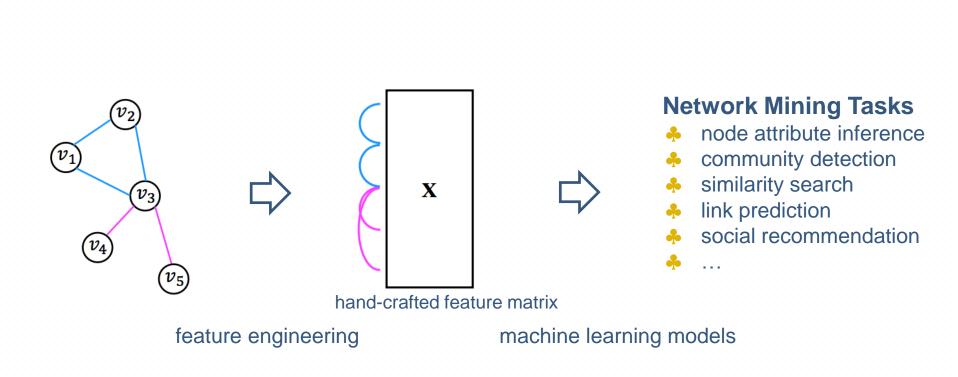
@KDD17

metapath2vec Scalable Representation Learning for Heterogeneous Networks

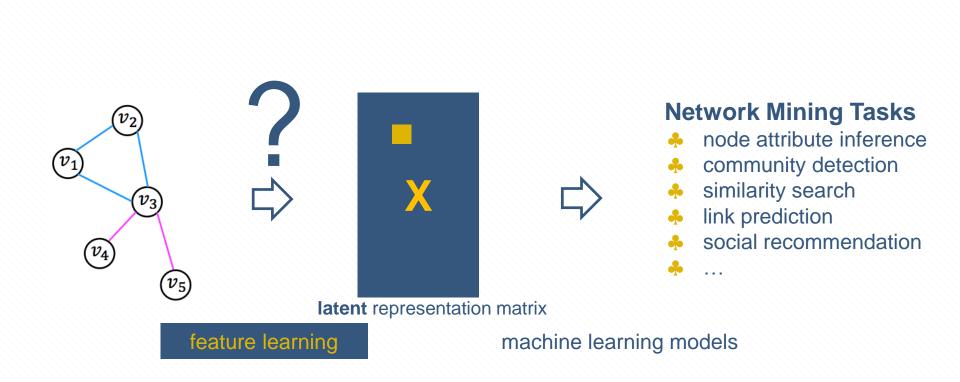
Yuxiao DongNitesh V. ChawlaAnanthram SwamiMicrosoft ResearchUniversity of Notre DameArmy Research Lab& Notre DameArmy Research Lab

Interdisciplinary Center for Network Science and Applications (*iCeNSA*) University of Notre Dame

Conventional Network Mining and Learning



Network Embedding for Mining and Learning

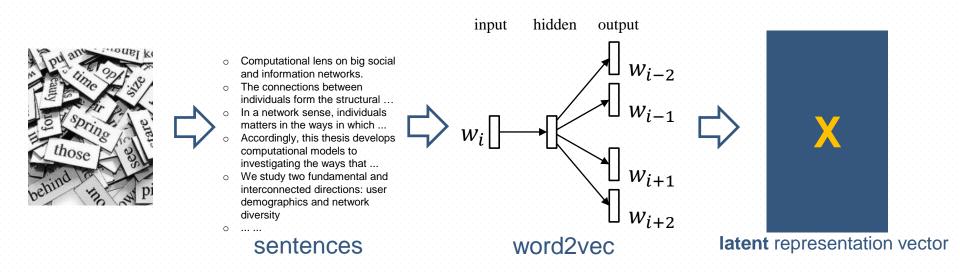


Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. **IEEE TPAMI**, 35(8):1798–1828, 2013. Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. **Nature**, 521(7553):436–444, 2015.

2

Word Embedding in NLP

♣ Input: a text corpus $D = \{W\}$ ♣ Output: $X \in R^{|W| \times d}$, $d \ll |W|$, d-dim vector X_w for each word w.

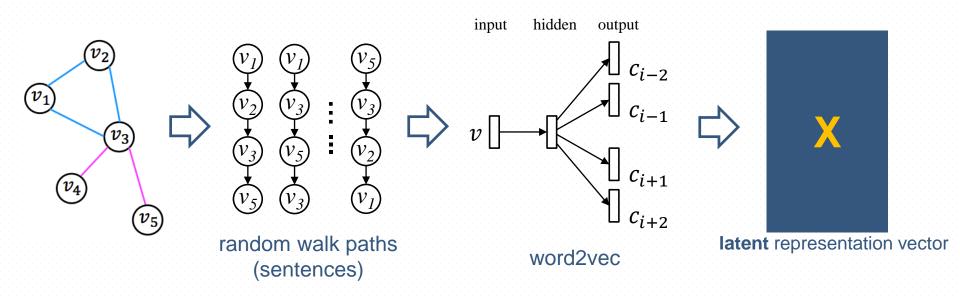


geographically close words---a word and its context words---in a sentence or document exhibit interrelations in human natural language.

T. Mikolov, I Sutskever, K Chen, GS Corrado, J Dean. Distributed representations of words and phrases and their compositionality. In *NIPS '13*, pp. 3111-31119. T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space," *arXiv:1301.3781*, 2013.

Network Embedding

- lnput: a network G = (V, E)
- ♣ Output: $X \in R^{|V| \times d}$, $d \ll |V|$, *d*-dim vector X_v for each node *v*.



DeepWalk [Perozzi et al., KDD14]

- 1. B. Perozzi, R. Al-Rfou, and S. Skiena, "DeepWalk: Online learning of social representations," in KDD '14, pp. 701-710.
- 2. A. Grover, J. Leskovec. node2vec: Scalable Feature Learning for Networks. in KDD '16, pp. 855-864.
- 3. T. Mikolov, I Sutskever, K Chen, GS Corrado, J Dean. Distributed representations of words and phrases and their compositionality. In NIPS '13, pp. 3111-31119.
- 4. T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space," arXiv:1301.3781, 2013.

Heterogeneous Network Embedding: Problem

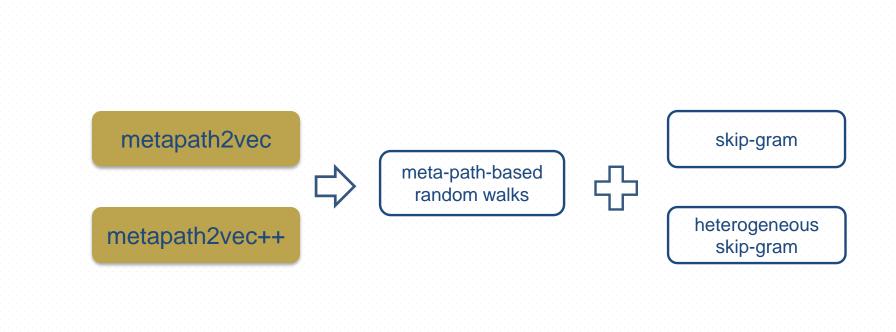
Input: a heterogeneous information network G = (V, E, T)

• Output: $X \in R^{|V| \times d}$, $d \ll |V|$, d-dim vector X_{v} for each node v.

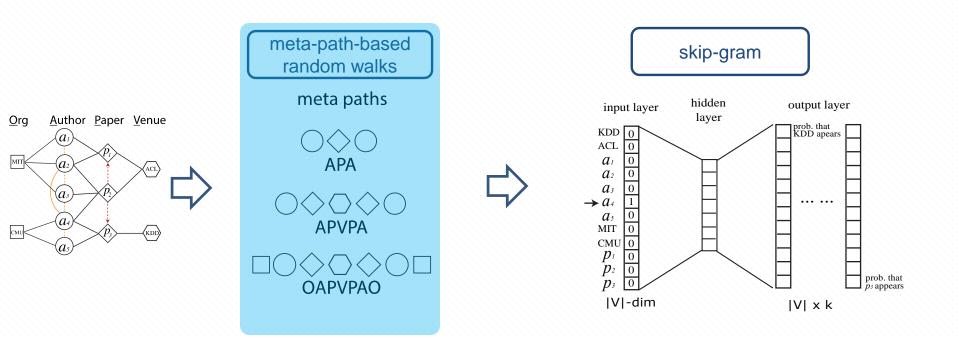
Heterogeneous Network Embedding: Challenges

- How do we effectively preserve the concept of "node-context" among multiple types of nodes, e.g., authors, papers, & venues in academic heterogeneous networks?
- Can we directly apply homogeneous network embedding architectures to heterogeneous networks?
- It is also difficult for conventional meta-path based methods to model similarities between nodes without connected meta-paths.

Heterogeneous Network Embedding: Solutions



metapath2vec

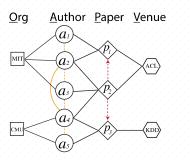


1. Y. Sun, J. Han. Mining heterogeneous information networks: Principles and Methodologies. Morgan & Claypool Publishers, 2012.

2. T. Mikolov, et al. Distributed representations of words and phrases and their compositionality. In NIPS '13.

8

metapath2vec: Meta-Path-Based Random Walks

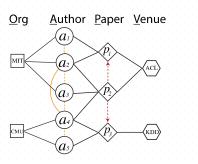


Goal: to generate paths that are able to capture both the semantic and structural correlations between different types of nodes, facilitating the transformation of heterogeneous network structures into skip-gram.

metapath2vec: Meta-Path-Based Random Walks

Given a meta-path scheme

$$\mathcal{P}\colon V_1 \xrightarrow{R_1} V_2 \xrightarrow{R_2} \cdots V_t \xrightarrow{R_t} V_{t+1} \cdots \xrightarrow{R_{l-1}} V_l$$



•

•

The transition probability at step *i* is defined as

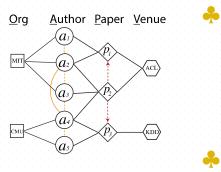
$$p(v^{i+1}|v_t^i, \mathcal{P}) = \begin{cases} \frac{1}{|N_{t+1}(v_t^i)|} & (v^{i+1}, v_t^i) \in E, \phi(v^{i+1}) = t+1 \\ 0 & (v^{i+1}, v_t^i) \in E, \phi(v^{i+1}) \neq t+1 \\ 0 & (v^{i+1}, v_t^i) \notin E \end{cases}$$

Recursive guidance for random walkers, i.e.,

$$p(v^{i+1}|v_t^i) = p(v^{i+1}|v_1^i), \text{ if } t = l$$

metapath2vec: Meta-Path-Based Random Walks

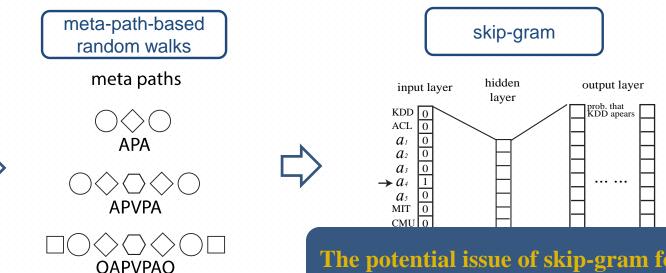
Given a meta-path scheme (Example)
OAPVPAO



In a traditional random walk procedure, in the toy example, the next step of a walker on node a4 transitioned from node CMU can be all types of nodes surrounding it—a2, a3, a5, p2, p3, and CMU.

Under the meta-path scheme 'OAPVPAO', for example, the walker is biased towards paper nodes (P) given its previous step on an organization node CMU (O), following the semantics of this meta-path.

metapath2vec



The potential issue of skip-gram for heterogeneous network embedding:

To predict the context node c_t (type t) given a node v, *metapath2vec* encourages all types of nodes to appear in this context position

Y. Sun, J. Han. Mining heterogeneous information networks: Principles and Methodologies. Morgan & Claypool Publishers, 2012.
 T. Mikolov, et al. Distributed representations of words and phrases and their compositionality. In *NIPS '13*.

Author Paper Venue

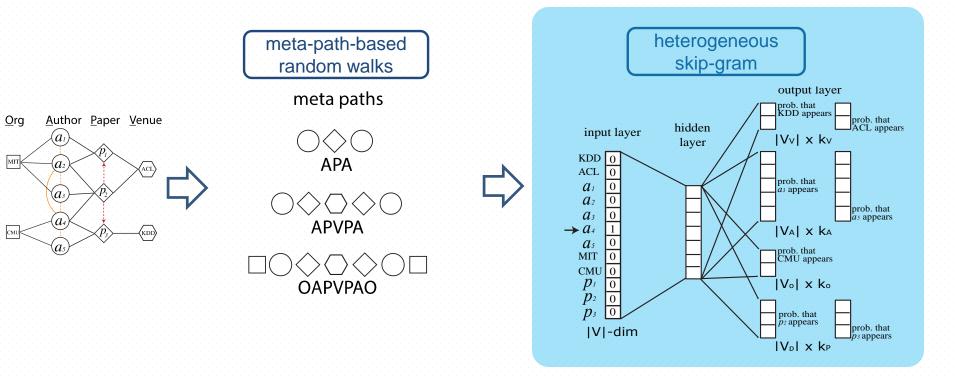
KDD)

Org

MIT

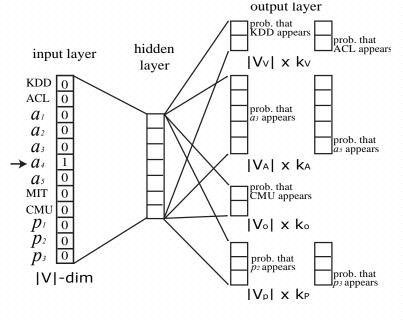
 (a_2)

metapath2vec++



MIT

metapath2vec++: Heterogeneous Skip-Gram



 objective function (heterogeneous negative sampling)

$$\mathcal{O}(\mathbf{X}) = \log \sigma(X_{c_t} \cdot X_v) + \sum_{k=1}^{K} \mathbb{E}_{\boldsymbol{u}_t^k \sim P_t(\boldsymbol{u}_t)} [\log \sigma(-X_{\boldsymbol{u}_t^k} \cdot X_v)]$$

softmax in *metapath2vec* $p(c_t|v;\theta) = \frac{e^{X_{c_t}} \cdot e^{X_v}}{\sum_{u \in V} e^{X_u} \cdot e^{X_v}}$

softmax in metapath2vec++ $p(c_t|v;\theta) = \frac{e^{X_{c_t}} \cdot e^{X_v}}{\sum_{u_t \in V_t} e^{X_{u_t}} \cdot e^{X_v}}$

stochastic gradient descent

$$\frac{\partial \mathcal{O}(\mathbf{X})}{\partial X_{u_t^k}} = (\sigma(X_{u_t^k} \cdot X_v - \mathbb{I}_{c_t}[u_t^k]))X_v$$
$$\frac{\partial \mathcal{O}(\mathbf{X})}{\partial X_v} = \sum_{k=0}^K (\sigma(X_{u_t^k} \cdot X_v - \mathbb{I}_{c_t}[u_t^k]))X_{u_t^k}$$

T. Mikolov, et al. Distributed representations of words and phrases and their compositionality. In NIPS '13.

metapath2vec++

Input: The heterogeneous information network G = (V, E, T), a meta-path scheme \mathcal{P} , #walks per node w, walk length *l*, embedding dimension *d*, neighborhood size *k* **Output:** The latent node embeddings $\mathbf{X} \in \mathbb{R}^{|V| \times d}$

initialize X ;

```
for i = 1 \rightarrow w do
```

for $v \in V$ do

MP = MetaPathRandomWalk(G, \mathcal{P}, v, l); X = HeterogeneousSkipGram(X, k, MP);

end

end

return X ;

```
MetaPathRandomWalk(G, \mathcal{P}, v, l)

MP[1] = v;

for i = 1 \rightarrow l-1 do

draw u according to Eq. 3;

MP[i+1] = u;
```

end

return MP;

HeterogeneousSkipGram(X, k, MP) for $i = 1 \rightarrow l$ do v = MP[i];

```
for j = max(0, i-k) \rightarrow min(i+k, l) \& j \neq i do

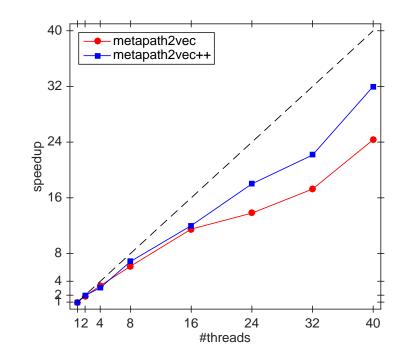
c_t = MP[j];

X^{new} = X^{old} - \eta \cdot \frac{\partial O(X)}{\partial X} (Eq. 7);

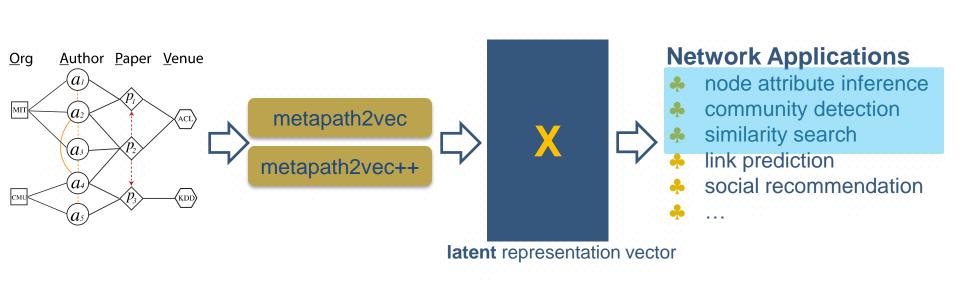
end
```

end

every sub-procedure is easy to parallelize
24-32X speedup by using 40 cores



Network Mining and Learning Paradigm



Experiments

Heterogeneous Data

- AMiner Academic Network
 - ⊖ 9-1.7 million authors
 - 3 million papers
 - 3800+ venues
 - 8 research areas

Baselines

- DeepWalk [KDD '14]
- node2vec [KDD '16]
- LINE [WWW '15]
- PTE [KDD '15]

Parameters

- 🔶 #walks: 1000
- walk-length: 100
- #dimensions: 128
- neighborhood size: 7

Mining Tasks

- node classification
 logistic regression
- node clustering o k-means
- similarity search
 cosine similarity

J. Tang, et al. ArnetMiner: Extraction and Mining of Academic Social Networks. In *KDD 2008*. https://aminer.org/aminernetwork

Application 1: Multi-Class Node Classification

 Table 2: Multi-class venue node classification results in AMiner data.

Metric	Method	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk/node2vec	0.0723	0.1396	0.1905	0.2795	0.3427	0.3911	0.4424	0.4774	0.4955	0.4457
Macro-F1	LINE (1st+2nd)	0.2245	0.4629	0.7011	0.8473	0.8953	0.9203	0.9308	0.9466	0.9410	0.9466
Mac10-11	PTE	0.1702	0.3388	0.6535	0.8304	0.8936	0.9210	0.9352	0.9505	0.9525	0.9489
	metapath2vec	0.3033	0.5247	0.8033	0.8971	0.9406	0.9532	0.9529	0.9701	0.9683	0.9670
	metapath2vec++	0.3090	0.5444	0.8049	0.8995	0.9468	0.9580	0.9561	0.9675	0.9533	0.9503
	DeepWalk/node2vec	0.1701	0.2142	0.2486	0.3266	0.3788	0.4090	0.4630	0.4975	0.5259	0.5286
Micro-F1	LINE (1st+2nd)	0.3000	0.5167	0.7159	0.8457	0.8950	0.9209	0.9333	0.9500	0.9556	0.9571
MICIO-F1	PTE	0.2512	0.4267	0.6879	0.8372	0.8950	0.9239	0.9352	0.9550	0.9667	0.9571
	metapath2vec	0.4173	0.5975	0.8327	0.9011	0.9400	0.9522	0.9537	0.9725	0.9815	0.9857
	metapath2vec++	0.4331	0.6192	0.8336	0.9032	0.9463	0.9582	0.9574	0.9700	0.9741	0.9786

Application 1: Multi-Class Node Classification

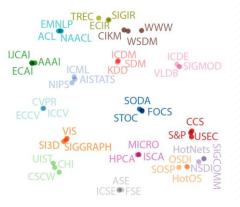
Metric	etric Method		10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk/node2vec	0.7153	0.7222	0.7256	0.7270	0.7273	0.7274	0.7273	0.7271	0.7275	0.7275
Macro-F1	LINE (1st+2nd)	0.8849	0.8886	0.8911	0.8921	0.8926	0.8929	0.8934	0.8936	0.8938	0.8934
Macro-F1	PTE	0.8898	0.8940	0.897	0.8982	0.8987	0.8990	0.8997	0.8999	0.9002	0.9005
	metapath2vec	0.9216	0.9262	0.9292	0.9303	0.9309	0.9314	0.9315	0.9316	0.9319	0.9320
	metapath2vec++	0.9107	0.9156	0.9186	0.9199	0.9204	0.9207	0.9207	0.9208	0.9211	0.9212
	DeepWalk/node2vec	0.7312	0.7372	0.7402	0.7414	0.7418	0.7420	0.7419	0.7420	0.7425	0.7425
Micro-F1	LINE (1st+2nd)	0.8936	0.8969	0.8993	0.9002	0.9007	0.9010	0.9015	0.9016	0.9018	0.9017
MICIO-FI	PTE	0.8986	0.9023	0.9051	0.9061	0.9066	0.9068	0.9075	0.9077	0.9079	0.9082
	metapath2vec	0.9279	0.9319	0.9346	0.9356	0.9361	0.9365	0.9365	0.9365	0.9367	0.9369
	metapath2vec++	0.9173	0.9217	0.9243	0.9254	0.9259	0.9261	0.9261	0.9262	0.9264	0.9266

Table 3: Multi-class author node classification results in AMiner data.

Application 2: Node Clustering

Node clustering results (NMI) in AMiner

methods	venue	author		
DeepWalk/node2vec	0.1952	0.2941		
LINE (1st+2nd)	0.8967	0.6423		
PTE	0.9060	0.6483		
metapath2vec	0.9274	0.7470		
metapath2vec++	0.9261	0.7354		

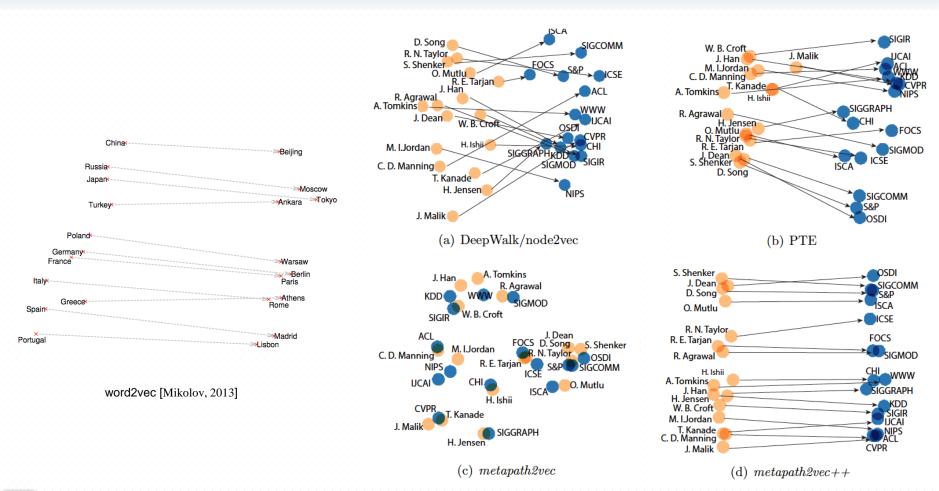


Application 3: Similarity Search

Rank	ACL	NIPS	IJCAI	CVPR	FOCS	SOSP	ISCA	S&P	ICSE	SIGGRAPH	SIGCOMM	CHI	KDD	SIGMOD	SIGIR	WWW
0	ACL	NIPS	IJCAI	CVPR	FOCS	SOSP	ISCA	S&P	ICSE	SIGGRAPH	SIGCOMM	CHI	KDD	SIGMOD	SIGIR	WWW
1	EMNLP	ICML	AAAI	ECCV	STOC	TOCS	HPCA	CCS	TOSEM	TOG	CCR	CSCW	SDM	PVLDB	ECIR	WSDM
2	NAACL	AISTATS	AI	ICCV	SICOMP	OSDI	MICRO	NDSS	FSE	SI3D	HotNets	TOCHI	TKDD	ICDE	CIKM	CIKM
3	CL	JMLR	JAIR	IJCV	SODA	HotOS	ASPLOS	USENIX S	ASE	RT	NSDI	UIST	ICDM	DE Bull	IR J	TWEB
4	CoNLL	NC	ECAI	ACCV	A-R	SIGOPS E	PACT	ACSAC	ISSTA	CGF	CoNEXT	DIS	DMKD	VLDBJ	TREC	ICWSM
5	COLING	MLJ	KR	CVIU	TALG	ATC	ICS	JCS	E SE	NPAR	IMC	HCI	KDD E	EDBT	SIGIR F	HT
6	IJCNLP	COLT	AI Mag	BMVC	ICALP	NSDI	HiPEAC	ESORICS	MSR	Vis	TON	MobileHCI	WSDM	TODS	ICTIR	SIGIR
7	NLE	UAI	ICAPS	ICPR	ECCC	OSR	PPOPP	TISS	ESEM	JGT	INFOCOM	INTERACT	CIKM	CIDR	WSDM	KDD
8	ANLP	KDD	CI	EMMCVPR	TOC	ASPLOS	ICCD	ASIACCS	A SE	VisComp	PAM	GROUP	PKDD	SIGMOD R	TOIS	TIT
9	LREC	CVPR	AIPS	T on IP	JAlG	EuroSys	CGO	RAID	ICPC	GI	MobiCom	NordiCHI	ICML	WebDB	IPM	WISE
10	EACL	ECML	UAI	WACV	ITCS	SIGCOMM	ISLPED	CSFW	WICSA	CG	IPTPS	UbiComp	PAKDD	PODS	AIRS	WebSci

Table 5: Case study of similarity search in AMiner Data

Visualization

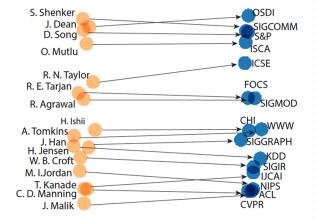


Problem: Heterogeneous Network Embedding

Models: metapath2vec & metapath2vec++

The automatic discovery of internal semantic relationships between different types of nodes in heterogeneous networks

Applications: classification, clustering, & similarity search



•

•

Thank you!

https://ericdongyx.github.io/metapath2vec/m2v.html

