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ABSTRACT
In recent years, mobile healthcare has received increasing at-
tention. As the wrist-pulse diagnosis in traditional Chinese
medicine(TCM) only needs the wrist pulse information of a
patient, without any other physiological data and invasive
checking, it is a promising technique for mobile healthcare in
terms of cost and convenience. But the pulse-based diagno-
sis requires the sophisticated and long-term training of the
physicians. So it is urgent to develop a digitalized method to
objectify and standardize the pulse-based diagnosis process.
In this paper we design a wrist-pulse sensing and analyzing
prototype system which involves a general pulse-sensing de-
vice and a cirrhosis diagnosis scheme based on the captured
pulse information. The experimental results show that the
accuracy of the proposed system reaches to 87.09% in cir-
rhosis identification.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
mobile healthcare, pulse diagnosis in TCM

1. INTRODUCTION
In recent years, mobile healthcare has received increas-

ing attention and many healthcare systems [10, 7, 5, 1] have
been developed because they can provision personalized and
professional heathcare services to users in a flexible, con-
venient manner, saving the constrained public medical re-
sources and reducing the medical costs of users. The tra-
ditional Chinese pulse diagnosis (TCPD) is a much desir-
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Figure 1: The illustration of diagnosis based on wrist
pulse

able choice in mobile healthcare applications. TCPD has
been successfully used in China for at least two thousand
years [6], and is becoming more and more popular all over
the world (for example, most Asian countries and Australi-
a). Compared with the physiological data based diagnosis,
TCPD can be used to diagnose a large amount of diseases
such as heart disease, cirrhosis, etc., without turning to any
specialized medical device, and only with feeling the radial
artery of patient’s wrist, as shown in Fig.1. The traditional
Chinese medicine theory behind wrist-pulse based diagnosis
relies on such fact—the blood flows through different organs,
with different rates which may reflect different health status
and can be identified according to the pulse fluctuation pat-
tern [22]. Therefore the TCPD will be a more competitive
method for mobile healthcare applications.

In fact the wrist pulse is a sort of physical signals, vibra-
tion signals for traditional Chinese medicine physicians. As
shown in Fig.1, the physicians use their tips of the index, the
middle and the fourth fingers to feel the pulse fluctuation at
three positions (denoted by “Chun”, “Guan”, and “Chy”, re-
spectively) within the radial artery area of the patient’s left
or right wrist. However such pulse-based diagnosis depend-
s heavily on the experience and subjective sensing of the
physicians. Two physicians may make completely different
diagnosis results for the same patient. Therefore we need
an objective standardized method of wrist-pulse waveform
processing.

In this paper, we describe a novel pulse measuring system
with intelligent data analysis. The system is based on the
sensor technology and intelligent data analysis technology.
One main task is developing a sensor which uses PVDF film
to sense the pulse signals. The other is designing an auto-
mated algorithm to help diagnosing. With the system,we
can measure the pulse signals at home and save our pulse



signals permanently.
The rest of the paper is organized as follows. We first de-

scribe the related work on pulse monitoring system in Sec-
tion 2. The design of the system is presented in Section 3.
Section 4 discusses the analysis of the pulse signals starting
with data collection, signal preprocessing, feature extraction
and classification. Experiments to demonstrate the system
effectiveness offered in Section 5. Section 6 is conclusions.

2. BACKGROUND AND RELATED WORK

2.1 Background
Medical practitioners of TCM consider that the pulse sig-

nal of radial artery can reflect an individual’s state of health,
so it can be used to assess health. The pulse wave has two
important components [14]. The first component is the rise
to the maximum pressure, and the second one is the tidal
wave. The first rise wave will be followed by a slow decline
with a notch and slight increase in pressure from aortic value
closure, when the backflow of blood in the aorta overcomes
the expulsion force of blood from the heart. The tidal wave
is the result of reflect waves that are an echo of the ini-
tial primary wave traveling from the heart to the periphery.
As the arteries become narrow in the periphery, the arte-
rial resistance is increased, which causes the pulse wave to
rebound and consequently causes a reflective wave to move
back towards to the heart. In summary, the wrist pulse
can be generally considered a traveling pressure wave that
is caused by the rhythmic contraction and the relaxation of
the heart.
TCM practitioners claim that certain position on the wrist

is linked to the specific organ [6, 8]. For example, according
to TCM , the signal variations of the Chun and the Guan
positions on the left wrist can effectively reflect the condi-
tions of the heart and the liver as well as the gall bladder,
respectively.

2.2 Related Work
Many researchers have focused on implementing pulse mon-

itoring systems with intelligent data analysis. Most of them
employ sensors to sense pulse signals. Some of them design
the graphic user interfaces.
In [23], the authors design a wrist-pulse waveform retrieval

and analysis system with graphical LCD display. They de-
sign a wrist-watch-like structure attached over the radial
artery area for wrist-pulse retrieval. They use pulse infor-
mation retrieval unit to build a star wireless network. The
gateway of pulse information retrieval unit is connected to
a server which analyzes the wrist-pulse data and stores the
data. Finally, the results can saved in a database locally or
remotely.
The main contribution of [12] is that they design a nonin-

vasive measuring apparatus which employs a standard posi-
tioning procedure to detect the optimal site for accurately
measuring of the pressure pulse waveform. [12] also vali-
dates the effectiveness that the apparatus is suitable for the
pressure pulse waveform.
In [2], a handheld SOC-based pulse monitoring system is

built with intelligent data analysis, and it transmits phys-
iological signals, via wired Internet interface, to a remote
physiological database. The medical staff can observe the
real-time pulse signals, assisted by the web-based interface.
In [3], a USB-based Doppler ultrasonic blood analyzer is
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Figure 2: The architecture of our system

used to collect the pulse signals; through the USB interface,
the collected signals are transmitted and then stored in a PC
for further processing and analyzing. The main contribution
in [3] is a systematic method proposed to analyze the wrist
pulse signals.

The content described above is the description of the pulse
monitoring systems. Next we describe the application of
classification methods in pulse diagnosis. Some researcher-
s use classification methods to classify pulse types for fur-
ther diseases diagnosis [15]. Since there are twenty-seven
pulse types and each pulse type relates to some diseases [8].
Some researchers use classification methods to research cer-
tain disease [16, 17, 23]. However, the feature extraction
methods in these papers are complicated. In this paper, we
use classification method to discriminate healthy subjects
from patients with cirrhosis. Moreover, we try to use bin-
ning method as feature extraction method which is a simple
and time-efficient method.

We can see that the current pulse monitoring systems use
the wired Internet to realize the remote pulse acquisition and
processing. In this paper, we want to design a portable or
mobilephone-based pulse-monitoring system that can real-
ize wireless communication based on Bluetooth technology.
With the system, the TCM staff can efficiently and easily
participate in the medical services over communities.

3. THE PULSE-SENSING SYSTEM DESIGN
This section will present the design of the proposed sys-

tem. Fig.2 shows the architecture of our system, which con-
sists of two components in terms of data: data acquisition
and data analysis. To obtain wrist pulse data more accu-
rately and efficiently, we design a new pulse-sensing device,
called probe, using the polyvinylidene fluoride (PVDF) ma-
terial. We use the MSP430 microcontroller to sample the
probe via ADC interface and transfer the raw pulse data in-
to the values with engineering unit. Especially the MSP430-
based MCU supports the RS232 serial communication and
the Bluetooth, making our pulse-sensing device more flex-
ible to be extended. For mobile healthcare systems, users
usually focus on the performance of diagnosis, so we design
an accurate cirrhosis identification scheme running on PCs
or mobile devices such as mobile phone.

As shown in Fig.2, our system involves the pulse-sensing
module and the diagnosis module. The pulse-sensing probe
is attached closely to the radial artery area of the user’s left
wrist for pulse retrieval. The pulse information is transmit-
ted, via wire or wireless channel, to PC or mobile phone
for storage and analysis. In the followings we will detail the
prototype of the proposed pulse-sensing system in hardware.

3.1 Probe Design
The wrist-pulse signal is very weak with low signal-noise-



Figure 3: the probe
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Figure 4: The amplifier circuit

ratio. In this paper we select the PVDF [11] as the sensor of
wrist pulse due to the good piezoelectric and sensitive effect
of PVDF materials. In particular, the PVDF is pretty soft
and then can be attached to wrist much tightly. The PVDF
easily results in strong ferroelectric effect (piezoelectricity)
after being stretched. In essential, the piezoelectricity is a
phenomenon when the elastic energy in a solid body is cou-
pled with the dielectric energy in the same material. The
piezoelectricity of PVDF can often be profiled with propor-
tionality coefficients between mechanical and electrical val-
ues (or causes and effects). [13] provides more details about
the principle that PVDF materials generate energy. In our
probe design, we use a three-channel PVDF sensor of 30µm,
the real probe is illustrated in Fig.3.
Since the sensitivity of PVDF is influenced by geometrical

shape, the PVDF probe has to be designed carefully. Within
our experiments, it is observed that the probe works well in
terms of reliability and stability, when using the size 20 ×
20mm2 of each PVDF channel, the size like a fingertip area
of Chinese physician touching the wrist pulse.
The PVDF generates electricity when pressed; but the

output power of PVDF is lower than 1mV in amplitude.
Additionally, the breathing, speaking, or wrist moving will
bring noise that interferes the reliability and stability of
PVDF. To address this problem, wee design an analog signal
conditioning circuit which extracts raw wrist-pulse signals
and feeds them to the MCU’s ADC for further processing.
Fig.4 illustrates an amplifier. The amplifier scheme is self-
contained and then will not be explained because of the page
limit.

3.2 A/D Conversion
We use MSP430 microcontroller and its built-in 12-bit

ADC channel to receive the signal from the probe. The
conversion is completed with Vout = 4096(Vin − V−)/(V+ −
V−), and the reference voltages are set with V+ = 2.5V
and V− = 0V. By the single-repeat mode with SHT0 8
of MSP430, the sampling process of a single ADC channel
consumes Tsamp = TADC × 4× 64 where TADC is the cycle
of A/D and equals 200ns. We know that for MSP430 the
synchronization time Tsync and the conversion time Tconv

are one cycle and 13 cycles, respectively. Therefore the total

Figure 5: The prototype encapsulation

A/D conversion needs TA/D = Tsamp+Tsync+Tconv = 54µs,
and the ADC frequency can achieve 1/TA/D = 18.5kHz,
higher than 1kHz required by the TCM physicians.

3.3 Encapsulation
In order to facilitate the use of our system, we encapsulate

the acquisition circuits, the MCU module, and two com-
munication modules (RS232 and Bluetooth) within a box
which connects the probe with a shielded wire. Fig.5 shows
the encapsulation of the pulse-sensing system without the
probe. The serial interface from the MCU is implemented
with a serial-USB cable which can be plugged to the PC’s
USB port. Note that we have only implemented the wrist-
pulse data transmission to the PC through the RS232 inter-
face, even though a Bluetooth module has been embedded
within the prototype; in our future work, we will focus on
implementing the communication between the pulse-sensing
system and the mobile phone by using the Bluetooth tech-
nology.

4. THE CIRRHOSIS DIAGNOSIS

4.1 Pulse Data Collection And Pre-processing
In this paper, pulse signals of radial artery are collected

with 1000Hz by the sensor described previously. The serial
port of PC reads the data form MCU. Labivew is used to
design the graph user interface(GUI). Through the GUI, we
can configure the asynchronous serial parameters, such as
baud rate and data bits. The GUI can also display the pulse
wave. Before collecting the data, all subjects take a rest of
10 minutes for keeping stable heart rate. The duration time
of measuring is 20 seconds. Finally, the pulse data is stored
locally.

During the acquisition, the pulse signals can be easily
contaminated by subject’s respiration and artifact motion,
because pulse signal is a kind of weak physiological signal.
Therefore, preprocessing is necessary before further process.
In our system, the procedure of data preprocessing contains
noise removal and baseline wander correction. The upper
panel of Fig.6 illustrates the raw pulse signals.

4.1.1 Signal Denoising
We use the discrete wavelet transform (DWT) method to

denoise physiological signals, which is often used in real-
time applications. It can effectively remove noise and at
the same time, maintain the important information involved
within the signals. The signal denosing based on DWT usu-
ally has three steps: the signal decomposition, the threshold
determination, and the signal reconstruction. Firstly, we
employ the DWT to transform the raw pulse data into the
high-frequency and low-frequency coefficients. The DWT
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Figure 6: The raw pulse signals (top) and the pre-
processed signals (bottom)

procedure can be modeled with

cj−1 = Con(cj ∗ h̄∗)

dj−1 = Con(cj ∗ ḡ∗) (1)

where, the cj−1is the low frequency data(Dc), dj−1 is the
detailed information when cj−1 approaches to cj , Con() is
the convolution operation, and h and g are the Low-pass
and High-pass filters, respectively.
We use “db6” wavelet to perform a DWT with six-level

decomposition because “db6” wavelet function is similar, in
shape, to the pulse signals of radial artery.
For effectively determining the threshold for denoising the

raw signals, Eq.(2) is used, and the experimental results
show that such thresholding can achieve a higher signal-to-
noise ratio (SNR) than the sqtwolog method.

Thi =
σ
√
2 logN

log (i + 1)
(2)

where N is the signal length, Thi stands for the threshold at
level i and σ is the median of the detailed coefficients at all
levels of signal decompositions.

σ =
|median(detail)|

0.674
(3)

Once the threshold value has been calculated, we can apply
the soft thresholding policy because the wavelet coefficients
generated by the soft thresholding is of good continuity. For
each wavelet transform coefficient Wij and threshold Thi,
the soft thresholded value can be expressed with

Wt
ij = sign (Wij) (|Wij| − Thi) if |Wij| ≥ Thi

Wt
ij = 0 if |Wij| < Thi (4)

where sign(·) is the sign-function and Wt
ij represents the new

value of the j-th wavelet coefficient at the i-th level obtained
after thresholding. The threshold Thi was applied only to
the detailed coefficients.

4.1.2 Baseline Wander Removal
Some researchers have proposed various solutions to cor-

rect the baseline wander in physiological signals. Among
these methods, linear interpolation is the simplest one. But,
linear interpolation suffers from a disadvantage: it may in-
troduce more distortion, compared with the cubic spline in-
terpolation[19]. Techniques like wavelet filters and adap-
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Figure 7: The points of false identification which
should be filtered out
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Figure 8: The points of false identification which
should be identified

tive filters need lots of computation and then are time-
consuming. Here we make a tradeoff between time and
efficiency, and we choose the cubic spline interpolation to
remove the baseline wander. The bottom figure in Fig.6
illustrates the denoised pulse signals without the baseline
wander. Next we will present the detailed procedure of re-
moving the baseline wander.

Before correcting baseline wander, the single-period of
pulse signals should be obtained at first. We obtain every
period using a heuristic method as follows.

Step 1: Find the global maximum and the global mini-
mum values from pulse signals. After that, we can empiri-
cally get a threshold of (maximum-minimum)/3. If we set
the threshold too small, then some points can be found but
they are not the onsets of the period, as shown by the points
with red circle in Fig.7. If we set the threshold too large,
then some onsets of the period can be omitted, as shown
in Fig.8. That is why we use the threshold of (maximum-
minimum)/3 which can almost achieve 100% accuracy.

Step 2: Find all local maximum and minimum values from
the pulse waveform and save them in an array in order. If the
difference between two adjacent local maximum and local
minimum is greater than the threshold, we label the local
minimum as the onset of a period and save it in an array (the
local maximum is saved in another array as the amplitude
of the percussion wave of the corresponding period).

4.2 Feature Extraction
Generally there are a few feature extraction methods which

are widely used, covering, say, the time domain feature ex-
traction [24], the frequency domain feature extraction [25],
the time-frequency feature extraction [21], the curve fitting
[4, 3], and the dimension reduction techniques(DRT) [9, 20].

Even though being simple, the time domain feature ex-
traction has some disadvantages. Fig.9 illustrates one pe-
riod of pulse signals with some of time-domain parameters
marked by ti (i=1 to 3) and hj (j=1 to 4). Practitioners be-
lieve that these parameters are of physiological significance.
For example, h1 can reflect the left ventricular ejection func-
tion and vascular compliance. Some researchers employ
these time-domain features as the inputs to the classifier.
But tidal wave or dicrotic wave is very weak sometimes, and
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then the sensor cannot detect such waves; therefore, one pe-
riod of pulse waveform may not have tidal wave or dicrotic
wave. Without them, we cannot accurately identify these
points that will affect the classification performance. With-
out considering the time complexity, the time-frequency fea-
ture extraction is feasible and can obtain good recognition
results. The curve fitting may over-fit the data. The key
idea of DRT is to represent the high-dimensional raw da-
ta on an intrinsic low dimensional space, but it works with
more complexity.
In our study, we need to find a simple and time-efficient

method, which is highly needed by mobile applications. We
use the binning method, a new kind of method to extract
the features. It can smooth the data and we can determine
the number of features easily. The binning method needs
two parameters: the window size s and the step length l,
and it works as follows. (1) Perform summation on the data
in the current window, (2) move the start point for current
window by step length l, and (3) repeat steps (1) and (2)
until the window reaches to the end of the period. We then
take the sum data of all windows as features.
It is noticeable that before executing the binning method,

each period is set with the same length. But from the above
figures, we find that the signal lengths over subjects are d-
ifferent. Even for the same subject, the lengths from period
to period are different. The average of heart rate for adults
is about 75 beats per minute, i.e., the duration of a single
heartbeat is 0.8 second in average. Here we therefore set the
length of each period to be 800. We observe that the am-
plitude of the last quarter of the period always approaches
to zero, contributing less to the classification. So we adjust
those periods whose lengths are less than 800 by appending
0 at the end, and truncate the extra part for those with the
length of more than 800.

4.3 Classification
The extracted features are used as inputs to the clas-

sifier for further classification. The classification aims to
telling healthy persons from patients of cirrhosis. Now, N-
N[9], SVM[21, 4, 16], Neural Network[18], and FCM[3] are
the mostly-adopted methods. In this paper, the k-nearest
neighbor(KNN) algorithm is adopted for classification.
The KNN method is a simple-but-effective method for

classification. It classifies an object based on the majori-
ty voting policy. For a test sample, its k nearest neighbors
are retrieved, where k is a user-defined constant, and those
neighbors forms a neighborhood of the test sample. Finally
the sample can be classified by assigning the label which is
most frequent among the k nearest neighbors. In this paper
we use Euclidean distance as the distance metric in classi-
fication. Given a test example xi and a training example
xj , yi and yj represent the corresponding feature vector,

Table 1: The comparison of performance. AH is the
accuracy for healthy subjects, AC the accuracy for
cirrhosis subjects, AO the overall accuracy, and DP
the Doppler parameters method.

Method Parameters AH (%) AC (%) AO (%)

Binning
size=40

length=40 95 72.72 87.09
k=3

KPCA
m=20

90 72.72 83.07
β=10000

DP
RT

90 63.63 80.64
SW

respectively. The distance between yi and yj is computed
as

D (yi, yj) = ∥yi − yj∥ (5)

5. EXPERIMENTS
The dataset collected in our experiments contains a total

of 84 subjects—there are 56 healthy persons and 28 cirrho-
sis patients. We divide the pulse dataset into two groups: a
training set and a testing set. We assigned individuals ran-
domly to test and training data. There were 36 healthy and
17 cirrhosis patients in the training data and 20 healthy and
11 cirrhosis patients in the test data.

In experiments, use the data only for the “Guan” posi-
tion to perform classification due to the following reasons.
According to the theory of TCM ([6, 8]), the pulse-taking
positions are related to the body organs, and the pulse at
the “Guan” position is associated with the cirrhosis.

Firstly the method presented in Section 4.1 is used to the
collected data, and then we get the single-period waveform
with the length of 800. For each sample, we use one period
data to extract features and carry out the classification. In
this paper, we use a total number of five periods. Thus, we
get five class labels and the final class label is the one which
is most frequent among the five labels. When we adjust the
window size, the step length, and the k value of KNN, we
find that if k is equal to 3, the window size to 40, and the
step length to 40, we achieved the best classification per-
formance with an accuracy of 95% for healthy subjects (5%
false positive rate), the accuracy of 72.72% for the cirrho-
sis subjects (27.28% false negative rate), and overall rate of
correct classification of 87.09%.

In our experiments, we also carry out the KPCA method
[9] and the Doppler Parameters method [21] in features ex-
traction before the classification starts. The results are list-
ed in Tab.1, and we can see that the features extracted by
binning method used in this paper leads to best classifica-
tion results. Note that the length of a single period is set
to be 800. If we use 20 dimensions to represent the period,
some important features may be lost. So the KPCA method
is unsatisfied. The SW feature of the Doppler Parameters
method cannot accurately represent the width of the per-
cussion wave that reaches to 1/2 height, if the tidal wave
happens early.

6. CONCLUSIONS AND FUTURE WORK
This study has proposed a wrist-pulse sensing system con-

taining two parts: a three-channel PVDF sensor (called



probe) to capture the wrist pulse signals, and a MSP430-
based module used to receive the pulse information and
transmit it to external processing module. Based on the
proposed system we have implemented the cirrhosis identi-
fication scheme. The experimental results demonstrate the
accuracy and efficiency of our system. In future we will de-
sign more precise wrist-pulse sensor to meet some more com-
plicated pulse diagnosis, and we will implement the commu-
nication module based on the Bluetooth interface, by which
a commercial-off-the-shelf mobile phone can serve as the da-
ta processing device, making the system more suitable to
mobile healthcare applications.
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