
SOCA (2012) 6:1–13
DOI 10.1007/s11761-011-0085-8

ORIGINAL RESEARCH PAPER

Towards efficiency of QoS-driven semantic web service
composition for large-scale service-oriented systems

Bin Xu · Sen Luo · Yixin Yan · Kewu Sun

Received: 26 May 2010 / Revised: 16 May 2011 / Accepted: 21 May 2011 / Published online: 9 June 2011
© Springer-Verlag London Limited 2011

Abstract Quality-of-Service (QoS) performance guaran-
tee for service-oriented systems (SOS) has become a crit-
ical problem. With the increasing number of offered services
comes the challenge of efficiently building large-scale SOS to
meet the required QoS criteria. Optimization of QoS-driven
semantic Web service composition is known to be NP-hard.
We address the efficiency issue by developing a polynomial
time algorithm (QDA) for shortest sequence composition.
We use dynamic programming to find service candidates for
each execution. When all the services are searched, we use a
depth-first trace back to derive the execution plan. We have
tested our approach under Web-scale demands 20,000 ser-
vices and 150,000 semantic concepts. In comparison with
existing approaches, our experimental results show that QDA
can be used to solve large-scale service composition problem
effectively and efficiently with QoS guarantee.

Keywords Service composition · Quality-of-service ·
Large-scale services · Dynamic programming

1 Introduction

By composing many services from distributed software
systems, service-oriented system (SOS) can handle com-
plex processes for many business applications. With the

B. Xu (B) · S. Luo · Y. Yan · K. Sun
Department of Computer Science and Technology, Tsinghua
University, Beijing, 100084, People’s Republic of China
e-mail: xubin@keg.cs.tsinghua.edu.cn

S. Luo
e-mail: luosen@keg.cs.tsinghua.edu.cn

Y. Yan
e-mail: yanyx@keg.cs.tsinghua.edu.cn

K. Sun
e-mail: kewusun@keg.cs.tsinghua.edu.cn

increase in scale and complexity of the Web, Quality-of-
Service (QoS) has become a critical challenge for the per-
formance of SOS. Users clearly prefer to choose a SOS
with better QoS, such as minimal response time or maximal
throughput.

Efficient service composition algorithms for building SOS
to meet QoS requirements remain an open challenge. In this
paper, we address the following problem: given a set of avail-
able services, how to efficiently build a QoS-guaranteed SOS.
There are four reasons why this task may be difficult:

1. Scalability: The number of services on the Internet has
grown rapidly in recent years. According to statistics
from the world’s largest service registry—Seekda [1],
there are about 20,000 public Web services. At the same
time, service-oriented e-business systems have become
more popular and more complex. An approach that can
efficiently handle large-scale service composition for
SOS is urgently needed.

2. Semantics: SOS must have a precise understanding
about the semantics of data on the Web. Yet, there is
still no effective integration between Web services and
semantic information, making service composition with
semantics difficult in SOS.

3. Narrow focus on functionalities: Traditional service
composition algorithms usually focus only on function-
alities, such as I/O parameters. Non-functional QoS cri-
teria, such as response time and throughput, are often
ignored, making the performance of SOS quite poor.

4. Complexity: Trade-offs exists between functionalities
and non-functionalities when selecting services for SOS.
For example, when using e-Bay, people can find a wide
range of goods but sometimes must suffer long network
delays. In comparison, people who use a local online
market may have access to a limited range of goods but do

123



2 SOCA (2012) 6:1–13

not need to worry about network congestion. Addressing
these complex tradeoffs is a challenge when considering
QoS in SOS.

To meet the challenges in building SOS, we propose a
QoS-driven service composition algorithm (QDA) that can
efficiently build SOS with guaranteed QoS. The advantages
of QDA include the abilities to: (1) efficiently handle large-
scale service pools; this is the most important contribution of
this paper; (2) integrate semantic information (“concepts” in
ontology) with services through I/O matching in the compo-
sition; (3) satisfy both functional and non-functional (QoS)
requirements. In this paper, we focus on two common QoS
attributes in SOS: response time and throughput.

The rest of this paper is organized as following. Sec-
tion 2 reviews and compares the related work. Section 3
gives some preliminary definitions and a formal description
of the problem. Section 4 presents QDA. Section 5 gives our
experiment strategy, test data sets and analysis of the results.
Section 6 introduces our investigation on the practical rele-
vance of QDA. Section 7 concludes the paper and proposes
future work.

2 Related work

The composition of Web services involves using an orches-
tration model (such as BEPL) to define the order in which
abstract Web services are called at design time and to define
the dynamic selection of concrete Web services to be invoked
at run time. The former process, deciding which abstract Web
services are appropriate for the user’s needs and how to con-
struct them, is mostly based on functional requirements; non-
functional properties are not formally considered. The latter
process, dynamic Web service selection, involves choos-
ing concrete Web services to fulfill the functionality of the
abstract Web services schema under the guidance of non-
functional properties, such as QoS.

The former process has been treated as a classical AI plan-
ning or graph search problem. Shankar [2–4] was in favor of
regarding it as an AI planning problem and applied classic
AI planning algorithms to the problem. Liang [5] proposed
a semi-automated method for service composition; the main
idea of his work is to construct an AND/OR graph from the
service dependency graph and to find a sub-graph for the solu-
tion by applying a bottom-up search algorithm. Several other
researchers [6,7] regard it as a graph search problem. Web
Service Challenge [8] has proposed several competitions for
service composition to address this problem, attracting many
researchers. Gu [9] proposed a document-driven approach,
which won first place at Web Service Challenge 2007.
Yan [10] proposed an algorithm to search for the service

composition with the shortest sequence, winning first place
at Web Service Challenge 2008.

With a growing number of alternative Web services that
provide the same functionality, QoS has become an impor-
tant issue and the subject of extensive research. Ran [11]
proposed an approach to manage QoS based on certification.
Singhera [12] included QoS monitoring in a framework to
overcome the lack of support for dynamism. The Service
Level Agreement (SLA) framework [13] proposes differen-
tiated levels of Web services using automated management
and service level agreements. The SLA approach has become
widely accepted with many papers focused on SLA formu-
lation as well as SLA monitoring and enforcement [14,15].
We adopt SLA in this paper.

As Web service selection increasingly becomes a practical
problem, extensive work has been done to address this chal-
lenge. Zeng [16,17] proposed a global planning approach
for service composition to optimize multiple QoS criteria.
Through integer programming, his approach can handle mul-
tiple execution paths. The disadvantage is that it can only
handle small-scale service composition problems: Zeng’s
experiments are based on only dozens of candidate services.
In contrast, our approach performs 3∼5 times faster than
Zeng’s method for large-scale service composition problems.
Previous work such as that of Cardoso [18] also considers
QoS in service composition but this work does not consider
dynamic service composition.

Tao [19] studied the problem of service composition
with multiple end-to-end QoS constraints. They proposed a
broker-based architecture and several efficient heuristic algo-
rithms to maximize QoS. Xiao [20] also studied QoS in
end-to-end environments and presented a MCOP method
for domain composition and the adaptation problem. Tao
improved Xiao’s work to handle multiple workflows such
as parallelism, conditionals, and loops. However, their work
does not address the performance of large-scale service com-
position.

Alrifai and Risse [21] proposed a solution for optimiz-
ing QoS in dynamic service selection. First, they use mixed
integer programming to find the optimal decomposition of
global QoS constraints into local constraints. Second, they
used distributed local selection to find the best web ser-
vices that satisfy these local constraints. The disadvantages
of their work include inability to find the optimal QoS in all
their experiments and poor composition times for random
data sets.

Jaeger and Ladner [22] studied how pre-identified can-
didates, who have separated out by a selection process,
can improve a composition with respect to particular QoS
categories. They propose a model which uses redundant
arrangements which involve the alternative candidates so as
to supplement the originally assigned service. Some other
works [23,24] also studied QoS in Web service composition.

123



SOCA (2012) 6:1–13 3

The problem discussed in this paper is different from all
previous work in that at design time, both functional require-
ments and non-functional properties are taken into account.
Previous work usually considers them separately. In other
words, we do not construct the workflow with abstract ser-
vices that meet the user’s purpose and then select services
compliant to the defined workflow. Our approach is to take
QoS into account when constructing the workflow at design
time. By combining the two processes of web service com-
position, we make web service composition more efficient
and effective.

This problem is related to but differs from several other
research efforts. Web mashups are web applications gener-
ated by combining content, presentation, or application func-
tionality from disparate web sources. Building mashups is
a nontrivial task which requires human intervention, even
with tools [25–28]. In contrast, the approach in this paper
composes services automatically. The goal of Web service
discovery and recommendation is to find or recommend ser-
vices under specific circumstance for users. In the approach
of this paper, Web service discovery and recommendation
can be regarded as a working premise.

3 Problem statement

This section presents some basic definitions as well as a
description of the composition problem. They include the
definitions of service and SOS (functionalities and non-func-
tionalities), the rules regarding how QoS is defined and cal-
culated in SOS, and the optimization targets.

In general, a service can be developed by different meth-
ods and deployed on different platforms. In this paper, we
define a service as follows.

Definition 1 Service S = {Din, Dout, R, T } where
Din= {di |di is an input type of service, defined by a spe-

cific concept in the ontology};
Dout= {di |di is an output type of service, defined by a

specific concept in the ontology};
R: response time—the time from receiving a request to

producing the response;
T : throughput—invocations per minute supported by the

service.

We identify the most important features of a service
including I/O parameters and QoS. Each I/O parameter of
a service can be mapped to a concept of some ontology to
express semantic information about the service. For exam-
ple, the service in Fig. 1 has input data types d1 and d2, as
well as output data types d3, d4, and d5. QoS can represent
any kind of non-functional property. Without loss of gener-
ality, we consider only response time and throughput in this
paper. The service in Fig. 1 has response time of 4,000 ms

Fig. 1 Service example

and throughput of 6,000 invocations per minute. Any service
that has these features can be used in building SOS, defined
as follows.

Definition 2 Service-Oriented System (SOS) = {Din, Dout,
P , R, T } where

Din= {di |di is an input type of the SOS, defined by a spe-
cific concept in the ontology};

Dout= {di |di is an output type of the SOS, defined by a
specific concept in the ontology};

P: the implementation of the SOS. It is an execution plan
(such as BPEL) where services can be invoked following
certain dependency rules to perform certain tasks;

R: response time—the time from receiving a request to
producing the response by SOS;

T : throughput—invocations per minute supported by the
SOS.

From these two definitions, we can see that I/O parameters
and QoS for service and SOS are similarly defined. We view
SOS as a compound service, which consists of services under
some execution plan (P). How can we improve a compound
service’s QoS? Consider response time as an example. The
response time of a single service is defined as the time from
sending a request to the service to receiving the response.
As mentioned in the first section, the response time could
be affected by network conditions or the capability of serv-
ers where the service is deployed. Therefore, in most cases,
the response time of a single service cannot be improved by
the SOS developer. However, the response time for a SOS
is a different story. The response time for a SOS is not only
affected by the response time of services used in it, but also
the execution plan through which the services are organized.
We will discuss this in detail in the following.

For the execution plan, there are three basic flow structures
in SOS including sequence, parallel and switch (Fig. 2).

A sequence consists of services (steps) that are invoked
in order. A parallel flow structure consists of services that
are invoked concurrently. A switch consists of services that
can be selectively invoked. Simple processes can be nested
inside of more complex processes. The whole execution plan
can be expressed in a BPEL file.

Based on these three flow structures, we adopt sev-
eral widely used QoS composition rules. Suppose sequence
A consists of A1, A2, . . . , An ; parallel B consists of B1, B2,

123



4 SOCA (2012) 6:1–13

Fig. 2 Three basic flow structures in SOS

. . . , Bn ; switch C consists of C1, C2, . . . , Cn . Definition 3
shows how R(x) (the response time of x) and T (x) (the
throughput of x) can be calculated. These calculation rules
are used in the Web Service Challenge competition [8] which
will be further discussed in the experiments section.

Definition 3

R(A) = {R(A1) + R(A2) + · · · + R(An)} (1)

R(B) = max{R(B1), R(B2), . . . , R(Bn)} (2)

R(C) = min{R(C1), R(C2), . . . , R(Cn)} (3)

T (A) = min{T (A1), T (A2), . . . , T (An)} (4)

T (B) = min{T (B1), T (B2), . . . , T (Bn)} (5)

T (C) = max{T (C1), T (C2), . . . , T (Cn)} (6)

These QoS composition rules are commonly used and
intuitive. For the sequence flow structure, the steps are
invoked one after another, and thus its response time is the
sum of response time of its steps, and the minimal throughput
of its steps determines its overall throughput. For the paral-
lel flow structure, all the steps could be invoked at the same
time; thus, its response time is the maximal response time of
its steps, and as all its steps need to be invoked, its throughput
is determined by the minimal throughput of all the parallel
steps. Finally, for the switch flow structure, we can choose
any one of its steps to invoke, and thus the response time is
the minimal response time of its steps. The throughput for
the switch flow structure is a little confusing. At first glance,
it may appear that we should add up the throughputs of its
steps to derive the overall throughput. However, we note that
the steps may have different individual throughputs, and we
should not simply add them up. We use maximal through-
put of its steps to denote the throughput of the switch flow
structure.

Since SOS can be defined as a combination of the three
flow structures, based on the above QoS definition and com-
position rules, the QoS of SOS can be determined. For exam-
ple, in Fig. 3, services C and D are invoked sequentially to
form a sequence (Sequence 4). Thus, the response time of
the sequence (600 ms) is the sum of the response time of ser-
vice C (200 ms) and D (400 ms). If two or more services can
be chosen in a switch-like services F and G, the response
time should be the smallest one (150) of these services (300
and 150). The calculation can be extended recursively, e.g.,
sequence 5 and switch 6 are independent of each other, so
they can be invoked in parallel.

Obviously, the response time of a parallel flow structure
should be the biggest response times (150) of all the branches
(100 vs. 150) which can be regarded as the bottleneck of
the parallel flow structure. Completing the calculations, we
find that the overall response time of SOS in this example is
1150 ms and the overall throughput is 7000 invocations/ min.

Fig. 3 QoS calculation for three structures in SOS

123



SOCA (2012) 6:1–13 5

Fig. 4 Example of service composition

From the above discussion, we can see that the QoS of SOS
is different from that of a single service and it is possible for
developers to improve the QoS of SOS by selecting proper
services and execution plan. Following is our definition of
the composition problem.

Definition 4 Given a set of available services and a user
request {Din, Dout} (Din, Dout is defined in Definition 2),
the composition problem is how to find a service execution
plan (P in Definition 2) that takes the input data types and
outputs the requested data types with optimized QoS.

Figure 4 shows an example. The user request includes the
input (data types 1, 2, and 3) and the output (data types 7 and
8). The intermediate part which is enclosed by rectangular
box is the execution plan of services. In the plan, the invo-
cation of services follows certain rules. For example, service
D outputs data type 5 which is the input of service B, so B
cannot be invoked before D. Not all services are adopted in
the plan (only gray ones). The execution plan is a service
composition which is the goal of QDA.

4 QoS-Driven Algorithm (QDA) for shortest sequence
composition

4.1 Algorithm description

Before introducing QDA, let us look at this problem from an
empirical perspective. How do the structures and the number
of services affect the QoS of SOS? We make the following
observations.

(a) For the sequence flow structure and the parallel flow
structure, the fewer the steps, the better the QoS.

(b) For the switch flow structure, if there are steps Si and
S j and QoS of Si is better than QoS of S j . Then we
can delete step S j without affecting the correctness of
the composition (the modified composition will still
be a solution to the problem and the QoS remains
unchanged).

(c) Generally speaking, the composition can be regarded as
a sequence with a complex inner structure. Usually, the
longer the sequence is, the larger the response time will
be and the smaller the throughput will be.

From the above facts, we can deduce two trends. One
trend is that the fewer services that are invoked, the better
the QoS of SOS will be. The other trend is that the shorter
the sequence, the better the QoS. QDA is based on these two
trends. QDA seeks the composition with the fewest services
or with the shortest sequence.

We first define and analyze the complexity of the Least
Services Composition Problem and Shortest Sequence Com-
position Problem.

Definition 5 The Least Services Composition Problem
(LSCP) is a decision problem defined as follows: Under the
problem statement of Sect. 3, given a set of services S, a
composition request R and a positive integer k, is there a
composition that satisfies the request using S′ (a subset of S)
where the size of S′ <= k?

Definition 6 The Shortest Sequence Composition Problem
(SSCP) is a decision problem defined as follows: Under the
problem statement of Sect. 3, given a set of services S, a
composition request R and a positive integer k, is there a
composition that satisfies the request with sequence length
(the definition of sequence length of composition is given
out in Definition 7) at most k?

Definition 7 Sequence length of type (SLT): for any pro-
vided data type, SLT is zero; for any un-provided type, SLT
is the minimal value of sequence length of service (SLS) that
output the type.

Sequence length of service (SLS): SLS is 1 plus the max-
imal value of sequence lengths of type (SLT) that the service
requires as inputs.

Sequence length of composition (SLC): SLC is the max-
imal value of sequence length of service (SLS) in the com-
position.

We show that the Least Services Composition Problem is
NP-complete.

First, we can see that LSCP falls in NP, as we can verify
a solution in polynomial time (we verify whether every ser-
vice in the workflow can be invoked, whether all the required

123



6 SOCA (2012) 6:1–13

Srv A

Srv B

Srv C

Srv D

Srv E

Srv F

Srv G

Srv H

Srv A

Srv B

Srv C

Srv D

Srv E Srv F

Srv G

Srv H

#1 #2 #3 #4 #1 #2 #3 #4

0 0 0 00000

#5 #6 #7 #8
20 20 30 50

Srv A

Srv B

Srv C Srv D

Srv E Srv F

Srv G
Srv H

#1 #2 #3 #4

0 0 0 0

#5 #6 #7 #8
20 20 30 50

35 65 35 55 65

#9 #10 #11 #12 #13

Srv A

Srv B

Srv D

Srv E Srv F

Srv G
Srv H

#1 #2 #3 #4

0 0 0 0

#5 #6 #7 #8
20 20 30 50

35 35 55 65

#9 #10 #11 #12 #13

#8 #9 #10

Target:
(Output)

Input:

#8 #9 #10

Target:
(Output)

found

#8 #9 #10

found

#8 #9 #10

Target (Output): found found foundfound found

Srv C

Target (Output):

(c)

(b)(a)

(d)

Fig. 5 Example of service composition

data is produced and whether the number of services in the
workflow is not larger than k).

We use the vertex cover problem (VCP), which is a
well-known NP-complete problem, for reduction. The vertex
cover problem is defined as follows: Given a graph G and a
positive integer k, does G contain a vertex cover of size at
most k?

For a given graph G, we can use the following method to
reduce an instance of the vertex cover problem to an instance
of the Least Services Composition Problem. 1. We view
edges of G as concepts in a composition problem (in this
way the concepts will have no parent-child relations). 2. We
view nodes of G as services (for an arbitrary node n, the ser-
vice corresponding to it requires no inputs and produces the
concepts represented by the edges incident to n). 3. The com-
position request R for LSCP includes all edges as required
outputs and has no provided inputs. 4. The positive integer k
remains the same for vertex cover problem and LSCP. By this
way, we reduce vertex cover problem to LSCP in polynomial
time.

If there is a solution to LSCP, there must be a solution to
VCP cover problem. There is no way that a solution to VCP
exists, but no any corresponding solution to LSCP exists. We
can say that a solution to VCP exists if and only if there is a
corresponding solution to LSCP.

As vertex cover problem is an NP-complete problem, so
is the Least Services Composition Problem.

However, when we analyze the complexity of the Short-
est Sequence Composition Problem, we found that it can be
solved in polynomial time. We will prove this claim at the
end of this section.

Inspired by the above insights, we design a stage-by-stage
algorithm to achieve an optimal solution.

There are two important properties in the composition
problem: overlapping sub-problem and optimal sub-struc-
ture. The overlapping sub-problem property means that a big
problem can be divided into several small ones, and the solu-
tion of a small problem can be saved in order to be directly
re-used in the following search. The optimal sub-structure
property means that, to ensure the optimization of the whole

123



SOCA (2012) 6:1–13 7

problem, every small sub-problem must be in its optimal
state.

Based on these two properties, we propose a dynamic pro-
gramming algorithm named QDA to solve the SSCP for SOS.
The key ideas of QDA are:

1. We define a variable for every service that maintains the
best known QoS value so far for the service. When exe-
cuting the SOS, this value records the best QoS from
the beginning to where the service locates. It will be
assigned and updated while searching for the optimal
composition.

2. We define a variable for every data type that maintains the
best known QoS value for that data type. When executing
the SOS, this value records the QoS from the beginning
to where the data type is produced. It will be assigned
and updated during the composition. For example, the
response time of a data type is determined by the first
service that can produce the data type. If more than one
service can produce the data type as output, the variable
records the minimal response time.

3. Concepts in ontology are used in the composition to
define the parameter types of services I/O and their type
hierarchy. Each data type of a service I/O can be mapped
to a concept. If an output data type of service A can
match an input data type of service B according to the
ontology concept hierarchy, the two services can be con-
nected. We say that a data type is satisfied when at least
one service can output a matched data type. Similarly,
we say a service is satisfied when all its input parameters
are satisfied.

4. We use a stage-by-stage strategy in searching for the opti-
mal solution. We model every stage of the search pro-
cess as a “small part of the whole problem”. The optimal
results of all known sub-problems are saved and reused in
the following search. Thus, if every sub-problem is guar-
anteed to be locally optimal, the whole solution can be
guaranteed to be optimal because every service selection
is based on the states and the optimal values of previous
sub-structures.

5. We combine breadth-first search and depth-first trace
back to find the solution. The QoS of services and data
types are calculated and updated in the breadth-first
search. When all required output data types are satis-
fied, we will produce the composition (P in Definition 2)
using a depth-first trace back.

Figure 5 shows an example of the search process to find
the SOS with an optimal (minimal) response time. The user
request includes the provided input data types {data type #1,
#2, #3, and #4}, required output data types {data type #8, #9,
and #10}, and all available services {A, B, . . . , H}.

QDA first adds services B, E, and F to the composi-
tion since they can be directly invoked using the input data
types. It then updates the QoS of these services and pro-
duces new data types (#5, 6, 7, and 8) as shown in Fig. 5b.
Based on the produced data types and all previous avail-
able data types, more services (C, A, G, and D) can be
added to the composition. QDA updates these services’ QoS
using Definition 3. For example, in Fig. 5a, the response
time of C itself is 35. When it is added in the composi-
tion, the optimal response time from the beginning of the
composition to service C is based on the response time of
all its input (#5 and #7) and itself. In Fig. 5d, the max-
imum response time of data type #5 and #7 is 30, then
the response time of service C is updated to 65 (30 plus
35).

QDA continues to add services and update QoS until all
required data types are covered and no more services can
be added into the composition. In Fig. 5d, from data type
#8, #9, and #10, it conducts a trace back depth-first search
to record the path of the SOS. At this point, we know that
the minimum response time of data type #8, #9, and #10
are 50, 35, and 65, respectively. The maximum of the three
will be the minimum response time we can get from the
SOS.

QDA is detailed in the following. First we define data
structure for services and data types which are used to record
best known QoS.

Definition of DataType and Service
1 struct DataType
2 {
3 //the concepts that match to the datatype
4 Concept concept_of_datatype;
5 //the least response time for producing it
6 float response_time;
7 //the greatest throughput for producing it
8 float throughput;
9 //point to the service which generate it with least

//response time
10 Service ptr_response_time_generator;
11 //point to the service which generate it with greatest

//throughput
12 Service ptr_throughput_generator;
13 }
14 struct Service
15 {
16 String name;
17 float response_time;
18 float self_ response_time;
19 float throughput;
20 float self_ throughput;
21 List<DataType> input;
22 List<DataType> output;
23 }

The main part of QDA is presented in the following pseudo
code.

123



8 SOCA (2012) 6:1–13

Main Search Process
1 foreach Service Si {
2 Si .response_time = Si .self_response_time;
3 Si .throughput = Si .self_throughput;
4 }
5 foreach DataType D j {
6 D j .response_time = infinity;
7 D j .throughput = 0;
8 }
9 foreach DataType Dk in the provided DataTypes{
10 Dk .response_time = 0;
11 Dk . throughput = infinity;
12 available_data.add(Dk );
13 }
14 while((avalbl_srv =

findAvailableServices(available_data)) is not empty) {
15 foreach Service Sn in avalbl_srv{
16 queue.push(Sn);
17 }
18 while (queue is not empty){
19 Service s = queue.pop();
20 UpdateServiceQoS(s);
21 for each DataType Do in s.output{
22 available_data.add(Do);
23 }
24 }
25 }
26 if all required DataType are found {
27 print(“<parallel>”);
28 foreach required DataType Dr {
29 traceback(Dr );
30 }
31 print(“</parallel>”);
32 }

As shown in the pseudo code, QDA performs some ini-
tializations which include initialization of response time and
throughput for both for Service and DataType. We then exe-
cute a while loop which does a breadth-first search until there
are no more services that can be used. In the while loop,
we update QoS related to the newly used service which is
intended to ensure the sub-structure is locally optimal (thus
the whole solution is optimal). Finally, when there are no
more services that can be used, we use a depth-first trace
back search to generate the solution in BEPL format.

In the pseudo code above, findAvailableServices() is used
to find currently available but unused services. The pseudo
code for findAvailableServices() is given below.

Find Available Services
1 findAvailableServices(available_data)
2 {
3 available_service.empty;
4 for each Service Si {
5 if Si is unused and Si .input is subset of

available_data{
6 available_service.add(Si );
7 mark Si as used Service;
8 }
9 }
10 return available_service;
11 }

UpdateServiceQoS(Sm) is a very important function in
QDA; its pseudo code is shown in the following.

Update Service QoS
UpdateServiceQoS(Sm )
{

Sm .response_time = maxResponseTime(Sm .input)+
Sm . self_ response_time;

Sm .throughput = min(minThroughput(Sm .input), Sm .
self_throughput);

for each DataType Di in Sm .output{
if Di .response_time > Sm .response_time{

Di .response_time = Sm .response_time;
Di .ptr_response_time_generator = Sm ;

}
if Di .throughput < Sm .throughput{

Di .throughput = Sm .throughput;
Di .ptr_throughput_generator = Sm

}
}

Last but not least, traceback(Dn) is used to generate the
solution in BEPL format. Its pseudo code is given below.

Trace Back Search
traceback(Dn)
{

if Dn belongs to the provided DataTypes{
Return;

}
print(“<sequence> \n<parallel>”);
foreach DataType Dm in

Dn .ptr_response_time_generator.input{
traceback(Dm );

}
print(“</parallel>”);
print(“invoke ” +

Dn .ptr_response_time_generator.name);
print(</sequence>);

}

4.2 Analysis of algorithm complexity

First, we want to point out that QDA seeks the solution with
the shortest sequence. We use a stage-by-stage method and
each stage corresponds to exploration of a certain sequence.
For example, in the second stage, all the services falling in
sequence are searched. Then the first solution we get will be
the shortest sequence solution.

However, the solution with shortest sequence might not be
the optimal result. For instance, the user request includes the
provided input data types {data type #1}, required output data
types {data type #2, #3}, and all available services {A, B, C}.
The properties of the services are shown in the following
table. In this example, composition with least services and
composition with shortest sequence are both Service A. How-
ever, the optimal result is sequence Service B and Service C.

123



SOCA (2012) 6:1–13 9

Service Inputs Outputs Response time (ms)
A #1 #2,#3 500
B #1 #4 100
C #4 #2,#3 200

To overcome this shortcoming, in QDA, we do not stop
as soon as we get the shortest sequence solution. We con-
tinue the search until there are no available services, and
in this way we can make sure that we get the optimal result.
UpdateServiceQoS(Sm) makes sure every data type is pointed
out to the optimal generator and through a trace back starting
from the required data types, the generated result must have
the optimal QoS.

Finally, we show that QDA executes in polynomial time.
Suppose the number of services is n and the number of con-
cepts is m. We note that at every stage, we explore at least one
service. Thus, the number of unused services will decrease
from stage to stage. Clearly, there are at most n stages, and
at every stage, all the current unused services are scanned. If
a service is not available currently, we continue to scan other
unused services. If a service can be invoked, we add it to the
current stage and update QoS related to it. This takes O(m)

time. There are at most n unused services, so a stage takes
O(mn) time. Finally, the overall searching process takes
O(mn) ∗ n = O(mn2) time. This a very loose upper bound.

5 Experiments

5.1 Experimental methodology

Our experiments follow the requirements of the Web Ser-
vice Challenge (WS-Challenge), an annual service compo-
sition competition held at the IEEE e-Commerce conference
(CEC) since 2006 [8]. It focuses on the semantic composition
of Web services and uses OWL ontology to define services
and their relationships. QoS criteria were introduced into the
competition in 2009.

In WS-Challenge, the data formats and the contest data
itself are based on the OWL, WSDL, WSLA, and WSBPEL
schemas for ontologies, services, service qualities, and ser-
vice orchestrations. The WSDL file contains a set of services
along with annotations of their input and output parameters.
The OWL file contains the taxonomy of concepts used in this
challenge in OWL format. The quality-of-service for a ser-
vice is specified using WSLA language. The challenge itself
is also represented by a valid WSDL service description.
Participants are required to give out composition solutions
using WSBPEL. WS-Challenge awards the most efficient
system. Evaluation of efficiency consists of two parts, com-
position evaluation and time measurement. WS-Challenge
will give out several challenge sets with different scale and
orchestration complexity. The score calculation for per chal-
lenge set is as following.

• +6 Points for finding the service composition with least
response time that solves the challenge.

• +6 Points for finding the service composition with largest
throughput that solves the challenge

• +6 Points for the composition system which finds the
service composition with least response time or largest
throughput that solves the challenge in fastest time.

• +4 Points for the composition system which finds the
service composition with least response time or largest
throughput that solves the challenge in the second fastest
time.

• +2 Points for the composition system which finds the
service composition with least response time or largest
throughput that solves the challenge in the third fastest
time.

WS-Challenge has provided a set of standard experimental
tools including a test set generator and a service composition
result checker. The test set generator is used to generate four
input files and a benchmark. The generated Web services are
virtual yet realistic. They are virtual since there are no actual
service implementations that can be invoked on the Inter-
net. But they are realistic in our experiment because they are
consistent with Definition 1, including I/O and QoS values.
The benchmark (a standard result) is also provided by the
test set generator and is guaranteed to have the optimal QoS
(least response time and largest throughput). We evaluate our
experimental results by comparison with the benchmark.

We use the composition result checker provided by
WS-Challenge to check whether our composition is cor-
rect for the request and calculate the QoS values of the
composition.

Figure 6 shows the experimental process. First, we use
the test set generator to generate four input files for each
test set. (1) Services.wsdl which records all available Web
services; (2) Taxonomy.owl which records all concepts in
an ontology format [29]; every input/output data type of the
Web services is defined as an instance of some concept; (3)
Servicelevelagreements.wsla which records the QoS values
(response time and throughput) of Web services [30]; (4)
Query.wsdl which records one user query including the pro-
vided data types and required data types.

Then QDA takes these four files as input and produces
a BPEL file as the composition result. At the same time,
we record the time cost during the composition procedure.
Finally, we use the checker to check whether the result is cor-
rect, record the QoS values, and compare it with the standard
result.

5.2 Experimental settings and results

For the experimental setting, we are concerned about the
scale of Web services and ontology concepts. After investi-

123



10 SOCA (2012) 6:1–13

Fig. 6 Experimental process

Table 1 Test sets in Experiment1

Test set ID Test sets properties

Number of concepts Number of web services

1 37,500 500

2 75,000 1,000

3 112,500 1,500

4 150,000 2,000

5 187,500 2,500

6 225,000 3,000

gations on the Internet, we found that the number of available
Web services is about 20,000, and the Cyc ontology [31] has
about 150,000 concepts. The Cyc ontology is possibly the
largest existing ontology, having a set of concepts which tries
to describe universal subjects. Along with the development
of the semantic Web, more and more data on the Web will
be formalized and mapped to concepts of ontology. In our
approach, we integrate concepts and I/O data types together.
In the following experiments, we set the ratio between the
number of Web services and the number of concepts based
on our earlier investigation, to approximately 75:1.

The test sets in Experiment 1 were derived by changing
the number of concepts and Web services while maintaining
the above ratio between them. Table 1 shows the test sets of
Experiment 1.

The configuration of our test machine is: Intel Core 2 CPU
1.83 GHz with 1 GB RAM, running Windows XP.

For the composition results of each test set, we are con-
cerned about the composition time cost and QoS values.

Fig. 7 Efficiency analysis of Experiment 1

Table 2 Test Sets in Experiment 2

Test set ID Test sets properties

Number of concepts Number of web services

1 50,000 20,000

2 100,000 20,000

3 150,000 20,000

4 200,000 20,000

5 250,000 20,000

6 300,000 20,000

Figure 7 shows the composition time cost for each test set.
We can see that the time complexity is linear. In most cases,
the time cost is less than 1 s. Compared to Zeng’s work [16]
which is shown as the red line in the figure, QDA has much
better performance with respect to time cost. In addition, our
experiments are based on a much larger concept scale (con-
cepts in a universal domain) than that in Zeng’s experiments
(concepts in a local domain). This means that under the same
number of services, our experiment handles more complex
problems.

The second study investigates the performance of QDA
when the number of Web services remains the same while the
number of ontology concepts increases. This experiment is
close to the real world, because the semantic Web is expand-
ing rapidly while the number of Web services has become
relatively stable in recent years. Since there are about 20,000
available Web services on the Internet, we fix the number
of Web services at 20,000 and vary the number of semantic
concepts. Table 2 shows the test sets for Experiment 2.

Figure 8 shows the composition time cost for each test set.
We can see that the time complexity is linear and all test sets
perform efficiently (less than 1.7 s).

In the third experiment, the number of concepts remains
fixed while the number of Web services increases. This
assumption models the future growth trends of the Web and
Web applications. When most concepts are well described by

123



SOCA (2012) 6:1–13 11

Fig. 8 Efficiency analysis of Experiment 2

Table 3 Test sets in Experiment 3

Test set ID Test sets properties

Number of concepts Number of web services

1 150,000 2,000

2 150,000 4,000

3 150,000 6,000

4 150,000 8,000

5 150,000 10,000

6 150,000 12,000

Fig. 9 Efficiency analysis of Experiment 3

Fig. 10 Processes of service cluster

ontology, the number of Web services may increase because
of new business enterprises. Table 3 shows the test sets for
Experiment 3.

Figure 9 shows the composition time cost for each test set.
We can see that when the number of concepts remains the
same, the time cost will not change significantly even with
the increase of Web services. This means QDA performs sta-
bly and efficiently (less than 1 s) under this situation.

Table 4 shows the QoS values of composition results in
the above three experiments. As we have explained above,
there is a standard benchmark result for each data set which

Table 4 QoS values of composition results

Test set ID Experiment 1 Experiment 2 Experiment 3

R T R T R T

1 1,950 1,000 960 6,000 850 3,000

2 1,700 2,000 1,800 1,000 1,370 1,000

3 1,760 3,000 1,370 1,000 1,460 13,000

4 1,370 1,000 1,240 3,000 590 9,000

5 1,400 3,000 2,210 3,000 1,480 4,000

6 1,030 5,000 1,120 8000 890 5,000

Table 5 Test sets properties

Test set ID Number of Number of R T
web services concepts

1 500 5,000 500 15,000

2 4,000 40,000 1,690 6,000

3 8,000 60,000 760 4,000

4 8,000 60,000 1,470 4,000

5 15,000 100,000 4,070 4,000

has the optimal QoS. QDA can always guarantee that the
composition result achieves the optimal QoS. The values in
the table match the values of the standard results. R is the
response time measured in ms; T is throughput measured in
invocations per minute.

5.3 Discussion

Our experiments are based on the scale of a realistic Web
environment. The numbers of services and concepts in the
test sets are at the same or larger scale than that on the Inter-
net today. In addition, we examine two trends for the future
Web through Experiments 2 and 3. Overall, our experimen-
tal results show that QDA has a very high efficiency. In most
cases, optimal service composition can be completed in less
than 1 s.

5.4 Web service challenge 2009

We took part in Web Service Challenge 2009 using the QDA
proposed in this paper and finished in second place among
9 teams. The teams that took part in Web Service Challenge
2009 competed for effectiveness and efficiency using 5 test
sets. The test sets properties and the results of Web Service
Challenge 2009 are given in Tables 5 and 6.

The number in Table 6 is the time cost for finding a func-
tionally correct composition. The trace back search incurs
heavy overhead in QDA, especially when the sequence length
of composition becomes large (in test set 5, the sequence
length of composition is greater than 30). The team in the first

123



12 SOCA (2012) 6:1–13

Table 6 Web service challenge 2009 results

Test set ID 1. Place (ms) 2. Place (ms) 3. Place (ms) 4. Place (ms)

1 <300 <300 <300 531

2 <300 <300 <300 2,219

3 <300 <300 <300 21,438

4 <300 <300 <300 ∞
5 <300 938 <300 ∞

place was more efficient than our team because they did a bet-
ter job on trace back search. Improvement of the efficiency
of the trace back routine through some pruning will be our
future work. We outperformed the third place team because
they could not find the composition with best QoS, although
their algorithm did find the functionally correct composition
in less time than QDA.

6 Practical relevance

We experiment QDA on artificial test sets. In this Section, we
will introduce our investigation of the nature of Web services
in Seekda to validate that QDA has a promising application.

In Fig. 10, we use a crawler to collect public Web services
from Seekda. After the crawler collects WSDL documents
from the Internet, an information extractor extracts function-
ality information from the documents, such as types, mes-
sages, port types, etc. Next, a term generator is used to gen-
erate terms using the extracted information. The term genera-
tion process has four steps: lexical analysis, tag removal, stop
word removal, and vector generator. In the end, the cluster
uses a K-Means algorithm to group the services by function-
ality. We correct deviations manually to let the services in
the same group have the same functionality.

After service grouping is done, although the services in
the same group have the same functionality, they may have
different input/output parameters. We encapsulate services
in the same group using a uniform interface, to make use
of these services. After encapsulation, services in the same
group can be invoked in a uniform way, namely one can be
substituted by another in the same group.

It is impossible to obtain all the Web services from Seekda
through one query. We obtained all the providers through
country enumeration, as the providers of Web Services in
Seekda are organized by country, and then found all the Web
services through provider query. Although Seekda claims to
have more than 28,000 Web services, we were only able
to extract 18,250 Web services using the aforementioned
method. In addition, there are occasions in which Seekda
claims that some provider has several Web services through
country enumeration, but when we query Seekda with the
provider it says there are no Web services. We call these

Web services “lying services” and found there were 4,347
lying services. Moreover, there were 335 Web services with
invalid WSDL. In total, we collected 13,568 available Web
services from Seekda.

Using the process described at the beginning of this sec-
tion, we clustered the collected Web services into 300 groups
(Web services in the same group have the same or similar
functionality). We made sure that Web services in the same
group have the same functionality through manual check.
We found hundreds of service groups containing services
with the same functionality, ranging from several to one hun-
dred. For example, the Airport service group contains 14 Web
services which can complete flight checks; the E-mail ser-
vice group includes 34 Web services which can send e-mail;
and the SMS service group has 165 Web services that can
send short messages. In the end, we used the encapsulation
approach to make the services in the same group replace-
able.

Through investigation we can see that there are a large
number of Web services with various functionalities and there
are indeed Web services which offering the same functional-
ity. Services with the same functionality can be substituted by
each other. QDA has a promising application as it organizes
Web services to achieve higher functionality and selects Web
services to offer better QoS.

7 Conclusion

With the increasing number of Web services, it is a chal-
lenge to efficiently build large-scale SOS to meet the required
QoS criteria. Though most of the QoS-driven semantic Web
service composition is known to be NP-hard, we solve the
efficiency issue by developing a polynomial time algorithm
(QDA) for shortest sequence composition, using a dynamic
programming method. We prove this both by complexity
analysis and experiments. Our work provides some advances
in the following aspects. We can handle a large-scale service
composition in a very short time. We believe this is the big-
gest contribution of our work. We integrate functional and
non-functional consideration together to achieve the optimal
solution that satisfies QoS requirements.

In the future, we will continue our research on the com-
position algorithm. In QDA, all the services are scanned.
We will endeavor to work out some pruning criteria to fur-
ther improve QDA. Also, there are still some constraints of
our approach which are worth extending in the future. This
depends on some preconditions in practice, e.g., finding the
ontology concepts and the mapping between the concepts
and service I/O; detecting the QoS of each available service
before the composition starts. As the semantic Web develops
and QoS becomes more and more important in e-business,
these issues must be addressed in the near future.

123



SOCA (2012) 6:1–13 13

Acknowledgments This work is supported by the China National
High-Tech Project (863) under grants No. 2007AA010306.

References

1. http://webservices.seekda.com/
2. Ponnekanti SR, Fox A (2002) Sword: a developer toolkit for web

service composition. In: Proceedings of the 11th international
WWW conference (WWW2002)

3. Sirin E, Parsia B, Wu D, Hendler J, Nau D (2004) Htn planning
for web service composition using shop2. Web Semant Sci Serv
Agents World Wide Web 1(4):377–396

4. McIlraith S, Son T (2002) Adapting golog for composition of
semantic web services. In: KR2002, Toulouse, France, pp 482–
493, 22–25 April

5. Liang QA, Su SYW (2005) AND/OR graph and search algorithm
for discovering composite web services. Int J Web Serv Res
2(4):48–67

6. Hashemian SV, Mavaddat F (2006) A graph-based framework for
composition of stateless web services. In: ECOWS, pp 75–86

7. Milanovic N, Malek M (2006) Search strategies for automatic web
service composition. Int J Web Serv Res 3(2):1–32

8. Web Service Challenge. http://www.ws-challenge.org
9. Gu Z, Xu B, Li J (2007) Inheritance-aware document-driven ser-

vice composition CEC/EEE’07. IEEE Computer Society, Japan
10. Yan Y, Xu B, Gu Z (2008) Automatic service composition

using AND/OR graph CEC/EEE’08. IEEE Computer Society,
Washington D.C.

11. Ran S (2003) A framework for discovering web services with
desired quality of services attributes. In: Proceedings of the inter-
national conference on web services. CSREA Press, Bogart, GA,
pp 208–213

12. Singhera ZU (2004) Extended web services framework to meet
non-functional requirements. In: Proceedings of the symposium on
applications and the internet workshops. IEEE CS, Silver Spring,
MD, pp 334–340

13. Ludwig H, Keller A, Dan A, King RP, Franck R (2003) Web
Service Level Agreement (WSLA) language specification. http://
www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf/

14. Dan A, Davis D, Kearney R, Keller A, King R, Kuebler D,
Ludwig H, Polan M, Spreitzer M, Youssef A (2004) Web services
on demand: WSLA-driven automated management. IBM Syst J
43(1):136–158

15. Skene J, Lamanna DD, Emmerich W (2004) Precise service level
agreements. In: Proceedings of the 26th international conference
on software engineering (ICSE’04)

16. Zeng L, Benatallah B (2004) QoS-aware middleware for web ser-
vice composition. IEEE Trans Softw Eng 30(5):311–327

17. Zeng L, Benatallah B, Dumas M, Kalagnanam J, Sheng QZ (2003)
Quality driven web services composition. In: Proceedings of the
12th international conference on World Wide Web (WWW). ACM
Press, Budapest, Hungary, May 2003

18. Cardoso J (2002) Quality of service and semantic composition of
worklows. Ph.D. Thesis, University of Georgia, Georgia

19. Yu T, Zhang Y, Lin K-J (2007) Efficient algorithms for web ser-
vices selection with end-to-end QoS constraints. ACM Trans Web
1(1), Article 6, May 2007

20. Xiao J, Boutaba R (2005) QoS-aware service composition and
adaptation in autonomic communication. IEEE J Select Areas
Commun 23(12):2344–2360

21. Alrifai M, Risse T (2009) Combining global optimization with
local selection for efficient QoS-aware service composition. WWW
2009, 20–24 April 2009

22. Jaeger MC, Ladner H (2005) Improving the QoS of WS composi-
tions based on redundant services. In: Proceedings of the inter-
national conference on next generation web services practices
(NWeSP 2005), pp 189–194

23. Lecue F, Mehandjiev N (2009) Towards scalability of quality driven
semantic web service composition. In: Proceedings of th IEEE
international conference on web services, July 2009

24. Stein S, Payne TR, Jennings NR (2009) Flexible provisioning of
web service workflows. ACM Trans Internet Technol 9(1):1–45

25. Google Mashup Editor. http://code.google.com/gme/
26. Microsoft’s Popfly. http://www.popfly.com/
27. IBMs QEDWiki. http://services.alphaworks.ibm.com/qedwiki/
28. Yahoo Pipes. http://pipes.yahoo.com/
29. Web Ontology Language. http://www.w3.org/TR/owl-features/
30. Web Service Level Agreements. http://www.research.ibm.com/

wsla/
31. Cyc ontology. http://www.cyc.com/cyc/technology/whatiscyc_dir/

maptest/

123

http://webservices.seekda.com/
http://www.ws-challenge.org
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf/
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf/
http://code.google.com/gme/
http://www.popfly.com/
http://services.alphaworks.ibm.com/qedwiki/
http://pipes.yahoo.com/
http://www.w3.org/TR/owl-features/
http://www.research.ibm.com/wsla/
http://www.research.ibm.com/wsla/
http://www.cyc.com/cyc/technology/whatiscyc_dir/maptest/
http://www.cyc.com/cyc/technology/whatiscyc_dir/maptest/

	Towards efficiency of QoS-driven semantic web service composition for large-scale service-oriented systems
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement
	4 QoS-Driven Algorithm (QDA) for shortest sequence composition
	4.1 Algorithm description
	4.2 Analysis of algorithm complexity

	5 Experiments
	5.1 Experimental methodology
	5.2 Experimental settings and results
	5.3 Discussion
	5.4 Web service challenge 2009

	6 Practical relevance
	7 Conclusion
	Acknowledgments
	References


