and P2 are operations of A. P3, P4 and P5 are
operations of B. The operation similarity of A to B is 0.8.

TABLE II. OPERATION SIMILARITY MEASURE EXAMPLE

 P3 P4 P5
P1 0.1 0.5 0.9
P2 0.7 0.3 0.1

We notice that the operation similarity degree of A to B
may be different from the operation similarity degree of B
to A. In the example above, the operation similarity degree
of B to A is 0.7.

The overall similarity degree of A to B is weighted sum
of operation similarity degree and semantic description
(service name and service documentation) similarity degree,
as shown in formula (2).

),(),(),(21 BASSDBASOPBASimS �� �� (2)
In the next subsections we will introduce semantic

description similarity measure and operation similarity
measure.

B. SEMANTIC SIMILARITY MEASURE
Service name, service documentation etc are vectors of

words and have useful semantic information. We adopt
Normalized Google Distance (NGD) [17] to measure the
similarity between word vectors.

Specifically, NGD between two words x and y is
defined in formula (3).

)}(log),(min{loglog
),(log)}(log),(max{log),(

yfxfM
yxfyfxfyxNGD

�
�

� (3)

In formula (3), M is the total number of web pages
searched by Google; f(x) and f(y) are the number of hits for
search words x and y, respectively; and f(x, y) is the number
of web pages on which both x and y occur.

For word vector V1 and V2, the similarity degree
between V1 and V2 is defined as following.

21
21

1 2
)),(1(

),(
VV

yxNGD
VVSim Vx Vy

WV

� �� �
�

� (4)

Semantic description contains service name and service
documentation in the model, SSD is the average of service
name vector similarity degree and service documentation
vector similarity degree. Formula (5) gives out definition of
SSD, continues with notation in former formulas.

)()(),(,2,1 BSdocASdocWVBSnameASnameWV VVSimVVSimBASSD �� �� (5)

C. OPERATION SIMILARITY MEASURE
The similarity degree between operations is composed

of five part, operation name similarity degree, operation

documentation similarity degree, input message similarity
degree, output message similarity degree and binding
similarity degree. The definition is given in formula (6).

T
OP WXPPSim �),(21 (6)

Where both X and W are vectors. X is the vector of
similarity of each part of service P1 and P2, as shown in
formula (7). W is the weight vector of similarity (Cf. Eq. 8).

)),(),,(),,(

),,(),,((

212121

2121

ppBDppOUTppIN

DocpDocpWVNamepNamepWV

BBSimOutOutSimInInSim

VVSimVVSimX � (7)

),,,,(54321 					�W (8)
Operation name similarity degree and operation

documentation similarity degree can be calculated using
formula (4).

Input messages and output messages are very important
parts of operation and they have plenty of useful
information, both semantic and structural. Input message
and output message similarity degree are measured in the
same way, which considers both semantic and structural
information, as shown in formula (9) and (10). The
similarity degree between input messages is the sum of
word vector similarity degree for their names and structural
similarity degree.

),(),(),(
212121 21 IIMsgpIMsgpSTIMsgNpIMsgNpWVppIN SSSimVVSimInInSim

 �� (9)

Similar to formula (9), the similarity between output
messages is (10).

),(),(),(
212121 11 OIMsgpOMsgpSTOMsgNpOMsgNpWVppOUT SSSimVVSimOutOutSim �� �� (10)

The messages (both input messages and output
messages) consist of one or more logical message parts.
The logical parts are usually defined using XSD. Message
parts are elements, and they can be as simple as a simple
type or as complex as an array of other elements. Each
element has a name attribute and a type attribute. They are
both a good candidates for similarity measure.

XSD has defined various simple types; elements are
composed from these simple types. For every message in
Web services, we extracted all simple types to form a type
vector T. The message structural similarity degree is
calculated on the type vectors extracted from messages as
shown in formula (11).

),(

),(
),(

21

21

21

MsgMsg

MsgMsg
MsgMsgST TTavg

TTMatch
SSSim �

(11)

The structural similarity degree between messages is
type match count divided by average type number. For
instance, if type vector for message 1 is {string, float,
boolean} and type vector for message 2 is {string, float,
float}, the structural similarity degree between messages is
2/3=0.66. And if type vector for message 2 changes to
{string, string, string}, the structural similarity degree is
1/3=0.33.

This structural similarity measure between messages
makes sense, as there are many seemed different elements
or messages are actually have the same structure due to
developers’ various programming style. For example,
following two TradePrice elements have the same structure.

<element name="TradePrice">
 <complexType>

275275

 <all>
 <element name="parameter" type="string"/>
 </all>
 </complexType>
 </element>
<element name="TradePrice" type="string">

Moreover in another example, Message1 and Message2
in the following code also have the same structure.

<complexType name="Item">
 <all>
 <element name="quantity" type="int"/>
 <element name="product" type="string"/>
 </all>
</complexType>
<message name=”Message1”>
 <part name=”part1” element=”tns:Item”>
</message>
…
<element name="Quantity" type="int">
<element name="Product" type="string">
<message name=”Message2”>
 <part name=”part1” element=”tns:Quantity”>
 <part name=”part2” element=”tns:Product”>
</message>

There are multiple protocols and message formats for
Web services binding, including SOAP, HTTP GET, HTTP
POST and MIME. As shown in formula (12), the similarity
degree between bindings equals to protocol match count
divided by average protocol number.

),(

),(
),(

21

21

21

pp

pp
ppBD BBavg

BBMatch
BBSim �

(12)

For example, if P1 can be invoked using SOAP and
HTTP GET, P2 can be called using SOAP. Binding
similarity degree of P1 and P2 is 2/3. If P2 can be called
using both SOAP and HTTP POST, Binding similarity
degree of P1 and P2 is 0.5.

Operation similarity measure takes into account
semantic description (operation name and operation
document), how the operation is called (binding), what
parameters the operation expects (input message) and what
data structures the operation returns (output message), to
measure similarity between operations in a comprehensive
way (both semantic information and structural information
is considered). Similarity measure between Web services
makes use of operation similarity measure plus service
level semantic similarity measure, thus making similarity
measure between Web services more accurate.

As we view every part of the information as equally
important, we set the parameter as following:

,5.0,2.0,2.0,8.0 15432121 �������� �					��
5.0,5.0,5.0 21212 ����� ��

� . Effectiveness of the

setting is validated by test cases and experiments, all the
search functions have good accuracy.

In the next section we will introduce the clustering
algorithm based on similarity measure.

V. CLUSTRING
As there are tons of thousand Web services, if we

calculate the similarity degree for every pair of Web
services, it will be computationally intolerable. Thus we
use K-MEANS [18] clustering algorithm to cluster similar

Web services based on the similarity measure discussed
above, to enhance the efficiency.

In general, K-MEANS aims to partition n objects into k
clusters to minimize the within-cluster sum of distance. K-
MEANS usually is composed of the following four steps:
(1) Place k objects as center objects; (2) Assign each object
to the set that has the closest center objects; (3) When all
objects have been assigned, recalculate the k center objects;
(4) Repeat step (2) and (3) until the center objects no longer
move.

The clustering algorithm is carried out as following.
To determine the number of clusters k and the initial

center objects, we analyze thousands of Web services on
the Internet and identify more than two hundred categories.
We relax the category number to three hundred, namely we
cluster Web services into 300 sets. We select 300 Web
services, which involve considerate manual effort (we
endeavor to select Web services from different categories
to make the chosen Web services as not similar as possible),
as center Web services for 300 sets.

Then assign each Web service into the set to which it is
the closest (namely most similar to the center Web service
in the set).

Formula (13) is used to find the new center Web services
for sets. Center Web service in a set has minimal sum of
other Web services’ similarity degrees to it.

ij

SetS
oj

SetS
ojjSet

SetSallfor

SSSimSSSimSMean
ioio

i

�

�� ��
��

),(),(: ** (13)

The clustering continues assigning Web services and
updating center Web services, until the center Web services
stay stable.

VI. TEST CASE AND EXPERIMENT
Multimodal search, including keyword search, similarity

search and custom search, is provided on the basis of the
similarity measure algorithm. In this section we validate the
effectiveness of these functions through a set of test cases
and experiments.

A. Keyword Search
For keyword search, to find Web services, user just

needs to type a word or a phrase. The typed word or phrase
is put into the model presented above (in this case, Service
Name and Service Documentation are set to be the typed
word or phrase, the other parts of the model are empty).
Then through the proposed similarity measure proposed,
we can get Web services that are most similar to the typed
word or phrase.

To validate the keyword search, we conduct
comparative experiments with Seekda. For example, we
use “send email” as the example keywords. The goal is to
find out Web services for email sending. Table gives out
top 20 available Web services of this searching in Seekda.

276276

TABLE III. WEB SERVICES RANKINGS FOR “SEND EMAIL”

Service Name WSDL URL Seekda
Ranking

SMiner
Ranking

Standard
Ranking

SendSMSWorld http://www.webservicex.com/sendsmsworld.asmx?WSDL 1 16 17
SendSMS http://www.webservicex.net/SendSMS.asmx?wsdl 2 18 16

Communication http://www.zeta-uploader.com/webservices/communication?WSDL 3 20 11
SendSMS http://www.webservicex.com/SendSMS.asmx?WSDL 4 17 15

fax http://www.webservicex.com/fax.asmx?wsdl 5 14 13
SendEmailService http://www.abysal.com/soap/AbysalEmail.wsdl 6 2 5

fax http://www.webservicex.net/fax.asmx?wsdl 7 15 14
SendMail http://www.zim.co.il/SendMail.asmx?WSDL 8 8 6

webservice http://smsbug.com/api/webservice.asmx?wsdl 9 19 20
Email_x0020_a_x0020_Friend http://www.discovertheponds.com/ThePonds/ws/EmailAFriend.asmx?WSDL 10 5 8

SendEmail http://www.gottunnel.com/SVOEmailWS/SendEmail.asmx?WSDL 11 1 4
WebServices http://ser02.2sms.com/WebServices/1.0/SMSService.asmx?WSDL 12 13 18
EmailService http://madrid.vitalab.tuwien...2/services/EmailService?wsdl 13 3 7

SendMail http://www.armymkt.com.br/WebServices/SendMail.asmx?WSDL 14 9 10
FaxService http://webservices.venali.net/fax/1.0/faxservice.asmx?WSDL 15 10 19

UMSEmailService https://secure.ums.no/soap/email/1.2/?wsdl 16 11 1
timeDateEmail http://www.vbtrain.net/samplewebprojects/Web%20Interaction%20Sample/ti

meDateEmail.asmx?wsdl
17 4 9

Tiscali_x0020_Email_x0020_Services http://webservices.tiscali.com/EmailServices.asmx?wsdl 18 12 2
EmailSenderService http://www.mysweetpeace.co.uk/web_services/emailer_ws.wsdl 19 7 12

SendToAFriend http://www.allenandunwin.com/Messaging/SendToAFriend.asmx?WSDL 20 6 3

Then we invite 10 graduate students (4 PhD candidates
and 6 masters) to rank the 20 Web services according to the
relevance to the keywords through manual reading and
understanding. The most well accepted ranking is also
shown in Table . And we use this ranking as standard
ranking (the column of Standard Ranking). At last we rank
the 20 Web services using keyword search proposed in the
paper. Also, the ranking result of the system is provided in
Table (the column of SMiner Ranking). To quantitatively
measure the result, we use formula (14) to calculate the
difference between standard ranking and Seekda Ranking(or
SMiner Ranking). S represents a Web service. The Set
corresponds to the 20 Web services. Rankings denotes Web
service S’s ranking in Seekda or SMiner. StandardRankings
means Web service S’s ranking in standard ranking.

)Standard(sSetS s RakingRankingD ��� �
 (14)

A smaller D means smaller difference with standard
ranking, which also means better ranking result. Based on
Table III, DSeekda is 170 and DSMiner is 80, which means
SMiner Ranking is more closer to the standard ranking
compared with Seekda Ranking. And the maximal Dmaximal
is the reversed ranking of standard ranking, which is 200. So
the match rate of Seekda is (1- DSeekda/ Dmaximal)=15%, and
the match rate of our system is (1-DSMiner/ Dmaximal)=60%.
Our system improves match rate by 3 times.

We also carry out other comparative experiments with
different keywords in the similar manner; we find that
SMiner is able to obtain a much higher search quality (with
a match rate of 2-4 times higher than that of Seekda).

B. Custom Search
Keyword search is still insufficient to find the most

accurate Web services (as shown in Table , the top-3
accurate Web services is ranked 11, 12 and 6). This because

keyword search sometimes cannot express users’ need. It is
almost impossible to get the most accurate Web services
using such little information.

To overcome this, custom search is also provided by our
system. Custom search allows user to type in more
information about the Web services he wants, not only
keywords description about the Web services.

Service Name:"Send Email"
Service Description:”Send email to others”
Inputs parameters:
 name="from" type="s:string"
 name="to" type="s:string"
 name="subject" type="s:string"
 name="body" type="s:string"
 name="attachment" type="s:base64Binary"
 name="from" type="s:string"
 name="cc" type="s:string"
 name="bcc" type="s:string"
Output parameters:
 name="result" type="s:string"

Custom search allows user to type in service description,
input message names, input message types, output message
names and output message types about the Web services he
wants. In the same scenario, if we set the information as
shown in the above codes, the first Web service found is
UMSEmailService, the second Web service is
timeDateEmail and the third Web service is SendToAFriend.
Namely we find the most accurate Web services through
custom search.

Custom search achieve 100% top-3 match precision for
all of the experiments (we carry out 5 experiments), while
Seekda has 0% top-3match precision.

C. Similarity Search
In addition to keyword search and custom search,

similarity search is also offered by the system. Using
similarity search, user needs to input a Web service (URL of
the Web service WSDL or a WSDL file), and similarity
search returns Web services that are similar to the given

277277

Web service. Then user could select from these similar Web
services to get the most appropriate Web services.

The similarity search is implemented through similarity
measure and clustering discussed in the above sections. It
returns the cluster the given Web service belongs to.

We conduct experiments to shown that the result of
clustering is accurate; namely the similarity search is
accurate.

We perform a manual classification of the WSDL
documents to serve as a comparison point for the clustering
algorithm. We distinguish the following clusters: “Excel
Service”, “Imaging”, and “Email”. “Excel Service” includes
Web services through which we can manipulate an excel
spreadsheet remotely, Web services in “Imaging” provide
picture management and “Email” is consist of email related
Web services .Due to page limit we do not list these clusters.

We use two commonly used criteria in information
retrieval to evaluate the effectiveness of our clustering,
namely precision and recall. Precision can be seen as a
measure of exactness or fidelity, and recall is a measure of
completeness.

},..,{},,..,{ ''
1

'
1 mn SSCSSC �� (15)

As shown in formula (15), S and S’ both denote Web
services. C and C’ are both Web service clusters. C is the
returned cluster and C’ is the manual identification cluster
(standard cluster).

��
��

(16)

Formula (16) gives out definitions for precision and
recall. Precision is the number of correct Web services in C
divided by the number of Web services in C, recall is the
number of correct Web services in C divided by the number
of Web services in C’.

The results of clustering are given out in Table .

TABLE IV. CLUSTERING RESULTS

Cluster Precision Recall
Excel Service 100% 91.6%

Imaging 95% 87.5%
Email 96.4 84.4

We could not calculate the precision and recall for all
the clusters got from clustering, as we could not manually
identify all the standard clusters. From the results shown in
Table , we can see that our clustering has very high
precision and recall, which mean the clusters got from
clustering is very close to the standard clusters. Thus we can
get that the similarity search discussed in this paper is
accurate.

Through these test cases and experiments we can see
that all the three search functions could accurately find Web
services the user wants. This validates the effectiveness of
the system.

VII. RELATED WORK
UDDI: UDDI is part of core Web services standard and
current is industry standard for Web services discovery. It is
low accuracy as it focuses mainly on keywords matching
and is inefficient as there are multiple UDDI registries (user
has to search in one UDDI after another).
Semantic Web Services Discovery: To overcome the
limitation of keywords matching, several semantic
descriptions are proposed. These descriptions, which
include WSDL-S, OWL-S and WSMO, use ontologies to
enhance the service description. A lot of discovery
approaches are proposed on the basis of these descriptions.
Paolucci [1] regards service match as a logic inference task.
Cardoso [2] and Skoutas [3] propose to use the similarity
between requested and offered inputs and outputs, which is
calculated by comparing classes in associated domain
ontology, for service discovery. Further, Bellur [4]
calculates similarity between requested and offered inputs
and outputs using bipartite graphs. Klusch [5] and Kaufer [6]
propose to discovery service in a hybrid way,
complementing logic based reasoning with matching based
on syntactic similarity computations. In the paper of
Skoutas [7], approach to discovery service using multi-
criteria dominance relationships, which include keywords,
semantic, parameters, etc, is proposed.

However, plenty of Web services do not possess these
semantic descriptions, which make aforementioned
discovery approaches not practical in reality.
Web services similarity measure and clustering: Using
basic WSDL, several similarity measure and clustering
methods are discussed to facilitate Web services discovery.
Dong [8] proposes to calculate inputs/outputs similarity of
Web services, then to cluster Web services for service
discovery. Wu [9] proposes a service property model, which
divides properties of Web services into four categories, and
calculating the similarity upon the model. Liu [10] extracts
useful information from WSDL, which includes Web
services name, Web services abstract and etc. On the basis
of the extracted information, text mining methods are used
to cluster Web services. Elgazzar [11] improves Liu’s work
by introducing weight for extracted information and
applying the approach to existing Web services.

However, these approaches do not take structural
information of Web services into account. As WSDL is a
well defined XML schema, description for Web services in
WSDL is well structured. The ignorance of structural
information will lead to information lost inevitably.
Moreover, just like the approaches in semantic Web service
discovery, these approaches are not implemented into
practical systems for public use.
Web Services Search Engine: Although prevalent search
engines, for example Google and Bing provide some
specific searches, such as Image search and music search,
they do not provide specific Web services engine. It is very
hard to use them for service discovery.

278278

Web service registries, such as webservicex and
xmethods, focus on listing available Web services publicly.
Webservicex doesn’t provide search function. Xmethods
only provides a poor keyword search, which only returns
few Web services for query. Using “send email” as keyword
it will return an empty list. Seekda [12] is currently the most
comprehensive global search engine for Web services.
However, Seekda only offers keyword search which leads to
low accuracy. Because keyword search could not capture
the users’ search need well.

VIII. CONCLUSION AND FUTURE WORKS
In this paper, we study the problem of Web services

search. We investigate the available Web services on the
Web, and find that using keywords as query is not adequate
for service search. Then we propose a comprehensive
approach, which incorporates both semantic information and
structural information of Web services. Besides keyword
search, the system implemented similarity search and
custom search. We evaluate the effectiveness of the
approach on more than 10000 services. Compared to Seekda
with the same searching tasks, SMiner is able to obtain a
match rate 2-4 times higher than Seekda. And custom search
can achieve 100% top-3 match rate in these searching tasks.

The problem of Web services search is a basic and
critical problem of service computing. There are many
potential future directions of this work, such as composite
service search when a single service cannot satisfy the query
and integrating the approach into IDE to facilitate SOA
developing in design-time and run-time.

IX. ACKNOWLEDGEMENTS
This work is supported by China National Science

Foundation (No.61170212, and No. 61035004)

REFERENCES
[1] M. Paolucci, T. Kawamura, T.R. Payne, and K.P. Sycara, “Semantic

Matching of Web Services Capabilities,” Proc. First Int’l Semantic
Web Conf. (ISWC), pp. 333-347, 2002.

[2] J. Cardoso, “Discovering Semantic Web Services with and without a
Common Ontology Commitment,” Proc. IEEE Services Computing
Workshops (SCW), pp. 183-190, 2006.

[3] D. Skoutas, A. Simitsis, and T. Sellis, “A Ranking Mechanism for
Semantic Web Service Discovery,” Proc. IEEE Services Computing
Workshops (SCW), pp. 41-48, 2007.

[4] U. Bellur and R. Kulkarni, “Improved Matchmaking Algorithm for
Semantic Web Services Based on Bipartite Graph Matching,” Proc.
IEEE Int’l Conf. Web Services (ICWS), pp. 86-93, 2007.

[5] M. Klusch, B. Fries, and K.P. Sycara, “Automated Semantic Web
Service Discovery with OWLS-MX,” Proc. Fifth Int’l Joint Conf.
Autonomous Agents and Multiagent Systems (AAMAS), pp. 915-922,
2006.

[6] F. Kaufer and M. Klusch, “WSMO-MX: A Logic Programming
Based Hybrid Service Matchmaker,” Proc. European Conf. Web
Services (ECOWS), pp. 161-170, 2006.

[7] Dimitrios Skoutas, Dimitris Sacharidis, Alkis Simitsis, and Timos
Sellis. “Ranking and Clustering Web Services Using Multicriteria
Dominance Relationships”. IEEE TRANSACTIONS ON SERVICES
COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010.

[8] Xin Dong, Alon Halevy, Jayant Madhavan, Ema Nemes, Jun Zhang,
Similarity Search for Web Services. In Proceedings of the 30th
VLDB Conference, Toronto, Canada, 2004.

[9] J. Wu, Z. Wu, Similarity-based web service matchmaking.
Proceedings of the IEEE International Conference on Services
Computing. Volume 1. 287–294, 2005.

[10] Wei Liu, Wilson Wong, Web service clustering using text mining
techniques, International Journal of Agent-Oriented Software
Engineering, Vol. 3, No. 1, pp. 6-26, 2009.

[11] Khalid Elgazzar, Ahmed E. Hassan and Patrick Martin, Clustering
WSDL Documents to Bootstrap the Discovery of Web Services,
Proceedings of the 2010 IEEE International Conference on Web
Services (ICWS 2010), Pages: 147-154, 2010.

[12] Seekda. http://webservices.seekda.com/
[13] Web Services Description Language (WSDL)

http://www.w3.org/TR/wsdl/
[14] Google Translate. http://translate.google.com/
[15] WSDL4J. http://sourceforge.net/projects/wsdl4j/
[16] Document Object Model (DOM). http://www.w3.org/DOM/
[17] Cilibrasi, Rudi L, Vitnyi, Paul M. B., “ The Google similarity

distance,” IEEE Transactions on Knowledge and Data Engineering,
Vol. 19, No. 3, pp. 370-383, March 2007.

[18] K-MEANS. http://en.wikipedia.org/wiki/K-means_clustering/
[19] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. The

MIT Press, 2001.
[20] Jain AK, Dubes RC, Algorithms for clustering data. Prentice-Hall,

Englewood Cliffs, 1988.
[21] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic com-position

ofweb services using semantic descriptions. In WSMAI-2003, 2003.
[22] Michael P. Papazoglou, Paolo Traverso, Istituto Ricerca, Scientifica

Tecnologica, “ Service-Oriented Computing: State of the Art and
Research Challenges,” Computer, VOL. 40, NO. 11, pp 38-45, Nov.
2007.

[23] Eyhab Al-Masri, Qusay H. Mahmoud, “Investigating web services on
the world wide web,” International World Wide Web Conference
(WWW 2008), pp. 795-804, 2008.

[24] Richi Nayak, “ Data mining in Web services discovery and
monitoring ,” International Journal of Web Services Research, Vol. 5,
No. 1, pp. 63-81, January, 2008.

[25] Zibin Zheng, Hao Ma, Michael R. Lyu, and Irwin King. “QoS-Aware
Web Service Recommendation by Collaborative Filtering”. IEEE
Transactions on Services Computing, 2010.

[26] Zibin Zheng, Michael R. Lyu, “Collaborative Reliability Prediction
for Service-Oriented Systems”, in Proc. 32nd ACM/IEEE
International Conference on Software Engineering (ICSE2010), Cape
Town, South Africa, May 2-8, 2010, pp. 35-44.

[27] L. Kaufman and P. J. Rousseeuw. “Finding Groups in Data: An
Introduction to Cluster Analysis”. John Wiley& Sons, New York,
1990.

[28] John Makhoul, Francis Kubala, Richard Schwartz, Ralph Weischedel,
“Performance measures for information extraction,” DARPA
Broadcast News Workshop, Herndon, VA, February 1999.

[29] J. A. Aslam and M. H. Montague, “Models for Metasearch,” in
SIGIR, 2001, pp. 275–284.

[30] S. Cetintas and L. Si, “Exploration of the Tradeoff Between
Effectiveness and Efficiency for Results Merging in Federated
Search,” in SIGIR, 2007, pp. 707–708.

[31] R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

[32] http://en.wikipedia.org/wiki/Amazon_Web_Services#cite_note-1
[33] V. Murdock, D. Kelly, W. B. Croft, N. J. Belkin, X. Yuan,

Identifying and Improving Retrieval for Procedural Questions,
Information Processing & Management, Volume 43, Issue 1, January
2007, Pages 181–203.

279279

