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Conventional Network Mining and Learning

Network Mining Tasks
♣ node attribute inference

♣ community detection

♣ similarity search 

♣ link prediction

♣ social recommendation

♣ …

hand-crafted feature matrix

feature engineering machine learning models
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Network Embedding for Mining and Learning

feature learning

Network Mining Tasks
♣ node attribute inference

♣ community detection

♣ similarity search 

♣ link prediction

♣ social recommendation

♣ …

machine learning models

latent representation matrix

X

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE TPAMI, 35(8):1798–1828, 2013.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.
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Word Embedding in NLP

♣ Input: a text corpus 𝐷 = {𝑊}

♣ Output: 𝑿 ∈ 𝑅 𝑊 ×𝑑 , 𝑑 ≪ |𝑊|, d-dim vector 𝑿𝑤 for each word w.

1. T. Mikolov, I Sutskever, K Chen, GS Corrado, J Dean. Distributed representations of words and phrases and their compositionality. In NIPS ’13, pp. 3111-31119. 

2. T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv:1301.3781, 2013.

latent representation vector

X

sentences

input hidden output

𝑤𝑖

𝑤𝑖−2

𝑤𝑖−1

𝑤𝑖+1

𝑤𝑖+2

word2vec 

o Computational lens on big social 

and information networks. 

o The connections between 

individuals form the structural …

o In a network sense, individuals 

matters in the ways in which ...

o Accordingly, this thesis develops 

computational models to 

investigating the ways that ... 

o We study two fundamental and 

interconnected directions: user 

demographics and network 

diversity

o ... ... 
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♣ geographically close words---a word and its context words---in a sentence or 

document exhibit interrelations in human natural language. 



Network Embedding

♣ Input: a network 𝐺 = (𝑉, 𝐸)

♣ Output: 𝑿 ∈ 𝑅 𝑉 ×𝑑 , 𝑑 ≪ |𝑉|, d-dim vector 𝑿𝑣 for each node v.

1. B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of social representations,” in KDD’ 14, pp. 701–710.

2. A. Grover, J. Leskovec. node2vec: Scalable Feature Learning for Networks. in KDD ’16, pp. 855—864.  

3. T. Mikolov, I Sutskever, K Chen, GS Corrado, J Dean. Distributed representations of words and phrases and their compositionality. In NIPS ’13, pp. 3111-31119. 

4. T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv:1301.3781, 2013.
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random walk paths
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DeepWalk [Perozzi et al., KDD14]



Heterogeneous Network Embedding: Problem

♣ Input: a heterogeneous information network 𝐺 = (𝑉, 𝐸, 𝑇)

♣ Output: 𝑿 ∈ 𝑅 𝑉 ×𝑑 , 𝑑 ≪ |𝑉|, d-dim vector 𝑿𝑣 for each node v.

latent representation vector

X?
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Heterogeneous Network Embedding: Challenges
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♣ How do we effectively preserve the concept of “node-context” 

among multiple types of nodes, e.g., authors, papers, & venues 

in academic heterogeneous networks?

♣ Can we directly apply homogeneous network embedding 

architectures to heterogeneous networks? 

♣ It is also difficult for conventional meta-path based methods to 

model similarities between nodes without connected meta-paths.
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meta-path-based 

random walks

skip-grammetapath2vec

heterogeneous

skip-gram
metapath2vec++

Heterogeneous Network Embedding: Solutions



metapath2vec
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1. Y. Sun, J. Han. Mining heterogeneous information networks: Principles and Methodologies. Morgan & Claypool Publishers, 2012.

2. T. Mikolov, et al. Distributed representations of words and phrases and their compositionality. In NIPS ’13.
8

meta-path-based 

random walks
skip-gram



metapath2vec: Meta-Path-Based Random Walks
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Goal: to generate paths that are able to capture both the 

semantic and structural correlations between different 

types of nodes, facilitating the transformation of 

heterogeneous network structures into skip-gram.



metapath2vec: Meta-Path-Based Random Walks
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♣ Given a meta-path scheme

♣ The transition probability at step i is defined as

♣ Recursive guidance for random walkers, i.e.,



metapath2vec: Meta-Path-Based Random Walks
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♣ Given a meta-path scheme (Example)

OAPVPAO

♣ In a traditional random walk procedure, in the toy example, 

the next step of a walker on node a4 transitioned from 

node CMU can be all types of nodes surrounding it—a2, 

a3, a5, p2, p3, and CMU. 

♣ Under the meta-path scheme ‘OAPVPAO’, for example, the 

walker is biased towards paper nodes (P) given its previous 

step on an organization node CMU (O), following the 

semantics of this meta-path.



metapath2vec
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1. Y. Sun, J. Han. Mining heterogeneous information networks: Principles and Methodologies. Morgan & Claypool Publishers, 2012.

2. T. Mikolov, et al. Distributed representations of words and phrases and their compositionality. In NIPS ’13.
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meta-path-based 

random walks
skip-gram

The potential issue of skip-gram for 

heterogeneous network embedding: 

To predict the context node 𝑐𝑡 (type t) given

a node v, metapath2vec encourages all types

of nodes to appear in this context position



metapath2vec++
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meta-path-based 

random walks

heterogeneous 

skip-gram
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metapath2vec++: Heterogeneous Skip-Gram
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♣ softmax in metapath2vec

♣ softmax in metapath2vec++

♣ stochastic gradient descent♣ objective function (heterogeneous 

negative sampling)
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1. T. Mikolov, et al. Distributed representations of words and phrases and their compositionality. In NIPS ’13.



metapath2vec++

♣ every sub-procedure is easy to parallelize

#threads
12 4 8 16 24 32 40
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24

32

40
metapath2vec
metapath2vec++

♣ 24-32X speedup by using 40 cores
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Network Mining and Learning Paradigm

Network Applications
♣ node attribute inference

♣ community detection

♣ similarity search 

♣ link prediction

♣ social recommendation

♣ …

latent representation vector

X
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metapath2vec

metapath2vec++



Experiments

Baselines

♣ DeepWalk [KDD ’14] 

♣ node2vec [KDD ’16]

♣ LINE [WWW ’15]

♣ PTE [KDD ’15]

Heterogeneous Data

♣ AMiner Academic Network

o 9 1.7 million authors

o 3 million papers

o 3800+ venues

o 8 research areas

publications

Mining Tasks

♣ node classification

o logistic regression

♣ node clustering

o k-means

♣ similarity search

o cosine similarityParameters

♣ #walks: 1000

♣ walk-length: 100

♣ #dimensions: 128

♣ neighborhood size: 7

17
J. Tang, et al. ArnetMiner: Extraction and Mining of Academic Social Networks. In KDD 2008.

https://aminer.org/aminernetwork

https://aminer.org/aminernetwork


Application 1: Multi-Class Node Classification
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Application 1: Multi-Class Node Classification
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Application 2: Node Clustering

http://projector.tensorflow.org/
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Application 3: Similarity Search
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Visualization

word2vec [Mikolov, 2013]

http://projector.tensorflow.org/
22
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♣ Problem: Heterogeneous Network Embedding

♣ Models: metapath2vec & metapath2vec++

♧ The automatic discovery of internal semantic 

relationships between different types of nodes in 

heterogeneous networks

♣ Applications: classification, clustering, & 

similarity search



Thank you! 
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https://ericdongyx.github.io/metapath2vec/m2v.html

Data & Code

https://ericdongyx.github.io/metapath2vec/m2v.html

