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Abstract

Protein language models have shown remarkable success in learning biological
information from protein sequences. However, most existing models are limited by
either autoencoding or autoregressive pre-training objectives, which makes them
struggle to handle protein understanding and generation tasks concurrently. This
paper proposes a unified protein language model, xTrimoPGLM, to address these
two types of tasks simultaneously through an innovative pre-training framework.
Our key technical contribution is an exploration of the compatibility and the
potential for joint optimization of the two types of objectives, which has led to
a strategy for training xTrimoPGLM at an unprecedented scale of 100 billion
parameters and consuming 1 trillion training tokens. Our extensive experiments
reveal that xTrimoPGLM significantly outperforms other advanced baselines in
diverse protein understanding tasks (13 out of 15 tasks across four categories)
and generates novel protein sequences which are structurally similar to natural
ones. Furthermore, using the same xTrimoPGLM framework, we train an antibody-
specific model (xTrimoPGLM-Ab) using 1 billion parameters. This model set
a new record in predicting antibody naturalness and structures, both essential to
the field of antibody-based drug design, and demonstrated a significantly faster
inference speed than AlphaFold2. These results highlight the substantial capability
and versatility of xTrimoPGLM in understanding and generating protein sequences.

1 Introduction

Proteins play vital roles in the sustenance, growth, and defense mechanisms of living organisms.
They provide structural support for many essential biological processes such as synthesizing en-
zymes, facilitating transportation, regulating gene expression, and contributing to immune function.
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Figure 1: The relationship between the computational complexity of model training, quantified
in Floating Point Operations (FLOPs), and the model performance across four distinctive task
categories, each encompassing 3-4 subtasks. Each data point symbolizes the mean performance
metric for a specific task category. We conduct two types of training methods on downstream tasks
with varying complexities, utilizing both Probing (Pb) and Fine-tuning (Ft) techniques. Notably,
an exponential increase in pre-training computations corresponds to linear growth in performance,
thereby highlighting scaling effects [1, 2]. The labels E150M, E650M, E3B, E15B, and xT100B
represent ESM2-150M, ESM2-650M, ESM2-3B, ESM2-15B, and xTrimoPGLM-100B, respectively.
For a comprehensive analysis of the results, refer to Section 4.4. For a comparative study on the
FLOPs across different models, refer to Appendix C.

Therefore, understanding the biological information encoded within proteins is crucial for unraveling
the intricate workings of life and advancing fields such as medicine and biotechnology [3, 4]. As
protein sequences serve as the blueprint for protein structure and function [5], pre-trained techniques
on sequences, known as Protein Language Models (PLMs), e.g., the family of ESM models [6, 7],
ProtTrans [8], ProGen [9], etc., offer a powerful tool for characterizing the properties and distributions
of general protein sequences. These models are trained on large-scale protein datasets [3, 10, 11, 12]
that encompass billions of sequences, allowing them to capture evolutionary patterns and sequence
features that are inherent in protein structures. As a result, these models achieve state-of-the-art
results in predicting protein functions and structures [3, 7] or generating novel sequences with faithful
three-dimensional structures [9, 13].

It is worth noting that different categories of protein-related tasks necessitate divergent outputs from
PLMs, such as protein understanding tasks call for PLMs to yield accurate residue-level or protein-
level representations, while protein design tasks depend heavily on the potent generation capabilities
of PLMs. Despite these varying outputs, all tasks reveal a consistent underlying dependency among
protein sequences [5, 14, 15], which suggests the possibility of characterizing these tasks within one
unified framework, potentially mitigating the disparity between task types and further augmenting
the modeling power of PLMs. Unfortunately, prevailing PLMs are designed to address specific
tasks depending on their pre-training framework. This presents a significant challenge to selecting
appropriate PLMs for specific task types. A summary of the pre-training architectures adopted by
existing PLMs and their comparative analysis is presented in Table 1. In light of this, we discuss
the potential of unifying both the understanding tasks and the generation tasks, as dictated by their
respective autoencoding and autoregressive pre-training objectives, in one unified framework, which
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Table 1: Comparisons between different architectures of PLMs. “—” denotes that the approach has
not been explored yet.

Downstream Task Autoenc. Autoreg. Enc.-Dec. GLM Example

Protein Understanding ✓ × ✓ ✓ Contact Prediction
Protein Generation × ✓ — ✓ Antibody Re-design

Representatives
ESM-1b[6],
ESM2[7],

Pro.BERT[25]

ProGen[9],
ProGen2[13],
ProtGPT2[26]

ProtTrans[8],
Ankh[27] xTrimoPGLM /

is capable of capturing the comprehensive underlying dependency embedded in the protein sequences
and leads to more versatile and powerful PLMs.

Although substantial efforts have been invested in the exploration of a unified pre-training paradigm
within the natural language processing (NLP) domain [16, 17, 18], these studies typically adopt
analogous training patterns. For instance, all pre-training objectives are commonly optimized using
either the in-place token prediction format [17] or next-token prediction regime [16]. To fulfill
the requirements of unified PLMs, it is essential to incorporate both the in-place token prediction
formulation, exemplified by BERT-style objectives [19], to reinforce the model’s representation
ability, and the next-token prediction formulation, typified by GPT-style objectives [20], to ensure
the model’s generative capacity. Nevertheless, previous explorations in NLP have not discussed
extrapolating conclusions observed in similar training formats to more general settings. The question
remains open as to whether the in-place token prediction objectives can benefit from the next-token
prediction objectives and vice versa, and whether these two types of objectives are compatible
and can be optimized concurrently. In addition, the existing landscape of NLP is dominated by
generative models, which afford various types of tasks via mapping task labels into a unified text
space for zero/few-shot learning [20] or instruction-tuning [21, 22]. However, this capability is
currently beyond the reach of PLMs. In practice, applications of protein modeling still rely on the
bridging of representations with downstream task-specific labels, such as 3D coordinates for structures
prediction [7, 23]. which heavily rely on BERT-style training to tackle protein understanding tasks.
Consequently, this highlights the need for a unified model that incorporates both training objectives.

In this paper, we introduce the xTrimo Protein General Language Model (xTrimoPGLM), which is a
unified pre-training framework designed to concurrently address diverse protein-related tasks, includ-
ing but not limited to, protein understanding and generation (or design). Concretely, xTrimoPGLM
adopts the backbone of the General Language Model (GLM) [24] to leverage its bidirectional attention
advantage and auto-regressive blank filling objective compared with vanilla encoder-only and causal
decode-only language models. To enhance the representation capacity of xTrimoPGLM, we introduce
the Masked Language Model (MLM) objective to the bidirectional prefix region, building upon the
generation ability already encapsulated within the GLM objective. We provide empirical validation
of the compatibility between the two categories of pre-training objectives. Our results further confirm
that they can expedite convergence when transitioning from one to the other. Following extensive
empirical verification, we pre-train xTrimoPGLM at 100B-scale utilizing a comprehensive dataset
encompassing Uniref90 and ColdFoldDB - marking the largest scale of PLMs evaluated to date.
The training stage involved over 1 trillion tokens processed on a cluster of 96 NVIDIA DGX-A100
(8×40G) GPU nodes between January 18 and June 30, 2023. As of the current date, we continue to
pre-train xTrimoPGLM-100B in a unified manner to further enhance its modeling power.

We conduct extensive experiments to evaluate the effectiveness of our proposed xTrimoPGLM
framework. In protein understanding tasks, we benchmark xTrimoPGLM-100B against the current
state-of-the-art (SOTA) methods in 15 tasks spanning protein structure, function, interaction, and
developability. Remarkably, xTrimoPGLM-100B significantly outperforms other SOTA techniques
on 13 out of these 15 tasks. The correlation between performance improvement and increased
pre-training computations, illustrated in Figure1, substantiates the scaling laws for large language
models [1, 2]. This suggests that as the computational demands of training (measured in FLOPs),
model parameters, and data size for PLMs increase exponentially, downstream performance on
protein-related tasks continues to grow linearly. In protein generation tasks, xTrimoPGLM-100B
demonstrates its capacity to generate novel protein sequences with varied lengths and sequence
identities by adjusting generation hyper-parameters. Significantly, xTrimoPGLM-100B exhibits
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the capability to generate structurally similar but low sequence identity novel protein sequences
when compared to natural ones (Cf. Section 6.2). We visualize the embeddings produced by
xTrimoPGLM-100B, as depicted in Figure 2, and find that the learned embeddings clearly capture
functional information for the protein universe. These compelling results highlight the vast potential
and versatility of xTrimoPGLM and its framework in understanding and generating protein sequences,
which signal a promising future for the application of unified pre-training paradigms in the protein
modeling domain.

We also developed an antibody-specific PLM, xTrimoPGLM-Ab-1B, containing 1 billion parameters.
This model is pre-trained on the Observed Antibody Space (OAS) database [28], processing over
1 trillion tokens. It achieves SOTA performance on antibody naturalness and structure prediction
tasks. Notably, xTrimoPGLM-Ab-1B rivals AlphaFold2 [3] on structural prediction of antibodies
with 6,000× inference speedup. xTrimoPGLM-Ab-1B also has the capability to redesign the CDR
region of Covid-19 antibodies (Cf. Section 6.3).

Figure 2: t-SNE visualization of xTrimoPGLM-100B context embedding for human protein sequences.
The figure portrays xTrimoPGLM’s capability to encapsulate biologically relevant latent embeddings
across diverse functional protein sequences. Specifically, human protein sequences (n=20,255) from
UniProt are fed to xTrimoPGLM to obtain the context embedding. We then use the t-SNE [29]
method to reduce the embedding dimensions for visualization. Each dot signifies a distinct protein.
Nine clusters related to known Gene Ontology annotation terms are highlighted with different colors.

2 Background

In this section, we discuss the background surrounding protein language models and other unified
pre-training regimes.

2.1 Pre-training on Proteins

Pre-training on protein sequences has recently gained significant interest due to its potential ap-
plications in protein structure prediction, drug discovery, etc [3, 7, 30, 31]. A family of models
including ProtTrans [8], ESM-1b [6] and ESM2 [7], employ individual protein sequences as input
and are pre-trained via optimizing the masked language model objective based on encoder-only
architectures. To further incorporate evolutionary information from homology protein sequences,
MSA-Transformer [32] utilizes multiple sequence alignment (MSA) instead of the single query
sequence as input. This 110-million parameter model performs comparably to ESM2-15B in protein
structure prediction tasks, demonstrating that introducing co-evolutional information into the pre-
training process is beneficial for protein structural-related tasks. To enable de-novo protein design,
some PLMs like ProGen2 [13] and ProtGPT2 [26] are pre-trained in an autoregressive manner, which
allows them to generate diverse, realistic proteins without conditions. ProGen [9] extends these
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approaches by incorporating the functional tag and concatenating it with the protein sequences as
input. Consequently, ProGen is capable of generating specialized protein sequences that exhibit
desired properties. In summary, current PLMs have demonstrated a promising ability to improve the
accuracy and efficiency of protein understanding and design tasks compared to traditional machine
learning models. However, none of the aforementioned methods have explored the potential of a
unified pre-training strategy that could thoroughly characterize the distribution of protein sequences.

2.2 Unifying Language Pre-Training

Several pioneering endeavors have explored the concept of a unified language pre-training framework
in the domain of NLP. Among these, UniLM [17] is proposed to train on multiple language modeling
objectives using the encoder-only architecture. It unifies multiple pre-training objectives, including
unidirectional LM, bidirectional LM, and seq2seq LM into a single cloze-type formulation, i.e. the
masked language model. This unification is achieved by introducing various masking patterns to the
input to distinguish between the different objectives. UniLMv2 [18] utilizes partially autoregressive
modeling for generation tasks, and the autoencoding objective for NLU tasks. This approach
introduces a complex masking strategy to prevent information leakage. Aside from pre-training
unification, there has been a recent trend of thematic unification, i.e., unifying common tasks into
one model. UL2 [16] introduces the Mixture-of-Denoisers (MoD) pre-training objective, which
combines diverse pre-training paradigms for more effective unified pre-training. This has become the
primary pre-training strategy for PLAN-UL2. Although existing unified models have demonstrated
the advantages of combining different pre-training objectives, they all adopt the same formulation for
model optimization. This includes the in-place token prediction formulation used by UniLM and
UniLM-v2, and the next-token prediction paradigm employed by UL2. In contrast, xTrimoPGLM
seeks to combine these two training formats into a unified pre-training framework, endowing PLMs
with the representational capacity for protein understanding tasks and the generative capacity for
protein design tasks.

3 The Design Choices of xTrimoPGLM

Protein-related tasks can be broadly classified into two categories: 1) Understanding tasks, such
as contact prediction [33, 34], fluorescence landscape prediction [35], etc. These tasks necessitate
PLMs to provide accurate residue-level or sequence-level representations. 2) Generation or design
tasks, such as antibody Complementarity-Determining Region (CDR) redesign, which rely on the
generative capacity of PLMs. The conventional encoder-only PLMs, e.g., ESM [6, 36], or causal
decoder-only PLMs, e.g., ProtGPT2 [26], struggle to concurrently address these two types of tasks,
due to their inductive bias of the pre-trained framework. For instance, while ESM2 [36] presents
superior performance on benchmarking most of understanding tasks compared to other PLMs, it
cannot be utilized directly to generate novel protein sequences in an end-to-end regime.

Conceptually, the two types of tasks reflect the consistent underlying distributions within the general
protein sequences [14, 15], which ideally should be captured by a unified model to further enhance
the modeling power of PLMs. Therefore, encoder-decoder models such as T5 [37], and non-causal
decoder-only models, often referred as prefix language models, e.g., General Language Model
(GLM) [24], are potential architectures that can concurrently handle understanding and generation
tasks. These models accomplish this by optimizing an autoregressive blank-filling objective while
consuming input bidirectionally.

Compared with GLM, T5 proves inefficient as it necessitates an order of magnitude larger parameter
to achieve similar modeling power [24]. Consequently, we adopt the GLM framework as the backbone
to exploit its bidirectional attention advantage and autoregressive blank infilling objective [38].

3.1 Backbone Framework: General Language Model (GLM)

GLM is a transformer-based language model that leverages autoregressive blank infilling as its
training objective while consuming the input text in a bidirectional manner. It randomly blanks
out continuous spans of tokens from the input text, following the idea of autoencoding, and trains
the model to sequentially reconstruct these spans, following the idea of autoregressive pre-training.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.07.05.547496doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.05.547496
http://creativecommons.org/licenses/by-nc-nd/4.0/


<latexit sha1_base64="rJOAy/59qNkGPbVtPKVuT/InEOk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+i6t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AENqI2m</latexit>x1
<latexit sha1_base64="yJqZUlw9dzFlw0hGAOHeWjA4icw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindR8e7Oy7XrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEPLI2n</latexit>x2

<latexit sha1_base64="o9FhR2DAZSoXbCzu0m5sSFLhyEs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfZOe+WKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXrnVe/2rFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcQsI2o</latexit>x3
<latexit sha1_base64="OpAXx6YkpGG/9c92CwuCZLPcLUI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPvvFeuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb2Lqnd3Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcSNI2p</latexit>x4

<latexit sha1_base64="NoitsK8oV4rZtRDSppguGuDyFng=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfbOeuWKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXrnVe/2tFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcTuI2q</latexit>x5
<latexit sha1_base64="XC+4/NKmQqIHkZU3XzlC1nKKw/M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrnFa9a8e4uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEVPI2r</latexit>x6

<latexit sha1_base64="EAWU71pdWJnMog/eTm4mLiC7Y18=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1DJoY2ERwXxAcoS9zV6yZG/v3J0TwpE/YWOhiK1/x85/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6o4VIo3kCBkrcTzWkUSN4KRjdTv/XEtRGxesBxwv2IDpQIBaNopXYXRcQNueuVK27VnYEsEy8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5JNSNzU8oWxEB7xjqaJ2jZ/N7p2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfR50heaM5RjSyjTwt5K2JBqytBGVLIheIsvL5PmWdW7qHr355XadR5HEY7gGE7Bg0uowS3UoQEMJDzDK7w5j86L8+58zFsLTj5zCH/gfP4AqtyPug==</latexit>⇥L

Prefix Suffix

<latexit sha1_base64="eRIEiZNgZdz4tuTdL+YitrV4CNY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8dK7QekoWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0HW/ncLa+sbmVnG7tLO7t39QPjxqmSTTjDdZIhPdCanhUijeRIGSd1LNaRxK3g5HdzO//cS1EYl6xHHKg5gOlIgEo2ilht8IeuWKW3XnIKvEy0kFctR75a9uP2FZzBUySY3xPTfFYEI1Cib5tNTNDE8pG9EB9y1VNOYmmMxPnZIzq/RJlGhbCslc/T0xobEx4zi0nTHFoVn2ZuJ/np9hdBNMhEoz5IotFkWZJJiQ2d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwll9eJa2LqndV9R4uK7XbPI4inMApnIMH11CDe6hDExgM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gAR7o2p</latexit>

[S]

<latexit sha1_base64="o9FhR2DAZSoXbCzu0m5sSFLhyEs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfZOe+WKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXrnVe/2rFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcQsI2o</latexit>x3
<latexit sha1_base64="NoitsK8oV4rZtRDSppguGuDyFng=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfbOeuWKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXrnVe/2tFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcTuI2q</latexit>x5

<latexit sha1_base64="XC+4/NKmQqIHkZU3XzlC1nKKw/M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrnFa9a8e4uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEVPI2r</latexit>x6
<latexit sha1_base64="jBZJqrdd8EBqh/69DvZ8X0IQ7l0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNRBI8V7QekoWy203bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1HGqGDZYLGLVDqlGwSU2DDcC24lCGoUCW+HoZuq3nlBpHstHM04wiOhA8j5n1Fjpwb8NuuWKW3VnIMvEy0kFctS75a9OL2ZphNIwQbX2PTcxQUaV4UzgpNRJNSaUjegAfUsljVAH2ezUCTmxSo/0Y2VLGjJTf09kNNJ6HIW2M6JmqBe9qfif56emfxVkXCapQcnmi/qpICYm079JjytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5F1bs/r9Su8ziKcATHcAoeXEIN7qAODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QP8mY2b</latexit>

[E]

Context [MASK] [sMASK] or [gMASK]

Figure 3: Illustration of the xTrimoPGLM framework. L is the number of transformer layers. ([S],
[E]) denotes the start or end of the input span, respectively. MLM, indicated by the [MASK] token,
represents the in-place token predictions designed to improve the model’s representation ability.
GLM, signed by the [gMASK] and [sMASK] tokens, denotes the next-token predictions designed to
enhance the model’s generation ability. Noted that [sMASK] masks consecutive spans in the middle
of sequences, while [gMASK] masks the rest of sequences except for the context.

GLM’s bidirectional attention over unmasked (i.e., uncorrupted) contexts distinguishes it from causal
decoder-only LMs in which only the unidirectional attention is used, as illustrated in Figure. 3.

3.2 Pre-Training Objectives

GLM incorporates two distinct pre-training objectives to ensure its generative capabilities: 1) Span
prediction, to recover short blanks in sentences whose lengths add up to a certain portion of the input,
and 2) Long-text generation, to generate long blanks with random-length at the end of sentences
with prefix contexts provided. To further equip xTrimoPGLM with the understanding capacity, we
additionally incorporate the masked language model [19] (MLM) as the understanding objective.
This inclusion ensures that the xTrimoPGLM is capable of generating both accurate residue-level and
sequence-level representations.

In summary, xTrimoPGLM simultaneously employs two types of pre-training objectives, each with
its specific indicator tokens, to ensure both understanding and generative capacities:

• MLM: The in-place token prediction task that predicts the tokens randomly masked with a
special indicator [MASK] within sequences.

• GLM: The next-token prediction task recovering short spans masked within sequences
using [sMASK] or longer spans at the end of sequences using [gMASK].

Conceptually, when the [MASK] indicator is utilized, xTrimoPGLM mirrors the functionality of
BERT [19]. Conversely, upon utilizing [sMASK] or [gMASK], the operation of xTrimoPGLM
resembles PrefixLM [37, 39] or GPT [20], as depicted in Figure 3. More specifically,

Masked Language Models (MLM) for Understanding. The MLM objective aims at in-place
masked token predictions. Formally, for an input protein sequence x = [x1, · · · , xn] and the positions
of masks M = {m1, · · · ,m|M |}, then the MLM pre-training loss is defined as

LMLM = EM

[ ∑
m∈M

− log p(xm|x/M )

]
, (1)

where x/M denotes all input tokens except the ones that are in M .
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General Language Models (GLM) for Generation. The GLM objective aims at recovering the
masked consecutive tokens, i.e., spans, in an autoregressive manner. Concretely, for an input sequence
x, sequence spans {s1, · · · , sm} are sampled from it. Each span si, consisting of a consecutive
section of tokens [si,1, · · · , si,li ] in x, is replaced with a single mask token [sMASK] or [gMASK]
to form xcorrupt. To make sure the interactions among corrupted spans, xTrimoPGLM randomly
permutes the order of spans like GLM, and defines the pre-training objective as

LGLM = Ez∼Zm

 m∑
i=1

li∑
j=1

− log p (szi,j |xcorrupt, sz<i
, szi,<j)

 , (2)

where Zm denotes the set of the sequence’s all permutations and sz<i
represents {sz1 , · · · , szi−1

}.

Unified Pre-Training. The two types of pre-training objectives are jointly optimized to pre-train
the xTrimoPGLM model. The unified pre-training objective, which aims to maximize the likelihood
of the oracle tokens, is defined as:

L = LMLM + α · LGLM, (3)

where α is a weighting factor used to balance the different pre-training objectives. As a result, the
proposed unified framework effectively takes advantage of the GLM architecture to characterize both
the understanding ability via LMLM and the generation capacity via LGLM.

3.3 The Pre-Training Setup of xTrimoPGLM -100B

The pre-training phase of xTrimoPGLM-100B can be divided into two stages. Initially, xTrimoPGLM-
100B is pre-trained utilizing the MLM objective, enhancing its representation ability. The primary
aim of this stage is to quickly reduce the loss to a low level. In the second stage, xTrimoPGLM-100B
is trained with the unified objectives that combines MLM and GLM loss at a certain ratio to improve
both the representation and generation abilities.

Masked Language Model (10% pre-trained tokens). [MASK] is employed to mask random tokens
within the sequence, with the total length of the masked tokens amounting to 15% of the input.

General Language Model (90% pre-trained tokens). GLM [24] uses both [sMASK] and [gMASK]
for this task. [sMASK] is used to mask consecutive spans serving the purpose of blank infilling. The
lengths of these spans follow a Poisson distribution (λ = 6), with the total masked span amounting
to 15% of the input. [gMASK] is used to mask the rest of the sequence given the prefix of the
input sequences preserved as context. The length of the masked segment is drawn from a uniform
distribution, with at least 40% of the tokens masked.

3.4 The Empirical Analysis of Unified Training

In this section, we delve deeper into the feasibility of simultaneously optimizing the two distinct
objectives. Unlike existing unified pre-training frameworks [16, 17, 18, 40, 41] which employ
analogous formulations to pre-train various objectives, we explore how to extend the conclusions
drawn from a similar training format to a broader setting. Specifically, we investigate if a model
optimized via in-place token predictions benefits the one trained via the next-token prediction regime,
and vice versa. To achieve this, we must address two principal questions: 1). Is the in-place token
prediction objective compatible with the next-token prediction one? 2). Does the in-place token
prediction objective contribute to the capability of the next-token prediction one, and vice versa?

Pre-training settings. Empirical experiments are conducted based on xTrimoPGLM-150m encom-
passing 30 layers, 20 attention heads, 640 embedding dimensions, and FP16 precision. The other
hyper-parameter settings are consistent with those of xTrimoPGLM-100B. Each model is pre-trained
on Uniref50 [42]. Training is conducted on batches of 2,048 sequences, each of length 1,024 to-
kens. To operate within a fixed compute budget, we focus on the number of tokens observed during
pre-training (corresponding to the total computational cost), rather than those actually trained (i.e.,
those on which a loss is calculated). These differences are considered intrinsic efficiency trade-offs
between training objectives. Further specification for each objective is as follows:

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.07.05.547496doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.05.547496
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 50 100 150 200
Billions of Tokens

2.3

2.4

2.5

2.6

2.7

Va
lid

 L
os

s

Unified Training
MLM

(a) Unified Objective to MLM

0 50 100 150 200
Billions of Tokens

2.3

2.4

2.5

2.6

2.7

Va
lid

 L
os

s

Unified Training
GLM

(b) Unified Objective to GLM

0 50 100
Billions of Tokens

2.4

2.5

2.6

2.7

Va
lid

 L
os

s

<latexit sha1_base64="3buBkqoCSOo86cScq1uDBxZG9uM=">AAACAnicbVDJSgNBEO1xjXEb9SReGoPgaZgJoh6DXjxGMAskIfT01CRNeha6a8QwBC/+ihcPinj1K7z5N3aWgyY+aPrxXhVV9fxUCo2u+20tLa+srq0XNoqbW9s7u/befl0nmeJQ44lMVNNnGqSIoYYCJTRTBSzyJTT8wfXYb9yD0iKJ73CYQidivViEgjM0Utc+LDtl2kYRgTYfPGCuU4AgS0ddu+Q67gR0kXgzUiIzVLv2VztIeBZBjFwyrVuem2InZwoFlzAqtjMNKeMD1oOWoTEzMzv55IQRPTFKQMNEmRcjnai/O3IWaT2MfFMZMezreW8s/ue1MgwvO7mI0wwh5tNBYSYpJnScBw2EAo5yaAjjSphdKe8zxTia1IomBG/+5EVSLzveuePdnpUqV7M4CuSIHJNT4pELUiE3pEpqhJNH8kxeyZv1ZL1Y79bHtHTJmvUckD+wPn8Au6uXCg==</latexit>

2.2 ⇥ speedup

GLM
MLM-adapted GLM

(c) MLM-adapted GLM vs. GLM (Scratch)

0 50 100
Billions of Tokens

2.3

2.4

2.5

2.6

Va
lid

 L
os

s

<latexit sha1_base64="HikhWPwHJhJInY/hsJtzdO4hbIc=">AAACAHicbVC7SgNBFJ2NrxhfqxYWNoNBsAq7QdQyaGMZwTwgWcLs7N1kyOyDmbtiWNL4KzYWitj6GXb+jZNHoYkHhjmccy/33uOnUmh0nG+rsLK6tr5R3Cxtbe/s7tn7B02dZIpDgycyUW2faZAihgYKlNBOFbDIl9DyhzcTv/UASoskvsdRCl7E+rEIBWdopJ59VKVdFBFo88Ej5joFCLJ03LPLTsWZgi4Td07KZI56z/7qBgnPIoiRS6Z1x3VS9HKmUHAJ41I305AyPmR96BgaMzPTy6cHjOmpUQIaJsq8GOlU/d2Rs0jrUeSbyojhQC96E/E/r5NheOXlIk4zhJjPBoWZpJjQSRo0EAo4ypEhjCthdqV8wBTjaDIrmRDcxZOXSbNacS8q7t15uXY9j6NIjskJOSMuuSQ1ckvqpEE4GZNn8krerCfrxXq3PmalBWvec0j+wPr8AdbqlpY=</latexit>

2 ⇥ speedup

MLM
GLM-adapted MLM

(d) GLM-adapted MLM vs. MLM (Scratch)

Figure 4: The empirical analysis of unified training. (a)(b) The MLM and GLM objectives are
optimized simultaneously. (c)(d) Adapting the model from the pre-trained one significantly accelerates
convergence compared to that trained from scratch.

• MLM. Approximately 15% of input tokens are masked, leading to around 1,024 input and
154 target tokens, with the loss being computed exclusively on the targets.

• GLM ([gMASK]). Only the long-text generation objectives (signified by [gMASK]) are uti-
lized, given the compatibility of the span corruption objective ([sMASK]) with the [gMASK]
objectives has been verified. The loss computation pertains to the masked regions, encom-
passing a minimum of 40% of tokens.

Results. We answer the first question regarding the compatibility of these two types of objectives.
Concretely, we alternate between using the MLM, representing the in-place token prediction, and
employing the GLM ([gMASK]) objective, representing the next-token prediction, each occupying
50% of the time in the training batch. We switch the unified pre-training objective to each individual
objective upon reaching the timesteps corresponding to the consumption of 100B and 200B tokens.
Such transitions are feasible since the parameters and overall architecture remain constant, requiring
only a switch in the attention mask. The corresponding validation loss is illustrated in Figure 4(a)(b).
Interestingly, despite the seemingly conflicting nature of the two objectives incorporated within the
unified pre-training objective, both the MLM loss and GLM loss are optimized simultaneously.

Then we investigate whether the in-place token prediction objective influences the convergence speed
of the next-token prediction one, and vice versa. We conduct comparisons when adapting models to
one objective after pre-training on another objective. The adapting model only trains over 50B tokens.
First, we compare the xTrimoPGLM (GLM) adapted from the pre-trained xTrimoPGLM (MLM),
denoted as MLM-adapted GLM, with the xTrimoPGLM (GLM) trained from scratch. Similarly, we
compare the xTrimoPGLM (MLM) adapted from the pre-trained xTrimoPGLM (GLM), denoted
as GLM-adapted MLM with the xTrimoPGLM (MLM) trained from scratch. The validation loss is
depicted in Figure 4(c)(d). In general, we observe that adapting the model from the pre-trained one
significantly accelerates convergence compared to training from scratch. Specifically, to match the
loss of the GLM-adapted MLM model, GLM from scratch requires consuming 110B tokens (2.2×
speedup). Analogically, to match the loss of the MLM-adapted GLM model, MLM from scratch
requires consuming 100B tokens (2× speedup).
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These empirical experiments confirm that modeling the inherent protein data distributions is not
limited to specific training patterns. This finding narrows the gap between autoencoding PLMs, such
as ESM [7], and autoregressive PLMs like ProGen2 [13], providing empirical evidence that supports
the efficacy of the xTrimoPGLM training pipeline.

3.5 The Train Stability of Unified Training

Training stability is the crucial factor accounting for the successful training of 100B-scale large
language models [20, 38, 43, 44]. Given a fixed computing budget, it is essential to balance efficiency
and stability with respect to floating-point (FP) formats. Lower-precision FP formats such as 16-bit
precision (FP16) can enhance computational efficiency but are susceptible to overflow and underflow
errors, potentially leading to catastrophic collapses during training. xTrimoPGLM borrows ideas from
the implementation of GLM-130B [38] which has already addressed many unstable training issues.
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Figure 5: Trials on different strategies for transi-
tion from Stage-1 to Stage-2. Directly incorporat-
ing a fixed ratio of GLM loss into the pre-training
triggers training collapses represented by the ab-
normal “spike” of gradient norm [38]. In contrast,
the Smooth Transition strategy (Purple) that grad-
ually improves the ratio of GLM loss to reach the
expected amount makes the successful transition.

However, xTrimoPGLM-100B still encounters
catastrophic training collapses during the transi-
tion from the first to the second stage of training
- an issue that is not observed in smaller-scale
models (at the 10B-scale). That is, directly in-
corporating a fixed ratio of GLM loss into the
pre-training can trigger these collapses, even
with the addition of a mere 1% ratio of GLM
loss at the beginning, as illustrated in Figure 5.
To alleviate this issue, we propose the imple-
mentation of a smooth transition strategy.

Smooth Transition (ST). Instead of directly
introducing a fixed ratio of GLM loss into the
training process, our empirical investigations
suggest a smooth transition strategy divided into
two phases. In the first phase, our primary goal
is to gradually improve the ratio of GLM loss to
reach the expected amount. Specifically, starting
from 0, we incrementally increase the GLM loss
ratio to reach the target value R in K steps using
linear growth. Consequently, the GLM loss ratio
Rk at the current step k is determined by the
formula Rk = k×R

K . It is worth noting that the
learning rate should be kept exceptionally low
during this phase. In our practical application, we set K = 1000 and learning_rate = 1e-7. Upon
completion of the transition, the learning rate can be gradually increased back to its original level
following the pre-defined pre-training script.

In fact, the final xTrimoPGLM-100B training run only experiences the loss divergence case at the
transition stage, though it fails numerous times due to hardware failures.

4 xTrimoPGLM-100B: Mapping the Protein Universe

The goal of xTrimoPGLM-100B is rooted in a compelling vision: harnessing the capabilities of the
largest-ever pre-trained protein language model to illuminate the vast Protein Universe. To achieve
this, we enrich the existing pre-trained data with an abundance of metagenomic data, followed by
a rigorous data integration process. The details of pre-training data and setup are demonstrated
in 4.1 and 4.2 respectively. Through an extensive review of the current literature, we gather a
variety of datasets. Subsequently, we conduct a comprehensive evaluation of our model using
these datasets. We demonstrate the complexities of downstream task data 4.3, along with our
approaches to downstream supervised training 4.4. We conduct a comprehensive analysis that offers
fair performance comparisons between xTrimoPGLM-100B and ESM2, the current SOTA and the
largest protein pre-training model [6], on downstream tasks. This comparison highlights the potential
of xTrimoPGLM-100B in advancing future protein research and applications.
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4.1 Pre-training Datasets
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Figure 6: The pre-training dataset of xTrimoPGLM-100B: The left panel illustrates the composition
of the dataset used for pre-training the model. The right panel depicts the distribution of taxonomic
categories of Uniref90, visualized as concentric circles representing the levels of superkingdom, king-
dom, and phylum from innermost to outermost. The innermost circle represents four superkingdoms:
Bacteria (67%), Archaea (3%), Eukarya (27%), and Viruses (1%), with 2% of sequences labeled
as unclassified. The middle circle encompasses 17 classified kingdoms, including an unclassified
bacteria category, denoted as “bacteria*”. The outermost circle denotes the phylum level, marking
only those labels with counts over 200,000. In total, Uniref90 includes 273 known phyla.

The pre-training dataset of xTrimoPGLM-100B is curated from two extensive data repositories:
Uniref90 5 and ColAbFoldDB [45] 6. The initial contributions from Uniref90 and ColAbFoldDB
encompasse approximately 153M and 950M (210M representatives plus 740M members) entries,
respectively.

Uniref, a cluster from UniProt, is broadly acknowledged as a high-quality protein dataset often
utilized in pre-training PLMs such as ESM [7] and ProtTrans [8]. UniRef90 clusters are generated
from the UniRef100 seed sequences with a 90% sequence identity threshold using the MMseqs2 7

algorithm, as depicted in Figure 6. Except for unclassified entries, the dataset encapsulates all 4 NCBI
taxonomic classifications of biological superkingdoms including Archaea, Bacteria, Eukaryotes, and
Viruses. Additionally, it exhibits full coverage of the kingdom and phylum levels classifications, with
spanning 17 kingdoms, and 273 phyla. This comprehensive representation across multiple taxonomic
levels demonstrates the rich biodiversity encapsulated within the Uniref90 dataset and affirms its
value for wide-ranging biological investigations. Protein sequences that are published prior to January
1, 2023, are incorporated into the training set. Given its robustness and reliability, our training process
also substantially prioritizes this dataset.

ColAbFoldDB is established through an amalgamation of various metagenomic databases including
BFD 8, MGnify [46], SMAG (eukaryotes) [47], MetaEuk (eukaryotes) [48], TOPAZ (eukaryotes) [49],
MGV (DNA viruses) [50], GPD (bacteriophages) [51], and an updated version of the MetaClust [52]
dataset. Built upon the foundation of UniProtKB, ColAbFoldDB is substantially augmented with a
large corpus of metagenomic sequences derived from diverse environmental niches. Metagenomic
data introduces a new level of diversity to the database, encompassing numerous environmental
niches ranging from the human gut to marine ecosystems. This offers unparalleled opportunities

5https://www.uniprot.org/help/downloads, the Uniref90 version preceding December 2022 is downloaded
6https://colAbFold.mmseqs.com
7https://github.com/soedinglab/MMseqs2
8https://bfd.mmseqs.com
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for the discovery of novel proteins. To comprehensively map the entirety of protein sources in the
biological world, the pre-training dataset has been expanded by incorporating protein sequences
sourced from ColAbFoldDB in addition to those from the Uniref90 dataset.

Training Set. The entirety of sequences in the ColabFoldDB comprises about 950M sequences.
Due to an approximate count of 125M duplicate sequences and the need for diverse training data,
only representative sequences are employed, reducing the dataset to an estimated 210M sequences.
Subsequently, we cross-reference the ColAbFoldDB with the Uniref90 database, eliminating 1.1M
sequences that show a 100% match, thereby avoiding redundancy. Then, we conduct a composition
analysis of each remaining sequence, excluding any that exhibit an individual amino acid composition
exceeding 80% as this may indicate an anomaly or bias in the data. These steps leave us a more
representative subset of around 200M sequences. Then, we combine the two refined datasets (i.e.,
Uniref90 and ColAbFoldDB), yielding a collection of 360M unique sequences, equivalent to roughly
100B tokens, as depicted in Figure 6 (left). During training, to capitalize on the high-quality data,
we assign a greater weight to the Uniref90 data, resulting in a sampling ratio of approximately 60%.
This strategy effectively doubles the Uniref90 data contribution, enhancing our model’s capacity to
fine-tune based on superior-quality data. For the training data distribution, see Appendix A.

Validation Set. Sequences from UniProt released between January 1 and March 30, 2023, are
utilized as the validation datasets. The 18M sequence increment is applied as a query to scrutinize
the target database (i.e., Uniref50 and the training dataset), and sequences over 90% similarity are
eliminated from the query set ( mmseqs easy-search –db-load-mode 2 –min-seq-id 0.9
–alignment-mode 3 –max-seqs 300 -s 4 -c 0.8 –cov-mode). The remaining after filtering
is used as the validation set.

4.2 xTrimoPGLM-100B Configurations

Here we introduce the implementation details of pre-training the xTrimoPGLM-100B model. Since
the xTrimoPGLM-100B borrows the idea from the GLM-130B [38] framework, we only emphasize
the specific hyper-parameter of xTrimoPGLM-100B. For more discussion and design choices please
refer to GLM-130B [38].

xTrimoPGLM-100B is trained on a cluster of 96 DGX-A100 GPU (8×40G) servers in FP16 pre-
cision from January 18 to June 30, 2023. During this time, xTrimoPGLM-100B has consumed 1
trillion tokens from the dataset consisting of Uniref90 and ColAbFoldDB. As of the current date,
xTrimoPGLM-100B continues its pre-training process to pass through as many tokens as possible, as
a recent study [53] suggests that most existing LLMs are largely under-trained. We adopt 3D parallel
strategy with the 4-way tensor parallelism [54], 8-way pipeline parallelism [55], and 24-way data
parallelism [56] based on DeepSpeed [57]. The model owns 72 transformer layers, 80 attention heads,
and 10,240 embedding dims with 31,744 feed-forward embedding dims using GeGLU [58]. We adopt
the Post-LN initialized with the DeepNorm [59]. We follow the mixed-precision [60] strategy (Apex
O2), i.e., FP16 for forwards and backwards and FP32 for optimizer states and master weights, to
reduce the GPU memory usage and improve training efficiency. We also adopt the Embedding Layer
Gradient Shrink (EGS) strategy [38, 61] with α = 0.1 to stabilize the xTrimoPGLM-100B training.
We warm-up the batch size from 240 to 4224 over the first 2.5% samples. We use AdamW [62] as
our optimizer with β1 and β2 set to 0.9 and 0.95, and a weight decay value of 0.1. We warm up the
learning rate from 10−7 to 4 × 10−5 over the first 3.0% samples, then decay it by a 10 × cosine
schedule to the minimum learning 4× 10−6. We use a dropout rate of 0.1 and clip gradients using a
clipping value of 1.0. Each sample contains a fixed sequence length of 2,048 (We concatenate all
protein sequences with a separator into a single document, and sample protein sequences from this
document in such a way that there is virtually no padding during pre-training.). To adapt the model
to the different lengths of proteins in the downstream tasks, we adopt the mix-length pre-training
strategy with four different context windows of 256, 512, 1,024, and 2,048. Taking, 512, for example,
we concatenate four samples together to cater for the 2,048-sequence-length. The ratio of different
context lengths is [#256 : #512 : #1, 024 : #2, 048 = 0.1 : 0.4 : 0.4 : 0.1]. We implement the
two-dimensional RoPE from its author blog 9 as our position embedding. For the tokenization of
the protein data, we use the residue-level tokenizer which is adopted in several PLMs [7, 13, 25, 49].
Except for the basic amino acid types, we add special tokens [MASK], [sMASK], and [gMASK] for

9https://kexue.fm/archives/8397
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model prediction. We also add special tokens <sop>, <eop>, <eos> for sequence separation (Cf.
Table 10 for the full configurations).

4.3 Downstream Tasks Datasets & Evaluation Metrics

Table 2: Summary information for 15 benchmarked downstream tasks, including task category,
evaluation metric, data size, and performance. In this table, ’Struc.’ represents protein structure,
’Dev.’ represents protein developability, ’Inter.’ represents protein interactions, ’Func.’ represents
protein functions, and ’Perf.’ denotes performance (%). The ♣ denotes the results that we pro-
duce or reproduce, while the ♦ represents direct citations from original papers with the same split
train/valid/test sets. For any dataset without established benchmarks, we employ the results of our
own ESM2-15B with LoRA fine-tuning.

Type Task Metric Train Valid Test Prev.Method Perf. xT-100B Perf.

Struc.
Cont. P. Top L/5 ACC 12K 1.5K 1.5K ESM2-15B [7] 92.19♣ 93.32
Fold. P. 12K-cls ACC 12.3K 736 3.2K Ankh_L [27] 61.10♦ 75.61

Sec. Struc. P. 3-cls ACC 11K - 39 Ankh_L [27] 80.70♦ 75.33

Dev.

Sol. P. 2-cls ACC 62.4K - 6.9K ESM2-15B [7] 76.49♣ 79.45
Stab. P. SRCC 53.6K 2.5K 12.8K ESM2-15B [7] 80.75♣ 84.21

Temp. Stab. MCC 283K 63K 73.2K TemStaPro [63] 83.80♦ 94.22
Opt. Temp. SRCC 1.7K - 190 DeepET [64] 62.40 ♦ 73.96

Inter.

Metal B. 2-cls ACC 6K - 1.3K ESM2-15B [7] 79.35♣ 82.78
Enzyme Eff. PCC 13.5K 1.7K 1.7K DLKcat [65] 71.00♦ 74.79

Pept.-HLA Aff. AUC 575K 144K 171K CcBHLA [66] 95.00♦ 96.68
TCR-pMHC Aff. AUC 19.5K - 4.5K epiTCR [67] 92.50♦ 95.10

Func.

Antib. Res. 19-cls ACC 2K - 1.3K ESM2-15B [7] 98.28♣ 98.38
Fluor. P. SRCC 21.4K 5.4K 27.2K Ankh_L [27] 62.00 ♦ 66.00
Fitness P. SRCC 6.3K 699 1.7K Ankh_L [27] 84.00 ♦ 96.10
Loc. P. 10-cls ACC 6.6K - 1.8K Ankh_L [27] 83.20♦ 81.60

To systematically evaluate xTrimoPGLM-100B, we have benchmarked 15 downstream protein-
related tasks across multiple domains. Table 2 shows a comprehensive overview of our benchmark
performance on all evaluated tasks, divided into four main categories: protein structure, protein
developability, protein interactions, and protein functions. The table elucidates these tasks along
with the latest SOTA methodologies employed, their respective performances, and the achievements
attained by our proposed xTrimoPGLM-100B model. We emphasize that this comparison is primarily
from a task-based perspective, where xTrimoPGLM is combined with fine-tuning techniques to
achieve the results. The results reveal that xTrimoPGLM-100B significantly outperforms current
SOTA approaches in most protein-related tasks, hence catalyzing advancements in this field. For
a thorough comparison involving both probing and fine-tuning techniques with the ESM2, we
direct readers to Section 4.4. Next, we individually delve into these subtasks, elaborating on the
corresponding task definitions, dataset processing, evaluation metrics, and other relevant details.

Contact Map. Contact map prediction (Cont. P.) aims to determine whether two residues, i and j, are
in contact or not, based on their distance with a certain threshold (<8Å). This task is an important part
of the early Alphafold version [68] for structural prediction. The trRosetta dataset [69] is employed
and split into 12,041 training samples, 1,505 validation samples, and 1,505 test samples for this task.
The evaluation metric used is the Top L/5 accuracy, considering residue pairs with a separation length
greater than 6 and a sequence length cutoff of 512.

Fold Classification. Fold class prediction (Fold. P.) is a scientific classification task that assigns
protein sequences to one of 1,195 known folds. The dataset employed for this task is based on SCOP
1.75 [70], a release from 2009, and has been widely adopted by DeepSF [71] and Ankh [27]. The
primary application of this task lies in the identification of novel remote homologs among proteins
of interest, such as emerging antibiotic-resistant genes and industrial enzymes [72]. The study of
protein fold holds great significance in fields like proteomics and structural biology, as it facilitates
the analysis of folding patterns, leading to the discovery of remote homologies and advancements in
disease research [73].
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Secondary Structure. The study of a protein’s secondary structure (Sec. Struc. P.) forms a funda-
mental cornerstone in understanding its biological function. This secondary structure, comprising
helices, strands, and various turns, bestows the protein with a specific three-dimensional configuration,
which is critical for the formation of its tertiary structure. In the context of this work, a given protein
sequence is classified into three distinct categories, each representing a different structural element:
Helix (H), Strand (E), and Coil (C). The datasets applied in this study are originally published by
NetSurfP-2.0 [74] and have also been utilized by Ankh [27]. The datasets employed for testing in our
investigation are specifically assembled from the Critical Assessment of Protein Structure Prediction
(CASP) editions 12 and 14, which contain 18 and 21 samples. The result we reported is an average
of these two datasets.

Solubility. This task (Sol. P.) involves a binary classification of a heterogenous set of proteins,
assessing them as either soluble or insoluble. The solubility metric is a crucial design parameter in
ensuring protein efficacy, with particular relevance in the pharmaceutical domain. We’ve adhered to
the same dataset division as is employed in the development of DeepSol [75]. Within this framework,
any protein exhibiting a sequence identity of 30% or greater to any protein within the test subset is
eliminated from both the training and evaluation subsets, ensuring robust and unbiased evaluation.

Stability. The task (Stab. P.) is to predict the concentration of protease at which a protein can
retain its folded state. Protease, being integral to numerous biological processes, bears significant
relevance and a profound comprehension of protein stability during protease interaction can offer
immense value, especially in the creation of novel therapeutics. The dataset applied in this task is
initially sourced from Rocklin et al [76] and subsequently collected within the Task Assessing Protein
Embeddings (TAPE) [77]. In this regression-based task, we employ the SpeaRman Correlation
Coefficient (SRCC) as the evaluation metric to measure the prediction consistency.

Temperpature Stability. The accurate prediction of protein thermal stability (Temp. Stab.) has
far-reaching implications in both academic and industrial spheres. This task primarily aims to predict
a protein’s capacity to preserve its structural stability under a temperature condition of 65 degrees
Celsius. We employed the same database and dataset division strategy used in the development of
TemStaPro [63]. The performance of our prediction is evaluated and reported using the Matthews
Correlation Coefficient (MCC) score.

Optimal Temperature. Grasping the catalytic activity of enzymes is pivotal for industrial enzyme
design, particularly in predicting the optimal temperature (Opt. Temp.) for a given enzyme’s catalytic
effect. The dataset utilized for this task is primarily procured by DeepET [64], a recent advancement
in the field that uses deep learning techniques to understand enzyme thermal adaptation. To quantify
the relationship between these variables, we use the SRCC.

Metal Ion Binding. Metal ion binding (Metal B.) sites within proteins play a crucial role across a
spectrum of processes, spanning from physiological to pathological, toxicological, pharmaceutical,
and diagnostic. Consequently, the development of precise and efficient methods to identify and
characterize these metal ion binding sites in proteins has become an imperative and intricate task
for bioinformatics and structural biology. This task involves a binary classification challenge aimed
at predicting the existence of metal-ion binding site(s) on a given protein sequence. We employ
data [78] curated from the Protein Data Bank (PDB).

Enzyme Catalytic Efficiency. This task (Enzyme Eff.) is focused on predicting kcat values, which
are enzymatic turnover numbers denoting the maximum chemical conversion rate of a reaction,
for metabolic enzymes originating from any organism. These predictions are based on substrate
structures and protein sequences. The underlying importance of this task lies in its potential to
yield high-throughput and accurate kcat predictions applicable to any organism or enzyme. Such
capabilities are crucial for advancing our understanding of cellular metabolism and physiology. The
data, sourced from a variety of repositories including BRENDA, SABIO-RK, KEGG, UniProt, and
MetaCyc, are curated by Li et al [65].

Peptide-HLA/MHC Affinity. The human leukocyte antigen (HLA) gene encodes major histocom-
patibility complex (MHC) proteins, which can bind to peptide fragments and be presented to the cell
surface for subsequent T cell receptors (TCRs) recognition. Accurately predicting the interaction
between peptide sequence and HLA molecule will boost the understanding of immune responses,
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antigen presentation, and designing therapeutic interventions such as peptide-based vaccines or
immunotherapies. The classification task aims to predict whether a given paired peptide and HLA
sequence can bind or not. The modeling data is from Wu et al [66].

TCR-pMHC Affinity. The interaction between T cell receptors (TCRs) and peptide-major histo-
compatibility complexes (pMHCs) plays a crucial role in the recognition and activation of T cells in
the immune system. TCRs are cell surface receptors found on T cells, and pMHCs are complexes
formed by peptides derived from antigens bound to major histocompatibility complexes (MHCs) on
the surface of antigen-presenting cells. The classification task is to predict whether a given paired
TCR sequence and peptide can bind or not. The evaluated data is major from VDJdb, processed and
curated from Pham et al [67].

Antibiotic Resistance. Antibiotic resistance (Antib. Res.) refers to the ability of bacteria and
other microorganisms to resist the effects of an antibiotic to which they are once sensitive. In this
task (Antib. Res.), an input protein sequence is categorized according to which of 19 antibiotics it is
resistant to. Thus, the scope of antibiotic drug development and research could be explored as an
understanding in this topic is accumulated. The Dataset used in this task is curated by CARD [79].

Fluorescence. The Fluorescence Prediction (Fluor. P.) task [35] focuses on predicting the fluo-
rescence intensity of green fluorescent protein mutants, a crucial function in biology that allows
researchers to infer the presence of proteins within cell lines and living organisms. This regression
task utilizes training and evaluation datasets that feature mutants with three or fewer mutations, con-
trasting the testing dataset, which comprises mutants with four or more mutations. The partitioning
of the datasets mirrors the splitting method implemented in the TAPE [77]. The quality of these
predictions is assessed using the Spearman score as the primary evaluation metric.

Fitness. The task of Fitness Prediction (Fitness P.) is dedicated to anticipating the fitness landscape
of the GB1 domain, a process that plays a pivotal role in understanding and enhancing the binding
affinity and stability of this domain. As a prevalent protein interaction domain, GB1 finds wide usage
in diverse applications such as protein purification, biosensors, and drug delivery [80, 81]. This task is
configured as a regression problem, where the goal is to predict the fitness of GB1 binding following
mutations at four specific positions. The data for this task is sourced from the FLIP database [82].
Predictive efficacy is assessed using the Spearman score as the principal evaluation metric.

Localization. The task of Protein Subcellular Localization Prediction (Loc. P.) bears substantial
relevance in bioinformatics, owing to its contributions to proteomics research and its potential to
augment our comprehension of protein function and disease mechanisms [83]. In this task, the input
to the model is an amino acid sequence of a protein, which is transformed into an output comprising
a probability distribution over 10 unique subcellular localization categories. The dataset applied for
this task is derived from Uniprot, meticulously curated by Armenteros et al [84].

4.4 Downstream Performance

We compare three distinct large language models for proteins: ESM2-150M, ESM2-15B [7], and
xTrimoPGLM-100B. To evaluate the effectiveness of these models’ representations, we perform both
feature-based probing and fine-tuning evaluations. Such comparisons in both model architectures
and adaptation techniques offer a comprehensive understanding of the model’s performance across
a range of scenarios. We systematically document the variations in performance metrics and draw
insights into the respective strengths and weaknesses of each model under consideration.

• MLP Probing. We utilize a trainable multilayer perceptron (MLP) model as a probe to
examine the information encoded in the pre-trained representations. This method offers a
straightforward and efficient way to identify what kind of protein information, is captured by
the underlying models. It is crucial to note that during the probing process, the parameters
of pre-trained PLMs are kept frozen, and only the MLP is trained. For the pair comparison,
the embeddings from all models are projected into 128 dimensions followed by ReLU
activation before passing to the next layer of MLP (except for the Fold Prediction task which
is directly projected to the target classes without activation functions), weights of the MLP
are initialized with Kaiming initialization, and the used optimizer is Adam.
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• Fine-tuning with LoRA. Given the limitations imposed by GPU memory, full-scale fine-
tuning becomes impractical for models with 100 billion parameters. Consequently, we
resort to parameter-efficient adaptation techniques, such as the Low-Rank Adaptation
(LoRA) [85]. LoRA, a widely employed method, freezes the weights of the pre-trained
model and incorporates trainable low-rank matrices into each layer of the transformer
architecture. This approach substantially reduces the number of trainable parameters for
downstream tasks while preserving the flexibility of learned representations. The architecture
and other settings for the fine-tuning model remain analogous to those utilized in the MLP
probing, with only the parameters Wq,Wk,Wv,Wo in the transformer being fine-tuned.
Detailed information about the hyperparameter settings can be found in Table 10.

Results. Figure 7 illustrates the performance across all benchmark tasks, with distinct colors
signifying various evaluation strategies and different shapes denoting different models. We use
the relatively smaller ESM2-150M model as an indicator to understand the degree of difficulty
associated with respective downstream protein-related tasks. The performance distribution highlights
the inherent relationships between the complexity of tasks and the advantages brought by the scale of
the model. For the complex tasks, the large models (xTrimoPGLM-100B and ESM2-15B) perform
significantly better than the small model (ESM2-150M), illustrating the requirement for a more
powerful and complex model to address these tasks effectively. For instance, the larger models
consistently surpass the smaller ones by a substantial margin in most of the tasks, such as Contact
Map prediction (under Protein Structure), Fluorescence (under Protein Function), Metal Binding
(under Protein Interaction), and Stability (under Protein Development). In contrast, for simpler
tasks (e.g., Antibiotic Resistance under Protein Function), the difference in performance between
the large and small models is marginal. This pattern demonstrates that the larger models are better
equipped to capture intrinsic latent features of protein sequences. Hence, as the model sizes scale up,
they contribute to significant enhancements in performance especially for the complex tasks, which
corresponds to the emergent abilities of large language models [1].

In the quest to enhance parameter efficiency during fine-tuning, the incorporation of Low-Rank
Adaption (LoRA) has resulted in consistent improvements in overall task performance compared to
the MLP probing method. MLP probing, employed as a static embedding method, circumscribes the
capacity of pre-trained models. In contrast, LoRA enables the pre-trained model to extract and exploit
pertinent features. Furthermore, there is no significant increase in the number of trainable parameters
when LoRA is applied. These advantages have already been proven across a wide range of NLP tasks.
In the following section, we provide a detailed analysis of the four types of downstream tasks.
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Figure 7: Visualization of model performance across all benchmark tasks. Details please refer to
Appendix B.
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Protein Structure. For protein structure-related tasks, we collect three datasets, including residual
(Secondary Structure), pairing (Contact Map) and ensemble structure level (Fold Classification). It
is evident that the large pre-trained models (xTrimoPGLM-100B and ESM2-15B) bring substantial
improvements, as does the application of LoRA. Concretely, the accuracy of the xTrimoPGLM-100B
is improved from 76.86 to 93.32 when LoRA is applied. This implies the potential of incorporating
LoRA into protein structure prediction models. More importantly, the contact map prediction task
is intricately interconnected with the task of predicting the three-dimensional structure of proteins,
as precise residue contact map prediction can significantly expedite the process. Existing structure
prediction models may not exhaustively harness the non-linear transfer capabilities intrinsic to the
pre-trained model. For instance, a popular model, ESMFold [7], freezes ESM2 and appends a folding
trunk (a transformer encoder with 48 layers) as a representation learner. Conversely, the LoRA
technique, by enabling fine-tuning, pioneers a promising trajectory for exploiting pre-training of large
language models to augment the precision of 3D protein structure prediction.

Protein Function. Several tasks have been established to experimentally assess the consequences
of a synthesized protein sequence, with each observation tied to a specific biological function.
Accordingly, we evaluate four such tasks within this category. For instance, the antibiotic resistance
task predicts whether a protein sequence is sensitive to a specific bacteria. The results (Figure 7)
manifest the consistently superior performance of larger models in comparison to smaller counterparts,
such as xTrimoPGLM-100B and ESM2-15B vs ESM2-150M. The tendency is evidenced by a notably
higher Spearman correlation margin on the fitness task and 10-class classification accuracy on
localization prediction. Therefore, we believe that larger PLMs could be deployed in the frontier of
biomedical research and pharmaceutical applications.

Protein Interaction. Proteins tend to interact with different types of molecules to trigger subsequent
bioactivity, including the endogenous catalyzing substrate, metal ions on the cell surface, and
exogenous antigen peptides. Here we focus on four tasks related to protein interactions. Specifically,
for enzyme catalytic efficiency and metal ion binding prediction, only the protein sequence is utilized.
For immunity-based peptide-MHC and TCR-pMHC interaction prediction, we simply concatenate
two sequences with special token <eos> as model input. The results show that LoRA fine-tuning
consistently outperforms the probing method, extending its advantage to sequence pair cases where
the task pattern has not been seen during the pre-training stage. However, we find that the margin
between xTrimoPGLM-100B and ESM models tends to be small in peptide-MHC and TCR-pMHC
interaction tasks. This may be due to the relative simplicity of the task, as the baseline model already
achieves high performance (AUC > 0.9).

Protein Developability. The biophysical condition surrounding protein molecules determines
whether they can work normally. Here, we select three related tasks—solubility, stability, and sensi-
tivity—as representatives for evaluation. The results indicate that xTrimoPGLM-100B significantly
outperforms ESM models on solubility and stability tasks, even though the two tasks are relatively
difficult (ESM-150M performance is around 70). However, the improvement in temperature-related
tasks remains marginal. We find a similar performance trend for the two datasets: xTrimoPGLM-
100B is slightly better than ESM. Since both ESM and xTrimoPGLM-100B achieve high performance
(with MCC > 0.93) in the Temperature Stability task, we could hypothesize that this task may present
some challenges for prediction. On the other hand, the Optimal Temperature task has the smallest
training sample size (approximately 1.7k) among all benchmark tasks. Therefore, it could potentially
constrain the achievable performance of models.

Overall, xTrimoPGLM-100B outperforms ESM2-15B on 12 of 15 tasks. The results also reveal the
scaling law in the performance of downstream tasks with supervised fine-tuning (in Figure 1), i.e.,
the performance seems to have a strong correlation with the model scale. This suggests that scaling
models could potentially be a simple yet effective way to enhance the model performance on a wide
range of protein-related tasks, although other methods [27] attempt to find a path towards building
data-efficient, cost-reduced, and knowledge-guided PLMs without resorting to large language models.
These empirical observations offer clear guidance for future research endeavors focused on model
advancement.
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5 OAS Fine-tuning for Antibody

In this section, we adopt the xTrimoPGLM framework to explore a special family of proteins:
antibodies. Antibodies are ubiquitous yet vital proteins that are generated by the adaptive immune
system to bind and neutralize foreign pathogens such as SARS-CoV-2 [86, 87]. It functions via
binding to antigens on the pathogen, recognizing it, and finally inhibiting it. Generally, antibodies,
composed of two identical heavy chains and two identical light chains, form a large Y-shaped structure.
The specificity of antibody binding is determined by CDRs at the tips of the Y-shaped proteins (VH
and VL). The estimated number of potential human antibodies ranges from 1013 to 1016, signifying
the incredible diversity of the immune response. Their specificity, combined with this abundance,
renders antibodies invaluable for the development of targeted therapies.

We do not directly fine-tune on xTrimoPGLM-100B, mainly due to limitations in computational
budgets and considering the inherent lack of diversity in OAS antibody data, most of which are of
similar length and have similar framework areas. Hence, we first pre-train xTrimoPGLM-1B model
on the general protein dataset 4.1 This process undertakes 500B tokens. Since antibodies represent a
distinct subset of general proteins, then we finetune the model using the OAS dataset10, comprising 1
billion antibody sequences. Considering that the CDRs are the most important parts of an antibody,
we randomly mask one or two whole CDRs for 40% of samples with [sMASK]. A further 40% of the
samples undergo a random span masking process, while the remaining 20% are subjected to the MLM
objective. We exclude the [gMASK] loss from consideration, as it is not required for downstream
antibody-related tasks involving long-text generation. When fine-tuning the xTrimoPGLM-Ab-1B
model on OAS data, we decrease the maximum learning rate to 2e-5 and make the model consume
500B tokens with 2,048 samples per batch and the 1,024 input length per sample. It takes about
168 hours to use 128 Nvidia A100 80G GPU cards with mixed precision training. We carry out
evaluations on two critical undertakings within the realm of drug discovery including assessing the
zero-shot naturalness of antibodies and predicting the structural conformation of antibodies.

5.1 Zero-shot Naturalness

Table 3: Performance of different models in zero-shot naturalness datasets. Since xTrimoPGLM-
Ab-1B can not only be considered as an auto-regressive mode but also an auto-encoder model, we
calculate both PPL and PPPL of them. xTrimoPGLM-Ab-1B-GLM or -MLM means that the model
is finetuned with the supervision of GLM or MLM from the base xTrimoPGLM-Ab-1B model.

Model DATASET 1 DATASET 2
H Chain L Chain Pair H Chain L Chain Pair

Iglm [89] 0.698 0.651 0.683 0.703 0.594 0.665
AbLang [90] 0.655 0.497 0.613 0.713 0.671 0.679

ESM2-15B [36] 0.682 0.552 0.686 0.716 0.510 0.626
AntiBERTy [91] 0.763 0.549 0.699 0.723 0.678 0.679
Progen2-oas [13] 0.703 0.734 0.748 0.701 0.565 0.644

xTrimoPGLM-Ab-1B PPL 0.745 0.696 0.756 0.702 0.688 0.704
xTrimoPGLM-Ab-1B PPPL 0.754 0.683 0.750 0.741 0.668 0.700

xTrimoPGLM-Ab-1B-GLM PPL 0.763 0.676 0.742 0.703 0.685 0.724
xTrimoPGLM-Ab-1B-MLM PPPL 0.733 0.682 0.746 0.766 0.704 0.722

Ablation Study
xTrimoPGLM-Ab-1B-GLM-CDR PPL 0.652 0.700 0.689 0.699 0.647 0.671

xTrimoPGLM-Ab-1B-GLM-Random PPL 0.736 0.666 0.725 0.715 0.640 0.708

In protein design and expression, a crucial step involves filtering out proteins with low expression
while retaining those with high naturalness. Perplexity (PPL) given by a protein language model can
be used to predict the naturalness of proteins [13, 92, 93]. For the GLM objective, PPL is calculated
by:

PPL(x) = exp

(
−

l∑
i=1

logPmodel(xi|xî, xi = [sMASK])

)
, (4)

10Observed Antibody Space (OAS) [28] data. Following the paper, we filter OAS data with IMGT schema
[88] and therefore get 678m sequences without disorder and incompletion.
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where Pmodel(xi|xî, xi = [sMASK]) is the probability of the i-th amino acid, denoted by xi, as
predicted by the model. Here, the context xî is given, with a [sMASK] token in the i-th position. Note
that xî represents all tokens excluding the i-th token. For the MLM objective, pseudo-perplexity
[94] is usually utilized as a substitute for perplexity since perplexity is only computed via the
auto-regressive model. Pseudo-perplexity (PPPL) of a protein is defined as

PPPL(x) = exp

(
−

l∑
i=1

logPmodel(xi|xî, xi = [MASK])

)
, (5)

where Pmodel(xi|xî, xi = [MASK]) represents the probability of the i-th amino acid xi predicted by
the model given the context xî with a [MASK] in i-th position.

Datasets. To assess the performance of various models, we construct two datasets derived from
protein expression experiments conducted in a wet laboratory. Any samples that yield less than
10 mg/L of the purified proteins in the supernatant liquid are categorized as unexpressed, whereas
those yielding more than 10 mg/L are deemed as successfully synthesized. The first dataset (Dataset
1) comprises 601 antibody sequences, derived from experiments conducted on CHO and HEK293
cells. These sequences include 114 proteins from humans, 90 from mice, 1 from rhesus, and 396
from undefined species (not directly sourced from specific species). Of these, 516 are successfully
expressed. The second dataset (Dataset 2) – sourced from HEK293 cells – contains 98 human
antibody sequences targeting a specific antigen, of which 90 are successfully expressed.

Metrics. Each sample comprises both a heavy chain and a light chain. For mod-
els that do not incorporate chain types, we calculate the perplexity of each chain indi-
vidually, then multiply these values to obtain the overall perplexity for the pair. For
models incorporating chain types, we concatenate both chains in the following for-
mat: [human][heavy chain]sequence1<eos>[human][light chain]sequence2<eos>, where
[human] is a special token to indicate the species of sequences, [heavy chain] and [light
chain] are two tokens to represent the types of sequences, <eos> means the end of sequences.
We use the area under the receiver operating characteristic (ROC) curve (AUC) as a measure to
evaluate the models’ ability to predict protein naturalness. Notably, Iglm [89] and ProGen2 [13]
are auto-regressive models, while AbLang [90], ESM2 [36], and AntiBERTy [91] are auto-encoder
models. Thus we evaluate Iglm and ProGen2 using PPL, while the remaining models are tested using
PPPL. As xTrimoPGLM-Ab-1B can function as either an auto-regressive or an auto-encoder model,
we employ both PPL and PPPL to calculate its AUC score.

Results. The results are shown in Table 3. Among these, xTrimoPGLM-Ab-1B surpasses other
baselines in two datasets. Moreover, we further fine-tune xTrimoPGLM-Ab-1B with the GLM
objective with 30 billion tokens to gain xTrimoPGLM-Ab-1B-GLM. Analogously, we fine-tune
it with the MLM objective with 100 billion tokens to get xTrimoPGLM-Ab-1B-MLM. Since the
consumed tokens (80% tokens) of the GLM objective is 4 times more than that (20% tokens) of the
MLM objective in the pre-training stage, xTrimoPGLM-Ab-1B-MLM is fine-tuned with more tokens
than xTrimoPGLM-Ab-1B-GLM for a relatively fair comparison. Consequently, xTrimoPGLM-Ab-
1B-GLM and xTrimoPGLM-Ab-1B-MLM keep similar results on Dataset 1 with little difference of
AUC on pair test, while they benefit from additional training on Dataset 2, as the AUC scores are
improved by 0.02 consistently.

Ablation Study. To justify the contribution of different components, i.e, [sMASK] within random
spans or [sMASK] with CDR regions, of the GLM objective, we train xTrimoPGLM-Ab-1B-GLM-
CDR only with the CDR span task and xTrimoPGLM-Ab-1B-GLM-Random with the random span
task, based on the pre-trained xTrimoPGLM-Ab-1B. xTrimoPGLM-Ab-1B-GLM (50% CDR span
task and 50% random span task) outperforms these two models on Dataset 1 and Dataset 2. These
distinctions highlight the importance of the combination of CDR span task and random span task.

5.2 Antibody structure prediction

In this section, our aim is to predict antibody structures based on their sequences. The study of
protein structure assists in the design and modification of proteins, as well as in target identification
and structural analysis for protein-based drug design. A popular method to predict protein structures
is leveraging Multiple Sequence Alignment (MSA) and structure templates to encode sequences and
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Figure 8: Architecture of xTrimoPGLM-AbFold for structure prediction. xTrimoPGLM-AbFold only
leverages a single Evoformer block and does not need MSA and template search.

then using encoded matrices to generate structures. However, MSA requires significant computational
resources and time. Given that xTrimoPGLM is trained using the MLM task, it is naturally suited to
serve as an encoder for understanding tasks Therefore, we develop xTrimoPGLM-AbFold, which is
based on xTrimoPGLM-Ab-1B, with the aim of predicting three-dimensional antibody structures di-
rectly from amino acid sequences. Our experiments encompass both single-chain structure prediction
and complex structure prediction, i.e., the VH-VL complex.

Datasets & Metrics. The structure prediction dataset for single chains is derived from the RCSB
Protein Data Bank (PDB) [95] prior to April 13, 2022, which consists of both amino acid sequences
and structures. We collect all antibody data in PDB, which contains 19k antibody chains (VL or VH).
Structural data with missing resolution values or resolutions greater than 9 Å are excluded to maintain
quality. Additionally, sequences with an amino acid repetition rate exceeding 90% are filtered out.
Finally, we obtain about 7.5k unique sequences (VL or VH chains). The training set consists of 7,234
sequences, and 350 sequences are left as the test set. The dataset for VH-VL complexes includes
approximately 4.7k antibodies from PDB, which are released before January 2022. We select 68
samples as the test set, which are released between January 2022 and November 2022.

Root mean square deviation (RMSD) and TM-score [96] are used as evaluation metrics for both tasks.
Another important metric DockQ [97] is involved in the structure prediction of complexes.

Model Architecture. Our principal hypothesis is that with an adequately proficient encoder,
structure prediction models can accommodate complex structures using shallow Evoformer layers
and structure modules. Therefore, compared with the current prevailing folding structures, such as
ESMFold, AlphaFold2, we introduce the following modifications to xTrimoPGLM-AbFold: 1) We
eliminate MSA and template search modules, as they offer minimal benefit for antibody folding
in our pre-training and fine-tuning paradigm; 2) Unlike Alphafold2, which employs 48 blocks of
Evoformer, and ESMfold, which utilizes 48 layers of folding trunk, we significantly reduce the
number of downstream folding blocks from 48 to 1. The architecture of xTrimoPGLM-AbFold is
depicted in Figure 8.

Training Settings. For single-chain structure prediction, we convert protein sequences of length L
into the format of [human][chain type]sequence<eos>, and feed it into the xTrimoPGLM-Ab-1B
model to obtain the hidden representation M of the last layer. The information corresponding to
[human], [chain type] and <eos> are removed from M, where M ∈ RL×D and D is the size of
the hidden dimension of the xTrimoPGLM-Ab-1B model. Then, we extend M along its L dimension
in a pairwise manner to obtain a tensor Z ∈ RL×L×2D (Figure 8). After that, M and Z are fed
into a single-block Evoformer module for information fusion and then into the structure module for
prediction of the angle and position of each residue. For the VH-VL complex, it should be noted that
the input is converted into the format of vh_sequence[linker]vl_sequence, where the [linker] is
composed of four groups of residue sequences, each of which is composed of four G residues and
one S residue, just like GGGGSGGGGSGGGGSGGGGS.
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Table 4: Structure prediction of VH and VL in antibodies. RMSD H1-3 means RMSD on CDR1-3 of
heavy chains and RMSD L1-3 means RMSD on CDR1-3 of light chains.

Model RMSD↓ TM-SCORE↑ HEAVY CHAIN RMSD↓ LIGHT CHAIN RMSD↓
H1 H2 H3 L1 L2 L3

AlphaFold2 1.225 0.951 1.254 1.091 2.826 0.89 0.723 1.329
OmegaFold 1.337 0.946 1.418 1.183 3.246 0.860 0.598 1.360
ESMFold 1.421 0.943 1.464 1.320 3.409 1.048 0.679 1.520

IgFold 1.261 0.945 1.324 1.126 2.998 0.948 0.589 1.318
xTrimoAbFold 1.089 0.958 1.176 0.912 2.472 0.811 0.566 1.038

xTrimoPGLM-AbFold 0.9823
±0.007

0.961
±0.001

1.089
±0.012

0.866
±0.011

2.230
±0.04

0.779
±0.017

0.573
±0.008

0.937
±0.014

For structure prediction of single chains, the loss function of structure prediction mainly follows
the work of AlphaFold2 [98] , which contains Frame Aligned Point Error (FAPE) and a number of
auxiliary losses but excludes MSA loss. The loss can be formalized as follows:

L = 0.5LFAPE + 0.5Laux + 0.3Ldist + 0.01Lconf + Langle_norm + 0.5Lrmsd_ca (6)

where Laux is the auxiliary loss from the structure module, Ldist is an averaged cross-entropy loss for
distogram prediction, Lconf is the model confidence loss, Langle_norm is the side chain and backbone
torsion angle loss [98] and Lrmsd_ca is the rmsd for carbo alpha. In addition to the loss described by
the formula above, the VH-VL complex replaces the rmsd-ca loss with a chain center-of-mass loss
[30] and a structural violation loss [98], with weights of 1.0 and 0.03, respectively. The concrete loss
is shown as follows:

Lvh-vl = 0.5LFAPE + 0.5Laux + 0.3Ldist + 0.01Lconf +Langle_norm +Lcentre_mass + 0.03Lviolation. (7)

Baselines. For single-chain structure prediction tasks, we conduct a comparison of existing influential
folding models, including Alphafold2 and four PLM-based models: OmegaFold [23], ESMFold [99],
IgFold [100], and xTrimoAbFold [101]. We use public checkpoints 11 12 13 14 to infer the test set.

For the prediction of VH-VL complex structures, we compared ZDock [102] , a rigid protein
docking algorithm based on fast Fourier transform correlation techniques, ClusPro [103], a docking
method using bioinformatics and computational chemistry techniques, EquiDock [104], a genetic
evolution-based algorithm, HDOCK [105], an algorithm that combines global and local search, and
AlphaFold-Multimer [30], which predicts complex structures based on protein sequence, MSA, and
template information.

Results. Each experiment is conducted 5 times with different random seeds and reports the
averaged results. As demonstrated in Table 4, xTrimoPGLM-AbFold significantly outperforms all
other models, notably xTrimoAbFold—an existing state-of-the-art model—in every metric related to
antibody structure prediction. The impressive performance of xTrimoPGLM-AbFold implies that a
pre-trained antibody model, when fine-tuned with merely a single additional Evoformer [98] block,
can emerge as a leading model for antibody structure prediction, even without the presence of MSA
and templates.

Table 5 shows the performance of VH-VL complex in different models. AlphaFold-Multimer,
which relies heavily on MSA and template information, outperforms most of protein docking
algorithms. However, xTrimoPGLM-AbFold, which does not use any MSA or template information,
performs comparable with AlphaFold-Multimer, indicating that xTrimoPGLM-Ab-1B has learned
sufficient and rich information on antibodies. Crucially, xTrimoPGLM-AbFold achieves a speedup of

11AlphaFold2:https://github.com/deepmind/alphafold/blob/main/scripts/download_alphafold_params.sh
12ESMFold:https://github.com/facebookresearch/esm
13OmegaFold:https://github.com/HeliXonProtein/OmegaFold
14IgFold:https://github.com/Graylab/IgFold
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Table 5: Structure prediction of VH-VL complexes. The inference time is calculated on the whole
test set with a single A100 GPU. xTrimoPGLM-AbFold (evo 1) and xTrimoPGLM-AbFold (evo 16)
are xTrimoPGLM-AbFold with 1 Evoformer block and 16 Evoformer blocks respectively.

RMSD↓ TM-SCORE↑ DOCKQ ↑ INFERENCE TIME ↓
ZDock 10.982 0.596 0.108 34h
ClusPro 5.899 0.792 0.404 1.3h

EquiDock 18.293 0.559 0.032 2m
HDOCK 2.032 0.926 0.705 3.2h

AlphaFold-Multimer 1.325 0.962 0.765 56.6h (original)
55m (faster MSA)

xTrimoPGLM-AbFold (evo 1) 1.304 0.962 0.762 32s
xTrimoPGLM-AbFold (evo 16) 1.234 0.966 0.770 82s

6,300× over the original AlphaFold-Multimer and 103× over the faster MSA-searching AlphaFold-
Multimer [106], owing to the original AlphaFold-Multimer consumes a long time to search MSA (0.8
hour per sample). When we increase the number of Evoformer blocks to 16, xTrimoPGLM-AbFold
attains the best performance on all metrics while still maintaining a 2,400× speedup than the original
AlphaFold-Multimer and 40× speedup than the accelerated AlphaFold-Multimer. It is noteworthy
that only a marginal improvement is attained when the number of Evoformer blocks is increased
from 1 to 16, which indicates that xTrimoPGLM -Ab has already captured sufficient information for
downstream tasks to predict atom positions with precision.

6 Generation

The autoregressive PLMs can characterize the distribution of observed evolutionary sequences,
thereby enabling the generation of novel sequences with diverse folds, markedly distinct from
observed natural proteins [13, 26, 107]. To assess the generation ability of xTrimoPGLM-100B,
we analyze the properties of protein sequences generated via xTrimoPGLM-100B under different
generation settings. Specifically, a diverse set of sequences is sampled using a cross product of
temperature (T ∈ 0.8, 1.0, 1.2, 1.4, 1.6) and nucleus sampling probability (P ∈ 0.5, 0.7, 0.9, 1.0)
parameters. For each combination of T and P , we sample 600 sequences for the comprehensive
sequence analysis. The structures of all generated sequences are predicted with AlphaFold2 [3] for 3
recycles without model ensemble. The similarity of predicted structures to the natural ones in the PDB
is measured by calculating the TM-score using Foldseek [108]. We also use xTrimoPGLM-Ab-1B
to generate the CDR region of Covid-19 antibodies. All the generated sequences are predicted with
xTrimoPGLM-AbFold.

6.1 Properties Analysis of Generated Sequences using xTrimoPGLM-100B

In this section, we examine both the sequence and structural attributes of generated sequences,
shedding light on their statistical properties.

Statistical properties of the sampled artificial sequences We present the pairwise sequence identity
analysis of generated sequences obtained through various combinations of temperature and nucleus
sampling factors, as illustrated in Figure 9(a)(b). We observe that higher nucleus sampling factors
and temperatures, which flatten the token probability distribution during the generation process, lead
to a broader range of sequence diversity. However, it should be noted that the likelihood of selecting
the <eos> token also increases under these conditions. Consequently, higher factors may result in
shorter sequences, as illustrated in Figure 9(c)(d). Furthermore, our empirical study suggests that
the pre-trained model tends to generate repetitive tokens when the temperature drops below 1.0 and
the nucleus sampling factor falls under 0.7, which results in abnormal long sequences. Conversely,
higher values of these hyperparameters improve generation quality. Therefore, we recommend a
careful calibration of the hyperparameters, specifically the balance between temperature and nucleus
sampling factors, to generate protein sequences that conform to the desired specifications.
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Figure 9: The sequence identity and length distributions of generated sequences. Seq. ID represents
the pairwise sequence identity. T is short for the temperature. P is short for the nucleus sampling
probability. Higher nucleus sampling factors and temperatures lead to a broader range of sequence
diversity and shorter sequences.

Intrinsically unstructured/disordered proteins/domains Intrinsically unstructured or disordered
proteins/domains (IUPs) [109] exist in a largely disordered structural state and carry out basic protein
functions. Hence, it is essential to identify IUPs by the commonly used disorder prediction methods,
IUPred3 [110], to reflect the biological evolutionary behaviors. Without extra functional annotations,
we generate a dataset of protein sequences to evaluate our proposed method in the protein disorder
task. For comparison, we also simulate a natural dataset by uniformly sampling from the original
training dataset. Our generated dataset and the natural dataset consist of 6,523 and 10,000 sequences,
respectively.

In order to compare the two datasets comprehensively, all three prediction types are provided in
Table 6, i.e., short disorder, long disorder, and globular structured domains [111]. Short disorder
(SHORT) emphasizes predicting short-disordered regions, while long disorder (LONG) chiefly
targets global structural disorder encompassing a minimum of 30 consecutive protein residues. The
prediction corresponding to globular domains (GLOBULAR) is a structured prediction for structural
studies and structural genomics projects. We also present the ordered content (the proportion of
ordered regions over the entire protein, termed ORDERED) from globular disorder predictions, to
analyze the structural and biochemical attributes of sequences generated by xTrimoPGLM . This
approach diverges from the definition of ordered content (ratio of ordered to disordered regions)
employed in ProtGPT2 [26].

Consequently, the two datasets show similar disorder prediction results as reported in Table 6. Our
generated sequences have close prediction results to the natural dataset in all four metrics, with the
largest gap of 3.89% in LONG between them. The experimental results affirm that sequences gener-
ated by xTrimoPGLM-100B exhibit comparable tendencies for minimal, maximal, and structured
predicted disorder, akin to natural sequences.
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Table 6: Disorder proteins/domains predictions (%).

SHORT LONG GLOBULAR ORDERED
Natural Data (10K) 63.38 68.16 68.57 34.20

Generated 59.84 64.27 64.96 34.56

6.2 General Protein Generation using xTrimoPGLM-100B

To further explore the potential of xTrimoPGLM in generating naturally functional sequences, we
conduct an analysis of their corresponding structures. Our methodology encompasses generating
thousands of sequences, guided by parameters (T=1.0, P=1.0) inferred from preceding statistical
investigations. Each sequence is initiated with the [gMASK] token, subsequently inputted into
xTrimoPGLM-100B. This process generates new sequences by continuously predicting the next
token in an autoregression manner until the <eos> token is predicted or the pre-set maximum length
is reached. Subsequently, AlphaFold2 [98] is employed to predict the three-dimensional folding
structure corresponding to each sequence. In the following step, we utilized FoldSeek [108] to
process each structure and identify any remote homology proteins.

Several interesting findings emerged when we examined the structures of the sequences generated
First, we observed that the model exhibits the capacity to generate essential structural motifs,
including alpha helices and beta sheets. These components form the basis of more sophisticated
tertiary structures. As shown in Figure 10, Case-2 is the shortest and folds into a simple structure with
two alpha helices and beta sheets. Moreover, for moderately longer sequences (Case-1 and Case-3),
the generated structures are much more complex and multiple alpha helices are interconnected by
loop regions. The results potentially imply an iterative process during sequence generation, aiming to
attain global structural optimization. Second, sequence identity is correlated with structure similarity
level. Compared with the generated sequence with extremely low identity (e.g., 11% in Case-3), a
more similar sequence (e.g., 25.1% in Case-1) tends to achieve a better structural alignment (TM-
score from 0.345 to 0.735). The tendency is expected as the folding algorithm largely depends
on homology sequence information, e.g., the MSA alignment utilized in AlphaFold2. Last, it is
noteworthy that although these sequences exhibit highly similar structures to known proteins, their
sequence similarity is still very low. For example, the sequence identity of Case-3 is about 11%, but
the contained six alpha helices are consistently aligned across a long stretch. The result demonstrates
that the xTrimoPGLM model has the potential to search a much larger sequence space to generate
functional structures. The advantage will greatly enhance the synthesis pathways for diverse protein
structures, and potentially improve the design of antibodies targeting antigenic epitopes.

Limitations. There are still many challenges that exist in generating high-quality sequences.
Primarily, the model has difficulty synthesizing proteins that resemble those found in nature when
dealing with sequences longer than 200 amino acids. Instead, it tends to generate a large number of
loops, as demonstrated in Figure 13. Although the model capably captures secondary structures and
basic local combinations of these structures, it falls short in capturing the global or long-dependency
characteristics intrinsic to protein modeling. However, these limitations can be mitigated with
additional training of models, supported by increased computational resources and data volume,
following the development trajectory of language models that have already shown preliminary
comprehension of long-dependencies, such as emergent abilities [1].

Another limitation is the lack of specific guiding conditions during the generation of protein sequences
by the model. Unlike natural language models, PLMs are unable to map content to text spaces like
code, meta-knowledge, and data labels. Consequently, zero-shot or few-shot tasks are not feasible.
However, if PLMs could be interfaced with natural language inputs, which allows them to generate
corresponding protein sequences in response to explicit instructions and intents such as functional
description, target information, and other modalities like structure. These would significantly enhance
their practicality and utility.

Repetition is a common issue in the generation process and arises from the tendency towards local
optima and training oscillations. When generating new amino acids, models often choose options
that locally maximize output probability, leading to repetitive sequences. Training oscillations can
also cause overuse of certain patterns, exacerbating this issue. To mitigate such repetition, techniques
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Case-1: TM-score=0.735, sequence identity=25.1%

Case-3: TM-score=0.345, sequence identity=11%

Case-2: TM-score=0.594, sequence identity=13.4%

Figure 10: Structural visualization of generated and searched natural template sequences. In each
row, the left and middle panel depicts the predicted structure of xTrimoPGLM-100B generated
sequence and the ground truth structure of searched remote protein sequence. The two structures are
superposed at the right panel. We use TM-score and sequence identity as the metric to assess the
similarity at both structural and sequence levels, respectively.

like N-gram penalty and temperature or nucleus factor tuning are used in Figure 13, thus enhancing
the overall sequence quality.

6.3 Antibody Generation using xTrimoPGLM-Ab-1B

To demonstrate the generation capacity of xTrimoPGLM-Ab-1B, we select a heavy chain antibody
sequence (specifically 368.04.B.0106) that interacts with SARS-CoV-2-WT. We implement four
distinctive masking strategies to redesign the Complementarity Determining Region 3 (CDR3) of the
selected sequence, as the CDR3 region is a critical element in the structure of an antibody or T cell
receptor. This sequence is characterized by significant variability and plays an integral role in the
specificity of antigen recognition. The four strategies are defined as follows,
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(a) CDR3 Short Masking (b) CDR3 Whole Masking

(c) CDR3 Random Mutation (d) CDR3 Random Retrieval

Figure 11: The conformations of various methodologies implemented for xTrimoPGLM-AbFold.
(a) CDR3 Short Masking: This setup represents a sequence modification scenario where a fragment
of the CDR3 sequence is masked and redesigned. The generated antibodies are structurally similar
to the original ones. (b) CDR3 Whole Masking: This strategy involves masking the entire CDR3
sequence, necessitating a de novo structural prediction, thus illustrating a more comprehensive
redesign approach. This setup offers a broader framework for exploring the subtleties of antigen
recognition and antibody functionality. (c) CDR3 Random Mutation: This strategy signifies the
validation process using random mutagenesis of selected positions within the CDR3 domain. (d)
CDR3 Random Retrieval: This demonstrates another validation method wherein the CDR3 region of
the base sequence is replaced by a random CDR3 region from other antibodies in the SARS-CoV-2
wild-type library.

• CDR3 Short Masking (CSM). This strategy involves masking a partial segment of the
CDR3 region. We select the length of the masked region based on a uniform distribution
within the interval [3, 6]. Subsequently, a segment of the CDR3 region is randomly replaced
with the [sMASK] token. Upon feeding this modified antibody sequence into xTrimoPGLM-
Ab-1B, the masked segment of the CDR3 region undergoes a redesign. The comparison
between the conformations of the CDR3-redesigned antibodies and the original sequence is
depicted in Figure 11(a).

• CDR3 Whole Masking (CWM). This strategy involves masking the entirety of the CDR3
region with the [sMASK] token, thus necessitating a de novo design approach. Given
the increased complexity of this setting, compared to the CSM, the CWM requires more
sophisticated computational models. This method provides a comprehensive and integrative
methodology to delve deeper into the complexities of antibody functionality, as shown in
Figure 11(b).

• CDR3 Random Mutation (CRM). This strategy adopts a random mutagenesis approach
focusing on specific sites within the CDR3 region. It involves randomly selecting 3-6
positions within the CDR3 domain and subsequently introducing random mutations at these
sites. This method can be seen as a stochastic baseline that operates at a comparable edit
distance. The result is shown in Figure 11(c).

• CDR3 Random Retrieval (CRR). This strategy comprises the random substitution of the
CDR3 region using sequences from other antibodies present in the SARS-CoV-2 wild-type
library. The predicted structures are illustrated in Figure 11(d).
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Table 7: A collection of sequences produced via two distinct masking approaches: CDR3 Short
Masking and CDR3 Whole Masking. In addition, it includes two parallel benchmark methods, namely
CDR3 Random Mutations and CDR3 Random Retrieval. Each sequence’s relative variation from the
reference truth is also quantified, demonstrated through their respective edit distances.

Marker CDR3 Short Masking Edit Distance
Ground truth AKDKDYGDLPTVDYYYHYGMDV -

Red AKDKDYGDLPTVLRYYYYGMDV 3
Green AKDKDYGDLPQYYYYHYGMDV 3
Blue AKDKDYGDLPSLSYYYHYGMDV 3

Yellow AKDKDYGDLPTVDYFFLLGMDV 4
Purple AKDKDYGDLSLSPPYYHYGMDV 5
Orange AKDKDYGDLPTVDYYDYYGLDV 3

CDR3 Whole Masking
Red AKDSYYGSGSYYNPDQGYYYYYGMDV 12

Green AKDGPGGSGSYSADYYYYYGMDV 10
Blue AKDKDCGGDCYLLDYHYYYGMDV 8

Yellow AKDSTVTPLPAAIRTYYYYYYGMDV 12
Purple AKDLNRRGISIFGVDNDYYFYGLDV 13
Orange AKDSYYGSGSYSYVSYYYYYYGMDV 11

CDR3 Random Mutations
Red AKDKDHVGFMTVDYYYHYGMDV 4

Green AKDILFIDLPTVDYYYHYGMDV 5
Blue AKDKDYGDLPTVDYYYLQLIPC 6

Yellow AKDKDYGDLPTVDYDIGYGMDV 3
Purple AKDKDYRHRETVDYYYHYGMDV 4
Orange AKDKDYGDLPTVDYYYALRRRR 6

CDR3 Random Retrieval
Red ARDRSGKDVLTGYPMFPAGMDV 14

Green ARDLSAGHCTGGVCYTAGGIDY 16
Blue ARGVITMVRGVIRDYYYYGMDV 13

Yellow ARDLGGGYSNVYVNHYYGMDV 12
Purple ARDEITVTAGAWGNYYYGMDY 14
Orange AKGYCGGDCYSGLLDWYFDL 16

Results. Under the aforementioned settings, we generate a set of 6,000 antibodies via xTrimoPGLM-
Ab-1B. Six antibodies are randomly selected as depicted in Figure 6.3. xTrimoPGLM-AbFold is
utilized as the structure prediction model. In response to the observation that using CDR3 short
masking tends to generate antibodies closely resembling the ground truth with a small edit distance,
we implemented a filter to exclude any antibodies with an edit distance of 2 or less. A series of
generated sequences and their corresponding edit distances from the ground truth is presented in
Table 7. Importantly, it is noteworthy that both the CSM and CWM policies are capable of generating
sequences of varying lengths without resorting to mutations or deletions. In contrast, the sequences
generated by the two parallel baselines, CRM and CRR, display considerable disorder, regardless
of whether there are few mutations or a complete replacement of the entire CDR3 fragment. Our
analysis further identifies a relationship between the edit distance and the structure of the generated
antibody’s CDR3 region. Specifically, as the edit distance grows, the organization of the CDR3 region
tends to degrade, suggesting that even large generative models currently face limitations.

7 Discussion & Conclusion

One must acknowledge that a substantial limitation of xTrimoPGLM-100B is the high computational
cost linked to these models, posing a considerable barrier to their implementation. A possible
approach to alleviating this might be the application of more advanced efficient technologies in
terms of parameters or memory, like quantization, for instance QLoRA [112], kernel fusion, such as
FlashAttention [113], and Multi-query [114]. Utilizing these methods could enable the training and

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.07.05.547496doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.05.547496
http://creativecommons.org/licenses/by-nc-nd/4.0/


deployment of larger models with less computational resources. However, further investigation is
needed to confirm its practical effectiveness.

Many task-specific methods are plausibly orthogonal to pre-training approaches, complementing each
other to achieve robust performance and significant advancements, as is presented in protein structure
prediction tasks. We underscore the importance of leveraging the substantial fitting capabilities
of large pre-trained models for protein tasks. Instead of treating these models as simply feature
extractors, we argue that it is critical to tap into their inherent learning capabilities [115]. For example,
the contact map prediction task can significantly improve the performance of fine-tuning (including
the use of LoRA) by 15-20 points. Adding inductive bias to these models, although it can improve
performance in some cases, may also inadvertently constrain their learning capacity and limit the
breadth and depth of their feature extraction capabilities. The introduced bias may oversimplify the
problem at hand, hence reducing the robustness of the model. Instead, by exploiting the inherent
strengths of these large pre-trained models, we can extract more diverse and complex features and
build more robust and flexible predictive models. We envision that with continued advancement in
these models and computing technology, the potential of large pre-trained models in protein-related
tasks will be fully unlocked.

In conclusion, our key contribution is the exploration of unified understanding and generation
pre-training with an extremely large-scale protein language model. This model is comparable
to the scale of today’s large natural language models, and our extensive experiments show that
downstream tasks also comply with the scaling law. Additionally, we have opened up the generation
of protein sequences with xTrimoPGLM-100B. By utilizing the xTrimoPGLM framework, we’ve
made advancements in predicting antibody naturalness and structure prediction with our antibody-
specific model, xTrimoPGLM-Ab. Our work serves as a stepping stone for future research in the
protein foundation model, and we hope it can facilitate further progress in protein-related applications.
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A Training Data Distribution

As shown in Figure 12, the bar charts represent the distribution of sequence lengths within the Uniref90
and ColAbFoldDB datasets. In both datasets, sequences in the ’100-400’ length category predominate,
followed by the ’50-100’ category. The ’0-50’ and ’400+’ categories contain significantly fewer
sequences. Note the comparison between the distribution of Uniref90 and ColAbFoldDB, indicating
the variety of sequence lengths used for model training.
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Figure 12: Training data distribution

B Tasks Comparison

We evaluated all benchmarked downstream tasks with xTrimoPGLM-100B and ESM2 models. The
performance results are followed as Table 8. This table is the digitized result of the previous Figure 7.

Table 8: Performance of different models across all benchmarked downstream protein-related tasks.
xT100B depicts xTrimoPGLM-100B model, E15B and E150M for ESM-15B and ESM-150M model
respectively. Metric values are shown in both probing and LoRA (in parentheses) fine-tuning modes,
where the underline denotes the best performance of probing and bold indicates the best performance
of LoRA fine-tuning.

Type Task Metric Model

xT100B (LoRA) E15B (LoRA) E150M (LoRA)

P. Struc.
Cont. Pred. Top L/5 ACC 76.86 (93.32) 73.52 (92.19) 63.60 (84.72)
Fold Pred. 12K-cls ACC 71.57 (75.61) 67.39 (69.20) 54.87 (59.25)

Sec. Struc. Pred. 3-cls ACC 74.63 (75.33) 74.40 (75.85) 73.31 (74.15)

P. Func.

Antib. Res. 19-cls ACC 98.29 (98.38) 98.13 (98.28) 97.54 (96.94)
Fluor. SRCC 65.16 (66.00) 63.84 (63.71) 52.68 (54.54)
Fitness SRCC 81.69 (96.10) 77.12 (94.75) 69.60 (94.65)

Localization 10-cls ACC 79.99 (81.60) 80.78 (82.35) 77.85 (78.88)

P. Inter.

Enzyme eff. PCC 71.44 (74.79) 68.95 (74.58) 65.77 (71.72)
Metal Bind. 2-cls ACC 81.70 (82.78) 79.35 (80.85) 73.94 (81.53)

Pept.-HLA/MHC Aff. AUC 87.22 (96.68) 90.48 (97.28) 91.39 (97.12)
TCR-pMHC Aff. AUC 89.76 (95.10) 91.10 (94.05) 87.81 (90.40)

P. Dev.

Solubility 2-cls ACC 76.04 (79.45) 74.76 (74.63) 71.50 (72.47)
Stability SRCC 75.52 (84.21) 71.69 (80.75) 69.08 (77.69)

Temp. Stabit. MCC 93.07 (94.22) 93.01 (93.24) 86.28 (85.93)
Opt. Temp. SRCC 73.64 (73.96) 73.08 (73.29) 68.57 (69.47)

C Model FLOPs Comparison

We conduct a comparative analysis of computational resources utilized by different pre-trained protein
language models (Table 9). The parameters detailed in this table are meticulously calculated by
implementing the models as per the configurations outlined in their respective source papers and
accompanying resources, such as code and model checkpoints. When discrepancies arise between a
paper’s theoretical account and its practical application, we favor the metrics provided in the paper.
From the right-hand side, the total training tokens are computed by multiplying the training steps,
global batch size, and sequence length, given that all models listed are sequence language models.
The model’s parameters are estimated directly by following the authors’ released implementations
and hyperparameters, with the sum of the training parameters calculated while disregarding tied
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weights and buffers. The total training compute is estimated by first approximating the FLOPs for one
forward propagation (1F) of a single training sample. This is then multiplied by three to account for
one forward and one backward propagation without activation recomputation (1F1B). The resulting
number is then multiplied by the number of samples used during the entire pre-training process,
which is equivalent to the total training tokens divided by the sequence length during pre-training.
Only matrix multiplication (matmul) operations are considered in the compute statistics, with other
operations such as embedding, element-wise addition, softmax, and layer normalization excluded
from the FLOP count. The matmuls considered within the attention block include key, query, and
value transformations, attention matrix computation, attention over values, and post-attention linear
transformation. Hidden size transformations in the feed-forward block, a projection from hidden
dimensions into vocabulary dimensions, and a linear transformation in the language model head (if
one exists), are also included in the matmul FLOPs. As an example, if hidden states of size (B, L,
D) are multiplied by a weight matrix of size (D, 4D), the resulting FLOPs is BLD4D2 (the factor of
2 accounts for multiplication and addition operations). The total training compute for ProtGPT2 is
estimated assuming each A100 GPU performs 120 TFLOPs per second. Consequently, 128 A100
GPUs would achieve approximately 5.3e+21 FLOPs over four days of training.

Table 9: Comparison of training computes between different pre-trained protein language models.

Model Total train compute (FLOPs) Params Training tokens
ESM150M 1.1E+21 150M 1,000B
ESM650M 4.4E+21 650M 1,000B

ESM3B 1.8E+22 2.8B 1,000B
ESM15B 5.1E+22 15B 864B
ProtBert 2.5e+12 2.8B 1,929B
ProtT5-xl 1.7E+22 2.8B 1,929B

ProtT5-xxl 3.7E+22 11B 1,039B
Ankh-base 2.6E+21 740M 952B
Ankh-large 6.5E+21 1.9B 952B
ProtGPT2 5.3E+21 740M -

ProGen 7.6E+21 1.2B 1,049B
ProGen2-small 1.8E+20 150M 170B

ProGen2-medium 8.9E+20 760M 170B
ProGen2-base 1.1E+21 760M 200B
ProGen2-large 3.4E+21 2.8B 200B

ProGen2-xlarge 1.4E+22 6.4B 350B
xTrimoPGLM-Ab-1B 8.5E+21 1.2B 1,000B
xTrimoPGLM-100B 6.2E+23 100B 1,000B

D Pre-training Configurations

The detailed parameters for training the xTrimoPGLM-100B model are listed in Table 10. Hyperpa-
rameters for fine-tuning settings are also included.

E Generated Structures

We first produced batches of samples with an n-gram penalty (N-gram=3) to reduce the probability
of generating repetitive sequences. However, we find many examples exhibiting low-complexity
sequences (e.g., local repeats), where the predicted structures contain long loop disorder regions. We
hypothesize that the n-gram penalty potentially impedes the model’s capacity to generate grammati-
cally correct sequences with ease. Once we remove the n-gram penalty, the generated structures tend
to be more natural.
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Figure 13: Structure examples of generated protein sequences with different parameter configurations.
The first row depicts sequences with parameter (T=1.0, P=1.0, N-gram-penalty=3), while the second
row removes the n-gram constraints to reduce long loop disorder regions.
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Table 10: Full configurations for xTrimoPGLM-100B training

KEY VALUE
glu_activation GeGLU
hidden dim. 10,240
ffn size 31,744
# layers 72
# attention heads 80
sequence_length 2,048
global batch size 4,224
max learning rate 4e-05
min learning rate 4e-06
adam_beta1 0.9
adam_beta2 0.95
adam_eps 1e-08
aggregated_samples_per_sequence 1,2,4,8
attention_dropout 0.1
attention_softmax_in_fp32 True
average_block_length 6
bias_dropout_fusion True
checkpoint_activations True
checkpoint_in_cpu False
checkpoint_num_layers 9
clip_grad 1.0
tensor_parallel_size 4
pipeline_parallel_size 8
data_parallel_size 24
deepnorm True
distributed_backend nccl
eval_interval 300
fp16 True
mlm_prob 0.1
span_prob 0.2
gpt_prob 0.7
hidden_dropout 0.1
init_method_std 0.0052
initial_loss_scale 65536
layernorm_epsilon 1e-05
rotary_embedding 2D
learnable_rotary_embedding False
length_per_sample 2048
log_interval 1
lr_decay_iter None
lr_decay_samples 439,453,125
lr_decay_style cosine
lr_warmup_samples 14,648,437
make_vocab_size_divisible_by 128
masked_softmax_fusion True
micro_batch_size 1
min_gmask_ratio 0.4
min_loss_scale 1.0
optimizer adamw
partition_activations True
rampup_batch_size 240,24,12207031
save_interval 300
seed 1234
short_seq_prob 0.02
shrink_embedding_gradient_alpha 0.1
single_span_prob 0.02
split 949,50,1
tokenizer_type ProteinTokenizer
weight_decay 0.1
zero_stage 1
FINETUNE
lora_(R, α) (8,16),(16,32)
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