
OAG: Toward Linking Large-scale Heterogeneous Entity Graphs

Fanjin Zhang†, Xiao Liu†, Jie Tang†, Yuxiao Dong‡, Peiran Yao†, Jie Zhang†, Xiaotao Gu†,

Yan Wang†, Bin Shao‡, Rui Li‡, and Kuansan Wang‡

†Tsinghua University ‡Microsoft Research
{zfj17,liuxiao17,ypr15,j-z16,yan-w16}@mails.tsinghua.edu.cn,jietang@tsinghua.edu.cn

{yuxdong,binshao,Kuansan.Wang}@microsoft.com,xiaotao2@illinois.edu,lerain@gmail.com

ABSTRACT
Linking entities from different sources is a fundamental task in
building open knowledge graphs. Despite much research conducted
in related fields, the challenges of linking large-scale heterogeneous
entity graphs are far from resolved. Employing two billion-scale
academic entity graphs (Microsoft Academic Graph and AMiner)
as sources for our study, we propose a unified framework — LinKG
— to address the problem of building a large-scale linked entity
graph. LinKG is coupled with three linking modules, each of which
addresses one category of entities. To link word-sequence-based en-
tities (e.g., venues), we present a long short-term memory network-
based method for capturing the dependencies. To link large-scale
entities (e.g., papers), we leverage locality-sensitive hashing and
convolutional neural networks for scalable and precise linking. To
link entities with ambiguity (e.g., authors), we propose heteroge-
neous graph attention networks to model different types of entities.
Our extensive experiments and systematical analysis demonstrate
that LinKG can achieve linking accuracy with an F1-score of 0.9510,
significantly outperforming the state-of-the-art. LinKG has been de-
ployed to Microsoft Academic Search and AMiner to integrate the
two large graphs. We have published the linked results—the Open
Academic Graph (OAG)1, making it the largest publicly available
heterogeneous academic graph to date.
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1 INTRODUCTION
Entity linking, also called ontology alignment and disambigua-
tion [12], is the task of determining the identity of entities across
different sources. The problem of entity linking is related to entity
matching [20, 25, 36], entity resolution [2, 3], web appearance dis-
ambiguation [1, 11], name identification [16], object distinction [37],
and name disambiguation [8, 30, 40], and has been extensively stud-
ied for decades by different communities.

However, despite the bunch of research, the challenges of linking
Web-scale heterogeneous entity graphs from different sources are
far from resolved. First, the Web-based entity graphs are usually
heterogeneous, in the sense that they consist of various types of en-
tities, such as author, paper, and venue entities in academic graphs.
Second, it is very common to observe ambiguous entity mentions in
entity graphs. For example, there are more than 10,000 authors with
the name “James Smith” in Microsoft Academic Graph (MAG) [26].
Finally, the scale of entity graphs on the Web is usually large, with
billions of entities.

In this work, we employ two academic entity graphs (MAG and
AMiner [33]) to conduct a systematical analysis for the problem of
linking large-scale heterogeneous entity graphs. A straightforward
method to address this problem is to find the entity alignments
using heuristic rules [15]. However, such an ad-hoc strategy cannot
be flexibly generalized to other scenarios. Several efforts have also
been made to find the alignments via learning algorithms such as
neural networks [17] and probabilistic frameworks [24]. However,
the complexity of these methods (usually O(n2)) is very expensive,
making them not scalable for handling large graphs in practice.
Additionally, recent works attempt to combine human annotators
into the loop of entity linking [40, 41]. Still, these methods are
insufficient to handle large heterogeneous graphs.

Figure 1 illustrates an example of linking the heterogeneous
MAG and AMiner academic graphs. As can be seen, there are 16,392
authors with the name “Jing Zhang” in AMiner and 7,170 in MAG.
The entity linking methods must address this inherent ambiguity.
In addition, both graphs consist of different types of entities, such
as authors, venues, and papers. How to leverage the heterogeneous
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Figure 1: An illustrative example of the large-scale hetero-
geneous entity linking problem. The table above displays
the overall 0.7 billion entities in this large-scale graph. The
graph in the middle illustrates ambiguity in author link-
ing, where name distinction and affiliation shift exist. At the
bottom, node and attribute heterogeneity increase great dif-
ficulty in linking.

structure to improve the linking accuracy is largely unexplored.
Last, the AMiner graph comprises more than 285,450,905 entities,
and MAG covers over 462,112,348 entities. Therefore it is desired
to design efficient and scalable techniques to conquer the computa-
tional challenge.

We propose a unified framework—LinKG—to address the above
challenges, toward building a large-scale linked entity graph. The
framework is coupledwith three linkingmodules, each of which cor-
responds to one type of entity: venues, papers, and authors. To link
venues, which are coarse-grained and word-sequence dependent
entities, we customize the long short-term memory networks [10]
(LSTM) to capture the sequential dependency in venue names; To
link paper entities, which are relatively less ambiguous but at a
very large scale, we present a locality-sensitive hashing [6] and
convolutional neural network [14] (CNN) based techniques for fast
and accurate matching; To link large-scale author entities, which
are highly ambiguous, we propose heterogeneous graph attention
networks (HGAT). In addition to leveraging information from each
graph, we also incorporate the linked venue and paper entities in
previous steps into HGAT.

To summarize, our work makes the following contributions.
• First, we propose to study the entity linking problem in two large-
scale heterogeneous entity graphs, in which each type of entity
has different properties and thus the linking of them faces differ-
ent challenges. We develop an effective and efficient framework—
LinKG, which leverages state-of-the-art deep neural networks
for linking heterogeneous entities.

• Second, we conduct large-scale linking experiments between the
MAG and AMiner graphs. The results show that our framework
can achieve very high accuracy of 0.9926 for linking venue en-
tities, 0.991 for papers, and 0.9741 for authors. We also conduct
extensive experiments to demonstrate our design choice of each
module in the framework.

• Finally, with the linking results, we published the Open Academic
Graph (OAG). OAG consists of 0.7 billion entities and 2 billion
relationships, making it the largest public academic data to date2.
The dataset can be used for various research topics, such as
network science and graph mining (collaboration and citation),
text mining and natural language processing (title and abstract),
science of science, computational social science, etc.

2 RELATEDWORK
In this section, we review relevant literature about entity linking.
Entity linking, also known as data integration, record linkage etc.,
is a classical problem which was put forward more than six decades
ago [7]. Some literature reviews can be found in [7, 25].

There are various approaches to tackle this problem. Li et al. [15]
argue for rule-based methods and develop a rule discovery algo-
rithm. Another important thread of research is based on machine
learning algorithms. Tang et al. [31] regard entity matching as
minimizing Bayesian risk of decision making. Some works [22, 23]
attempt to use less labeled data and employ semi-supervised or
unsupervised matching algorithms. For example, Rong et al. [22]
transfer the entity matching problem to a binary classification prob-
lem and use pairwise similarity vectors as training data. Wang et
al. [35] present a factor graph model to learn the alignment across
knowledge bases. For data integration across social networks or
other networks, some [29, 39] incorporate network structure to
develop effective algorithms. Zhang et al. [39] propose COSNET, an
energy-based model which considers global and local consistency
of multiple networks.

Recently, network embedding based approaches [9, 17, 18] have
been proposed to address the user alignment problem across so-
cial networks. For example, Liu et al. [17] propose an optimization
framework to learn user embedding simultaneously across net-
works, by considering hard and soft constraints. Heimann et al. [9]
propose an embedding-based solution for graph alignment based
on the factorization of a user-similarity matrix of two graphs. How-
ever, for large-scale graphs, constructing the similarity matrix is
very expensive. Similarly, Zhang et al. [38] propose MEgo2Vec,
which employs attention mechanisms and graph neural networks
elaborately to match ego networks of two candidate users.

However, few studies aim to find a unified solution for large-
scale heterogeneous entity linking. For such a problem, one must
consider efficiency, heterogeneity, ambiguity issues. In this paper,
we propose a unified framework to deal with these issues. We
present a hashing-based method to efficiently find linkings with
less ambiguity. We use LSTM to perform fuzzy-sequence linking
and CNN to perform fine-grained text matching . Finally, based on
results obtained by the aforementioned approaches, we use graph
attention networks to perform linking with more ambiguity.

3 PROBLEM DEFINITION
In this section, we formalize the problem of entity linking across
heterogeneous entity graphs.

Definition 3.1. Heterogeneous EntityGraph (HEG) (also known
as the heterogeneous information network (HIN) [28]). A HEG is
2The dataset has been downloaded more than 40,000 times over the past months (until
2019-02-03).



Figure 2: The architecture of LinKG.

defined as a graph HG = {E,R} where each entity e ∈ E and
each relation r ∈ R are associated with type mapping functions
τ (e) : E → C and ϕ(r ) : R → D, respectively.C and D represent the
entity and relation types with |C | > 1 and |D | > 1.

For example, an academic graph is a heterogeneous entity graph
comprises multiple types of entities: authors, papers, and venues. Its
relation set D includes 1) the authorship relation between authors
and papers, 2) the paper-publish-in-venue relation between papers
and venues, 3) the co-authorship relation between authors, and 4)
the author-publish-in-venue relation between authors and venues.

Problem 3.1. Entity Linking across HEGs. Given two hetero-
geneous entity graphs HG1 and HG2, the goal is to generate entity
linkings L = {(e1, e2)|e1 ∈ HG1, e2 ∈ HG2} such that e1 and e2
represent exactly the same entity in HG1 and HG2.

In this work, we focus on the problem of entity linking across
two heterogeneous academic entity graphs: Microsoft Academic
Graph and AMiner, each of which consists of author, paper, and
venue entities. The goal is to link these three types of entities for
the two large-scale graphs. The proposed approaches are general
and can be extended to handle other heterogeneous networks.

4 THE LINKG FRAMEWORK
We present a unified framework, LinKG, which is coupled with three
modules for linking venue, paper, and author entities, respectively,
across the MAG and AMiner heterogeneous graphs. In each module,
we present techniques that are capable of addressing the unique
challenges in linking each type of entities. Figure 2 illustrates the
overview of the LinKG framework.

(1) Venue linking. The venue entity linking task is formulated as:
given the full names of venues in each graph, the goal is to
connect the same venues from both graphs. Though additional
information can be utilized for venue linking, we find that the
single usage of venue full names is simple, efficient, and effective.
The venue linkingmodule consists of two technical components:
venue name matching and sequence encoding empowered by
long short-term memory networks.

(2) Paper linking. To link paper entities, we fully leverage the het-
erogeneous information, including a paper’s title and publi-
cation year, as well as the other two types of entities, i.e., its
authors and publication venue. Notice that both graphs contain
hundreds of millions of paper entities and billions of relations
between papers and their authors. Thus, we propose to lever-
age 1) the hashing technique (e.g., locality-sensitive hashing)
for fast processing and 2) the convolution neural networks for
effective linking.

(3) Author linking. To link author entities, we generate a heteroge-
neous subgraph for each author. One author’s subgraph is com-
posed of his or her coauthors, papers, and publication venues.
Moreover, we incorporate the venue and paper linking results
from the first two modules into author linking. This linking task
faces not only the scalability issue but also the long-standing
challenge of “name disambiguation” [8, 30]. To tackle them,
we present a heterogeneous graph attention network based
technique for linking author entities.

Due to the different properties of the three types of entities, we
design three different neural networks for addressing their asso-
ciated challenges. Empirical results in Section 5 demonstrate the
effectiveness of our design and modeling choices over other alter-
native methods.

4.1 Linking Venues — Sequence-based Entities
The first category entity we are going to deal with is word-sequence
dependent entity — i.e., venues in the academic graph. Ideally, all
attributes associated with venues can be leveraged for linking them
across the two graphs, including the venue full name, keywords,
and its publications, as well as those publications’ authors. However,
many journals in the dataset publish millions of papers that are also
associated with millions of authors, making it difficult to utilize
them straightforwardly and efficiently.

Furthermore, the keyword attribute also contributes little to
the distinction between venues in similar fields. For instance, the
two journals ‘Diagnostic and interventional imaging’ and ‘Journal
of Diagnostic Imaging and Interventional Radiology’ share exactly
the same keywords “diagnostic”, “interventional”, and “imaging”,
resulting in a very high similarity by using common similarity
metrics, such as Jaccard Index.

Name Matching. More importantly, it turns out that the direct
matching between two graphs’ venue entities by using their full
names and abbreviations can link more than 27,000 venue pairs,
corresponding to the majority of the final linking results. The chal-
lenging part of this task lies in the remaining venues that cannot
be matched directly. In specific, these venues usually have the fol-
lowing characteristics:



Figure 3: The LSTM model for modeling sequencial depen-
dency in venue full names.

(1) Word order inversion: The same journal is observed with dif-
ferent word orders in two graphs, such as Journal of Shenzhen
University and Shenzhen University Journal.

(2) Extra or missing prefix or suffix: For many venues, their names
contain additional annotations, such as Proceedings of the Second
international conference on Advances in social network mining
and analysis.

LSTM. Name matching is not able to handle those venues that
cannot be exactly matched. We observe that the relative word or
keyword sequences in the full name is generally preserved. There-
fore, we propose to model both the Integral Sequence and Keyword
Sequence in venue names. Integral Sequence is the raw word se-
quence from venue names, and Keyword Sequence is derived from
the keywords extracted from the Integral Sequence. We present an
enhanced long short-term memory networks (LSTM) to address
the issues above.

Given a venue i in one graph, let u(0)i be the input Integral Se-
quence and v(0)i be the Keyword Sequence, we can have:

u
(2)
i = lstmu2(lstmu1(u

(0)
i )), v

(2)
i = lstmv2(lstmv1(v

(0)
i )) (1)

where lstm denotes the LSTM layers. Then we calculate the differ-
ences di j with venue j from the other graph:

di j (u) = u
(2)
i − u

(2)
j , di j (v) = v

(2)
i −v

(2)
j (2)

Finally, we concatenate all of them with Jaccard Index (JAi j ) and
the number of inversion pairs in Keyword Sequence (IVi j ), and
employ fully-connected layers to calculate the similarity between
the two venues:

si j = [u
(2)
i ,v

(2)
i ,u

(2)
j ,v

(2)
j ,di j (u),di j (v), JAi j , IVi j ]

yi j = f c(si j )
(3)

where f c denotes the fully-connected layers and y is the similarity
between venue i and j. In training, we use venues from labeled
candidate pairs to learn parameters in the LSTM layers and f c
layer; and in matching, we use the learned parameters to predict
the similarity between two venues.

4.2 Linking Papers — Large-scale Entities
The second category entity is of large-scale. This makes the paper
linking problem faces several challenges. First, the overall volume
of academic publications at each of the graphs is at the scale of
hundreds of millions, requiring efficient linking techniques. Second,
it is commonly observed from not only theMAG andAMiner graphs
but also the official publishers (such as ACM and IEEE) that paper
titles are often truncated if they contain punctuation marks, such
as ‘:’ and ‘?’, making the linking task more challenging. Finally,
there also exist papers with exactly the same titles even in the same
venue in both graphs, such as the two different “robust influence
maximization” papers published in KDD 2016, making this task
harder and harder.

To address these challenges, we propose to leverage the hash-
ing technique and convolution neural networks for linking paper
entities across the two graphs.

Locality-sensitive Hashing. If we compare all possible pairs of
papers from both sides, the matching complexity is at least O(n2),
where n is the number of papers in each graph. To reduce the
computational cost, we propose to leverage the hashing technique
to match paper entities. Specifically, we use the locality-sensitive
hashing (LSH) algorithm, which is widely used for efficient nearest
neighbor search.

An intuitive way to map titles to binary codes is to use word one-
hot encoding. However, this will make binary representations high-
dimensional, and mapping them to low-dimensional binary space
using LSH is likely to lose information. We adopt Doc2Vec [13] to
first transform titles to low-dimensional real-valued vectors. Then
LSH is applied to further map real-valued vectors to binary codes.

For efficient linking, we directly query the indexed binary codes
and obtain uniquely matched papers in O(1) time. We find that
recall will get much lower when leveraging other heterogeneous
attributes, such as authors, venues. Therefore, we just employ title
hashing to deal with easy cases for paper linking.

Convolution Neural Networks (CNN). LSH can match papers
from the large-scale MAG and AMiner graphs efficiently. However,
due to its probabilistic nature, the information loss in LSH, e.g.,
during its randomized projection stage, would result in missing
paper candidates. Therefore, we also propose to leverage a more
elaborate method, that is, convolution neural networks, to capture
fine-grained matching signals for those unlinked papers.

The CNN based linking strategy consists of three steps: 1) candi-
date paper pair search; 2) paper similarity matrix construction; 3)
CNN-based pairwise similarity learning.

To avoid n2 pairs of candidate papers, we employ the inverted
index technique based on title keywords to filter candidate paper
pairs. We then construct two similarity matrices for each candidate
pair, by using their paper titles and authors, respectively, as the
input of the CNN model. Each element z(0)i j in the similarity matrix
is set to 1 if the i-th word (name initial) and j-th word (name initial)
in two paper’s titles (authors) are the same, -1 otherwise. Instead
of concatenating the two matrices, we model them individually in
the first CNN layers. This is because there is no need to measure
cross-entity similarities, such as between one paper’s title and the



Figure 4: The CNN model for modeling heterogeneous at-
tributes of paper entities.

other one’s authors. The overall CNN architecture for paper linking
is shown in Figure 4.

For the first layer of CNN, the n-th filterw(1,n) scans over each
input similarity matrix z(0) to generate a feature map z(1,n):

z
(1,n)
x,y = σ (

rn−1∑
i=0

rn−1∑
j=0

w
(1,n)
i, j · z

(0)
x+i,y+j + θ

(1,n)), (4)

where rn and θ (1,n) denote the size and the bias of the n-th filter,
respectively. Herein, the square filter and ReLU [5] are adopted.
Moreover, multiple filters are used to capture different similarity
patterns to deal with the data heterogeneity issue.

The following layers are convolutional or pooling layers for
capturing the higher-order matching features. After flattening the
hidden layer matrix to a dense vector and concatenating the two
vectors learned from title and author similarity matrices, Multi-
Layer Perception (MLP) is used to produce the final matching score.
Finally, softmax function is utilized to output the matching proba-
bility and cross entropy is used as the objective.

In our framework, we first leverage locality-sensitive hashing
to link easily matched paper pairs. For those papers which can not
obtain confident matching results via LSH, we further employ CNN
to perform fine-grained linking.

4.3 Linking Authors — Ambiguous Entities
In this subsection, we introduce the author linking module, which
is more challenging than linking papers and venues, due to the
author name ambiguity issue. The good news is that linked entities
(i.e., venues and papers) in previous steps can help alleviate this
problem. Similar to the paper linking task, it is impractical to link
hundreds of millions of authors from two graphs. Therefore, the
first step is to generate candidate pairs for authors if they have
similar names; Second, for each author in the candidate pair, we
construct a heterogeneous ego subgraph, and two ego subgraphs
can be connected with each other if they share common venues or
papers that have been linked before; Finally, a heterogeneous graph
attention network is applied for determining author matching.

Paired Subgraph Construction. For each author in a candidate
pair, its direct (heterogeneous) neighbors are selected, including its
coauthors, papers, and venues. The left part of Figure 5 illustrates
an example of the construction process. If two authors’ papers or
venues have been linked in previous steps, we can connect the two

Figure 5: The heterogeneous graph attention networks for
modeling heterogeneous structures around authors. p1 and
p
′

1, v1 and v
′

1 are conflated as the same entity in previous
steps, respectively. The boxes in the right represent the dif-
ferent roles played by heterogeneous entities in author link-
ing, which are captured by different attention mechanisms.

authors’ subgraphs together. Note that we construct a fixed-size
paired subgraph based on collaboration and publication frequencies
in order to better feed into graph neural networks. In addition, we
also include coauthors’ papers and venues for constructing the
paired subgraph (i.e. a two-hop ego network).

HeterogeneousGraphAttentionNetworks (HGAT). The com-
mon neighbors of candidate author pairs (such as papers and venues)
could provide evidence for author pair matching. We propose us-
ing graph attention networks to combine all the information by
aggregating needed pieces of information from neighbors. Next we
will introduce pre-training, encoder layers and output layers of this
model.

We pre-train input features for each entity based on both seman-
tic and structure information. For semantic features, we first train a
skip-gram word embedding model [19] for all words on the AMiner
publication corpus (including titles, authors, abstracts, etc.) . Then
the semantic embedding of each entity is obtained by averaging
over its associated words’ embeddings. For structure features, we
train the LINE model [32], due to its simplicity, on a large hetero-
geneous entity graph (HEG) and get the structural embeddings for
each entity. Two types of embeddings are concatenated together as
entity input features h to graph attention networks.

Encoder layers. The encoder is actually multiple graph attention
layers [34]. The goal of graph attention is to learn the attention
coefficient attn(ei , ej ), which implies the aggregation weight of
source entity ej ’s embedding on target entity ei . The attention
coefficient is learned by self-attention mechanism, i.e.,

oi j = attn(Whi ,Whj ) (5)

where oi j indicates the importance of node ej ’s features to node
ei , hi is node ei ’s input features, and W is a shared projection
matrix. By utilizing the subgraph structure, the graph attention
layer only needs to compute oi j for nodes ej ∈ Ni , where Ni is



the neighborhood of node ei . Then oi j can be normalized across all
possible ej by using softmax function. In this work, the normalized
attention coefficient αi j is specified as below:

αi j =
exp(LeakyReLU(c⊤τ (ei )Whi + c

⊤
τ (ej )

Whj ))∑
k ∈Ni exp(LeakyReLU(c

⊤
τ (ei )

Whi + c
⊤
τ (ek )

Whk ))
(6)

where cτ (ei ) denotes the attention parameter vector of entity ei ’s
type τ (ei ). Note that different from the original GAT [34], we use
different attention parameters for each type of entities because
different types of entities play different roles in author linking. The
heterogeneous attention mechanism are plotted in Figure 5. Then
we employ the multi-head attention to generate node ei ’s output
embedding h

′

i as

h
′

i =

Kn

k=1
σ (

∑
j ∈Ni

αki jW
khj ) (7)

where
f
represents concatenation, σ is the activation function and

K is the head number of one layer. In our model, we use two graph
attention layers to instantiate the encoder part.

Output layers. Passed through the graph encoder, each node has a
hidden embedding by aggregating its near neighbors. Let ĥMAG and
ĥAMiner denote the embeddings of two focal authors in a candidate
pair. We fuse these two embeddings into one vector and then use
two fully-connected layers to produce output representation for
each pair,

y = f c(ĥMAG ⊗ ĥAMiner ) (8)

where f c(·) denotes the fully-connected layers and we choose the
element-wise multiplication operator as the vector operation ⊗.
Finally, we optimize the negative log-likelihood loss function by
comparing the output vectors with ground truths.

4.4 Further Discussions
In this section, we use academic entity graphs as the example to
explain how the proposed framework LinKG deals with the three
challenges: large-scale, heterogeneity, and ambiguity, in our prob-
lem. The proposed methods are general and can be also applied
to various different heterogeneous entity graphs, for example the
heterogeneous social networks [39]. The method for linking venues
can be used to link entities with word-sequence information, while
the LSH method for linking papers can be used to link entities of
large scale. In case recall is also very important, the combination of
LSH and CNN could achieve a better trade-off between efficiency
and effectiveness. The method for linking authors leverages the
graph structure information and also linking results of the other
entities, thus could achieve a high linking accuracy.

5 EXPERIMENT
We evaluate our solution in the context of two heterogeneous en-
tity graphs: MAG and AMiner. Microsoft Academic Graph (MAG)
consists of 208,915,369 papers, 52,678 venues, 253,144,301 authors
and so on, which is a snapshot taken in Nov. 2018. AMiner consists
of 172,209,563 papers, 69,397 venues, 113,171,945 authors and so
on, which are snapshots taken in July 2018 (for venues and authors)
or Jan. 2019 (for papers). Next, we present our main experimental
results on venue linking, paper linking and author linking. The

OAG data set is publicly available.1 The codes and training data are
available at https://github.com/zfjsail/OAG.

5.1 Experiment Setup

Datasets We construct the following datasets to evaluate venue
linking, paper linking and author linking.
• Venue datasets: We generate a relatively hard dataset, by ex-
cluding trivial cases that can be matched by full name or short
name directly. We use Jaccard Index to calculate similarity be-
tween venues and manually label 1,202 pairs for training and
test, 30% of which are used for test set.

• Paper datasets: Like venue datasets above, we construct a diffi-
cult paper linking dataset. We create two paper sets: clean paper
setCP and noisy paper set NP . The goal is to link papers between
CP and NP . The clean set contains 46,170 papers extracted from
AMiner. The NP dataset is constructed by adding noises to each
paper. Thus, each original paper and its corresponding noisy
paper become a positive matching pair. The method to add noise
is based on differences in existing matched papers, such as differ-
ent author name formats and missing title words. The negative
paper pairs we generate share some common keywords to in-
crease linking difficulty. We use 20% noisy papers for test (to find
corresponding matched clean papers).

• Author datasets: We use the following two ways to generate
positive author pairs. (1) sample author pairs with unique names
and matched papers. (2) sample author pairs both of which are
top coauthors (w.r.t. collaboration frequency) of strictly matched
author pairs by rules. We use negative pairs which cannot be
matched by strict rules but one of which can be matched to some
other author by rules. Negative pairs should also have similar
names. We construct 10,000 positive pairs and 10,000 negative
pairs respectively. The training/validation/test split is 2:1:1. To
increase the task difficulty, we also add some noises to the dataset.
For example, we mask some authors’ affiliations or replace a
fraction of authors’ papers/venues with random papers/venues.

Comparison Methods We compare our proposed methods with
the following methods. Some methods with the same name are
designed differently according to different entity characteristics.
• Keyword:
– For venues: We use TF-IDF weighted Jaccard index to measure
the similarity of two venue names.

– For papers: Given a paper p ∈ NP , we use its title keywords to
find candidate papers in CP by inverted index table and then
re-rank these candidates by edit distance between two titles
and character-level similarity of its author names.

– For authors: We match two authors if and only if they have
exact the same full name.

• SVM:
– For venues: We use similarity scores of venue integral se-
quences and keyword sequences as input features.

– For papers: We use similarity scores of paper titles and authors
as input features.

– For authors: We use similarity scores of author names, affilia-
tions, venues, papers and coauthors as input features.

For detailed feature definition, please refer to Appendix. A.2.2.

https://github.com/zfjsail/OAG


Table 1: Results of linking heterogeneous entity graphs. “–” indicates the method does not support the entity linking.

Methods Keyword SVM Dedupe COSNET MEgo2Vec LinKGC LinKGL LinKG

Venue
Prec. 80.15 81.69 84.25

– –
84.67 91.16 91.16

Rec. 83.76 83.45 80.92 - 85.81 87.58 87.58
F1 81.91 82.56 82.55 85.23 89.33 89.33

Paper
Prec. 99.57 87.73 99.30

– –
96.60 89.85 96.70

Rec. 25.31 85.42 87.09 94.55 89.71 94.70
F1 40.36 86.56 92.80 95.57 89.78 95.69

Author
Prec. 44.48 84.70 50.65 91.73 91.03 81.30 84.92 95.37
Rec. 80.63 92.22 85.46 85.33 90.82 84.95 94.75 93.48
F1 57.33 88.30 63.60 88.42 90.92 83.09 89.57 94.42

Overall
Prec. 80.22 86.54 82.26 91.73 91.03 91.06 88.19 96.11
Rec. 45.71 87.70 86.38 85.33 90.82 91.05 91.38 94.11
F1 58.23 87.12 84.27 88.42 90.92 91.05 89.76 95.10

• Dedupe [4]3: This is an open-source toolkit to perform dedu-
plication, record linkage on structured data. Basically, it uses
blocking [27] technique to reduce the number of record compar-
isons and employs active learning and logistic regression to learn
weights of attribute features.

• COSNET [39]: This method is a factor graph model which con-
siders user pairwise features as local factors and the relationship
between user pairs as correlation factors. An efficient dual de-
composition method is developed to optimize original objective.
This method is used for author linking problem.

• MEgo2Vec [38]: This method feeds ego networks of two users
as inputs, and uses graph neural networks to map the subgraphs
to vectors and then predict the labels of user pairs. This method
is used for author linking problem.

• LinKGC : For each candidate pair, this method first constructs
similarity matrices and then use CNN to map these matrices to
similarity vectors. Finally, similarity vectors of different attributes
are concatenated and passed into fully-connected layers to output
matching scores.

• LinKGL : In this method, each attribute is treated as a word
sequence. The content of each attribute is embedded as vector
by LSTM. For each pair, vectors of the same attribute are merged
(by concatenation, subtract, etc.) into similarity vectors, which
are fed into fully-connected layers to predict labels.

• LinKG: Our best model is indicated by LinKG, which uses differ-
ent methods tailored for different entity linking problems.
– For venues, LinKGL is our best model. We use LSTM to model
venue features as described in Sec. 4.1.

– For papers, we first leverage LSH to perform fast paper linking,
and then use CNN to cope with harder cases which can not
matched via LSH (Cf. 4.2).

– For authors, the best model is described in Sec. 4.3. We employ
heterogeneous graph attention networks on constructed paired
subgraphs to generate prediction results. We also introduce
some discriminative features (such as paper/venue matching
ratio of two authors) to enhance results.

3https://github.com/dedupeio/dedupe

5.2 Overall Results
Table 1 shows the overall linking performance of different meth-
ods. Our method (LinKG) consistently outperforms other alterna-
tives (+4.05%-36.87% in terms of F1-score). The overall F1-score is
weighted by the number of test samples on different linking prob-
lems (i.e. 361, 9234 and 5000 test pairs for venues, papers, authors
respectively). Next we compare and analyze results on the linking
of venues, papers and authors one by one.

For venue linking, LinKG (namely LinKG ) outperforms other
methods. Keyword and SVM perform poorly owing to problems
mentioned above in Section 4.1, such as word order reversion or
mismatched prefix and suffix. LinKGC can also achieve good perfor-
mance for venue linking, because CNN is capable of capturing word
order matching pattern. The advantage of LSTM is that it can cap-
ture not only word order information but also coarse-grained infor-
mation. Besides, compared with CNN, LSTM can process variable-
sized sequences while CNN cannot.

For paper linking, LinKG and LinKGC obviously outperform
other methods. Dedupe can achieve high precision but has a low
recall, which indicates it prefers a high threshold for the classi-
fier. Compared with Keyword and SVM, CNN uses low-level word
similarity matrix and can learn fine-grained matching patterns
automatically.

For author linking, our method LinKG, i.e. employing graph
attention networks by combining linked venue and paper results,
achieves the best performance among other methods. By full name
matching, Keyword performs poorly because different authors with
the same name are linked incorrectly and the same author is likely
to have different name formats. LinKGC and LinKGL take many
author attributes, including affiliations, papers, and venues, but
perform worse than methods incorporating graph structures, such
as COSNET and MEgo2Vec. For COSNET, prediction of an author
pair will be influenced by the prediction of their neighbor pairs thus
it may suffer from the error propagation problem. Compared with
MEgo2Vec, our method uses simpler attention mechanism and is
able to distinguish the effects of different types of entities. Further-
more, our method can incorporate the effect of distant neighbors
besides direct neighbors while MEgo2Vec can not.



Table 2: Paper Linking performance.

Method Precision Recall F1-score
LSH 98.72 41.78 58.71
CNN- 90.84 89.45 90.14
CNN 96.60 94.55 95.57

LSH+CNN 96.70 94.70 95.69

Table 3: Running time of different methods for paper link-
ing (in second).

Method Train Test Predict
Keyword - 41.82 41.24
SVM 30.07 31.62 30.94

Dedupe 1.5hrs+ 1109.08 1108.94
LinKGL 369.39 1545.24 1496.04
LSH 461.70 0.56 0.16
CNN 431.40 164.37 162.32

LSH+CNN 893.10 112.86 108.06

5.3 Detailed Result Analysis

Model Variants of Venue Linking. In Table 1, LinKGL uses two
venue attributes as input, including integral sequences and key-
word sequences. We also examine the result of only using integral
sequence without additional features, and F1-score is 84.31%. After
adding keyword sequences, F1-score can reach 86.76%. It shows
that extracting keyword sequence plays an important role in venue
linking. By further integrating two additional statistical features,
including the number of reverse pairs, Jaccard Index of two venue
names, the final F1-score reaches 89.33%.

Model Variants of Paper Linking. The variants of our model
for paper linking are denoted as follows. (1) the method using
locality-sensative hashing is denoted as LSH. (2) methods using
CNN: The method only using paper titles to build similarity matrix
is denoted as CNN-. Different from CNN-, CNN considers two paper
attributes: titles and authors as described in Sec. 4.2. (3) hybrid
model: LSH+CNN is a hybrid model of LSH and CNN. It first uses
LSH to find matched papers efficiently. For those papers which can
not be matched by binary codes, it utilizes CNN for fine-grained
matching.

Table 2 shows the linking results of our model variants. In gen-
eral, CNN-based methods outperform LSH significantly. LSH can
achieve high precision. One possible reason is that the same title
will be definitely mapped to the same binary code. Thus, under
these circumstances, using hashing can avoid unnecessary compu-
tational cost, but will sacrifice recall. For hybrid method LSH+CNN,
LSH can speed up the matching process and keep high precision
and recall at the same time.

Efficiency Performance on Paper Linking. Furthermore, we
test the efficiency of different methods for paper linking as shown
in Table 3. We measure three types of running time: training time,
testing time and predicting time. Testing time refers to the total
time for test while predicting time focuses on core matching process
which ignores some data processing steps since these steps are not
the bottleneck of our methods. Predicting time sometimes is longer

Table 4: Author Linking results of our model variants.

Method Precision Recall F1-score
SVM-struct 89.12 96.17 92.51

GAT 92.26 93.28 92.77
HGAT 93.39 93.96 93.67

HGAT-esb1 93.70 94.75 94.22
HGAT-esb2 95.37 93.48 94.42

than training time because each paper needs to compare itself
with all candidate pairs. Keyword method doesn’t need training
and the main time cost lies in string similarity calculation. LSH
consumes the shortest predicting time because the complexity of
matching is O(n) and binary codes query can be extremely fast.
Therefore, LSH is potential to handle large-scale data in an efficient
way. The training time of hashing-based methods refers to the
time of training Doc2Vec model. In spite of high accuracy, CNN-
basedmethod requires constructing similarity matrices and training
convolutional neural networks so its computational cost is high.
LSH+CNN can leverage LSH to match about 40% papers fast, so
it reduces nearly half of the time compared with CNN. Time cost
of Dedupe is also high because its blocking strategy takes a lot of
training time.

Contribution Analysis for HGAT on Author Linking. The
results in Table 4 show the contribution of components of our
author linking model. GAT means directly applying original GAT
on paired subgraphs and HGAT refers to using different attention
mechanisms in GAT for different types of entities. SVM-struct refers
to using some structural statistical features, including venue/paper
matching ratio of two authors. HGAT-esb1 and HGAT-esb2 are two
ensemble methods which add features used in SVM-struct (denoted
as fstat ) to HGAT. Specifically, HGAT-esb1 concatenates fstat and
output vector henc of the encoder in HGAT as the final feature
vector fcat , and uses the objective of HGAT to train. HGAT-esb2
uses SVM as the classifier and fcat as input features.

As shown in Table 4, using different attention parameters for
different entities is better than treating them equally (0.9% F1-score
improvement). Furthermore, the result of HGAT-esb2 is a little
bit better than HGAT-esb1, which shows SVM does better here in
processing combined features of statistical features and features
generated by neural networks. Also, SVM-struct performs well
(close to pure GAT), which demonstrates the effectiveness of het-
erogeneous structure information (venue/paper linking results) for
author linking problem.

5.4 Open Academic Graph (OAG)
Based on our proposed framework, we have published Open Aca-
demic Graph (OAG)1 , which is the largest publicly available het-
erogeneous academic graph as far as we know.

In OAG, we generated 91,137,597 paper linking pairs and its ac-
curacy is 99.10%. We also successfully linked 29,841 venue pairs
with accuracy of 99.26%. For authors, we only considered authors
who published more than five papers since both AMiner and MAG
are faced with the under-conflation and the over-conflation prob-
lem for author profiles. Finally, there were 6,855,193 authors in
AMiner and 13,173,936 authors in MAG. We generated 1,717,680



author pairs and the estimated accuracy is 97.41%. The evaluation
was based on a subset of sampled matchings (around one thousand
venue/paper/author pairs). OAG has considerable applications. It
can be used as a benchmark for studying citation networks, au-
thor name disambiguation, paper content, as well as comparing
methodologies for data integration.

6 CONCLUSION
In this paper, we study an important problem of linking large-scale
heterogeneous entity graphs. We particularly focus on building a
large linked academic entity graph. We propose a unified frame-
work, LinKG, to deal with the linking problem. LinKG is coupled
with three linking modules, each of which addresses one category
of entities. We evaluated the proposed framework and compared
it with several state-of-the-art approaches. Experimental results
show that our proposed framework LinKG can achieve a very high
linking accuracy with a F1-score of 0.9510, significantly outperform-
ing the states-of-the-arts. LinKG has been deployed to Microsoft
Academic Search and AMiner to integrate the two large sources.
The linked results have been published as Open Academic Graph
(OAG).
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A APPENDICES
A.1 Implementation Notes
A.1.1 LSTM for venue linking. In LinKG experiment, we build the
LSTM model using Python package Keras 2.2.4. Empirically, we set
the following parameters: training epochs=20, batch size=32.

We set the maximum length of integral/keyword sequence as
17/8. The embedding size of word in all sequences is 128. We use 2
LSTM layers: hidden layer size=32, dropout=0.2 and 3 Dense layers:
hidden size = 64, 16, 1

Furthermore, we stack the jaccard index 32 times, number of in-
version pairs 16 times to become the input vector JAi j and IVi j .This
aims at enhancing their weights in the network.

We employ cross-entropy as our loss function and nadam as opti-
mizer. All codes are implemented in Python3 and run by intepreter
Python3.5. The experiments were conducted on a CentOS server
with two Intel Xeon(R) CPU E5-4650 (2.7GHz) and 500G RAM.

• Code: https://github.com/zfjsail/OAG/

A.1.2 CNN for Paper Linking. Our CNN model is implemented
in Python package Tflearn 0.3.2. As is demonstrated in 4.2, we
leverage title and author information as input in this CNN model.
Empirically, we set the parameters as follows:

(1) CNN network for title: activation function=Relu,
• CNN layer 1: input size=(7,7,1), input channel=1, output
channel=8, kernel size=3, regularizer=L2

• CNN layer 2: input size=(5,5,8), input channel=8, output
channel=16, kernel size=2, regularizer=L2

• Fully-connected layer: output size=512
(2) CNN network for author: activation function=Relu

• CNN layer: input size=(4,4,1), input channel=1, output
channel=8, kernel size=2

• Fully-connected layer: output size=512
(3) Fully-connected layer: output size=2, activation function=

softmax, dropout = 0.5
The whole network uses learning rate=0.02, Adagrad optimizer,

categorical cross entropy as loss function. The experiments were
conducted on a Ubuntu server with four Intel Xeon(R) CPU E5-2699
(2.7GHz), 256G RAM and an Nvidia Titan X(Pascal) GPU and 12G
GPU RAM.

• Code: https://github.com/zfjsail/OAG/

A.1.3 LSH for Paper Linking. The dimension of Doc2Vec embed-
ding is set as 100 and the dimension of paper binary codes as 128.
The experiment was conducted on a Ubuntu server with four Intel
Xeon(R) CPU E5-2699 (2.20GHz) and 256 RAM.

• Code: https://github.com/zfjsail/OAG/

A.1.4 HGAT for Author Linking. Empirically, we set the initial-
ization settings as: random seed=42, training epochs=30, weight
decay(L2 loss on parameters)=1e-3, dropout=0.2, attn dropout=0,
batch size=64

In terms of Graph Attention networks, we employ 2 multihead
graph attention layer in it. Their parameters are as follows:

(1) Multihead graph attention layer 1: input size=1433, output
size=8, n_head=8

(2) Multihead graph attention layer 2: input size=64, output =7,
n_head=1

(3) Fully-connected layer 1: input length=7, output length=21
(4) Fully-connected layer 2: input length=21, output length=7
(5) Fully-connected layer 3: input length=7, output length=2
We employ Adam as our optimizer. All the HGAT codes are

implemented in Python3 package Pytorch 1.0.0, and the experiment
was conducted on a Ubuntu server with four Intel Xeon(R) CPU
E5-2699 (2.7GHz), 256G RAM and an Nvidia Titan X(Pascal) GPU
and 12G GPU RAM.

• Code: https://github.com/zfjsail/OAG/. This part of the code
refers to the implementation in [21].

A.2 Baselines
A.2.1 Keywords.

• For venues: we use Python package Scikit-learn 0.19.1 to
build word-frequency matrix and calculate tf-idf value for
each venue name. The corpus is consisted of all the appeared
words in the training and testing datasets. Then we leverage
Cosine Similarity implemented in numpy by ourselves to
calculate the pairwise similarity.

• For papers: in CP , we use the first γ words in paper titles
to build inverted index table. Given a paper p ∈ NP , we
use its titles to find candidate papers in CP by inverted in-
dex table and then re-rank these candidates by edit distance
between titles and authors’ similarity. For authors’ simi-
larity, we concatenate authors’ name as a string and then
calculate similarity in terms of character co-occurrence, i.e.
SIMauthors (a1,a2) =

chars_co_occur (a1,a2)
max(#chars(a1),#chars(a2))

• For authors: we simply compare the two name strings to
match authors.

A.2.2 SVM. We use Python package Scikit-learn 0.19.1 to build
the SVM model on a macOS 10.14.2 laptop with an Intel Core i5
(2.9GHz) and 16GB RAM.

• For venues: we calculate the Jaccard Index and Cosine Sim-
ilarity (using tf-idf values) for each pair, and let them be the
two dimensions of the input vector.

• For papers: we calculate the character-level n-gram simi-
larity of paper title (n=4), and authors (n=3).

• For authors: we calculate the character-level n-gram simi-
larity (here we set n=4) of name, affiliation, top venue name,
paper title keywords, and top coauthor name from each can-
didate pair. Note that paper title keywords are extracted from
the first 15 papers in the paperlist of an author. MAG papers
are replaced by their matched AMiner papers.

A.2.3 Dedupe. We use Open Source Dedupe 1.9.4 from Github. We
employ the bottom layer interface dedupe.core.scoreDuplicates to
obtain pairwise similarity scores between entities.

• For venues: we simply pass names of training pairs to
Dedupe, and use the model to predict on test pairs.

• For papers:we pass paper’s title, authors’ name, venue, year
as a dict to Dedupe.

• For authors: we pass author’s name, affiliation, top venue
name, and top coauthor name as a dict to Dedupe.

The experiment was conducted on a CentOS server with two
Intel Xeon(R) CPU E5-4650 (2.7GHz) and 500G RAM.

• Code: https://github.com/dedupeio/dedupe



A.2.4 COSNET [39] . We download the authors’ source codes,
which were written in C++. The author provides 4 samples and 5
input options to choose. We maintain the original settings as before,
and examine the 4 samples. Finally we choose to generate data in
the form of imdb_re f ined .dat , which contains both the pairwise
shared keywords and relations between candidate pairs.

In terms of the 5 options: (1) training dataset: here we choose our
own datasest. (2) labeling rate [0-5]: the higher rate is, the better
training result will be. (3) reservoir size [0-4]. (4) query method
[0-3]. (5) sampling method [0-3].

After tuning, we find the combination of labeling rate[5], reser-
voir size[4], query method[0], sampling method[0] could reach the
best testing F1, and we report it in our experiment section.

This experiment was conducted on a macOS 10.14.2 laptop with
an Intel Core i5 (2.9GHz) and 16GB RAM. The C++ compiler is
clang-1000.11.45.5.

• Code: https://www.aminer.cn/cosnet

A.2.5 MEgo2Vec [38]. We download the original codes, and keep
all the training settings as the same. MEgo2Vec needs two parts
of input: one is attributes of a candidate pair, another is probably
correct neighbor pair of a candidate pair, which is determined by
name matching.

Therefore, on one hand, we pass author’s name, affiliation, top
venue name and top coauthor name to MEgo2Vec. On the other
hand, we perform a rough name matching around the candidate
pair, and extract neighbor pairs.

We make some changes in codes to better evaluate this model:
(1) The codes were originally written in Python2. We fix a few

grammar mistakes and turn codes into Python3.
(2) There is no test part in the original codes, and we copy the

validation part in the original codes and complete the test
part.

We run the model on a CentOS server with two Intel Xeon(R)
CPU E5-4650 (2.7GHz) and 500G RAM.

• Code: https://github.com/BoChen-Daniel/MEgo2Vec-Embedding-
Matched-Ego-Networks-for-User-Alignment-Across-Social-Networks

A.3 Dataset
A.3.1 Venue Dataset. Initially, we performed a rough name match-
ing using Jaccard Index with threshold of 0.4 on the original AMiner
and MAG venue sets, generating 3344 pairs(1557 MAG venues, 3344
AMiner venues). We randomly selected 548 MAG venues, and gen-
erated 1202 candidate pairs for training. We labeled them manually
as our ground truths.

This Venue Dataset is difficult, because candidate pairs with the
same MAG venue often share a number of keywords, leading to
high similarity in most of text similarity methods. This dataset will
be published with our model codes.

A.3.2 Paper Dataset. we create two paper sets: clean paper setsCP
and noisy paper sets NP . The first dataset is collected by extracting
46,170 papers from AMiner. Each paper contains 4 attributes: title,
authors, venue and year. Another dataset is constructed by adding
noise to each paper. Thus, each original paper and its corresponding
noisy paper become a matching pair, which avoids the labeling cost
of human labors. The method to add noise is based on our statistics
of differences in existing matched papers. For example, some words
in title are wrongly concatenated and authors’ names have different
formats, such as full name and abbreviated name. The two paper
sets form one-to-one positive matching pairs. The negative paper
pairs we generate share some common keywords to increase linking
difficulty.

A.3.3 Author Dataset. At first, we conducted very strict rule meth-
ods on AMiner and MAG authors datasets to generate ground-truth
linkings, including affiliation matching rate, venue matching rate
and paper matching rate. Furthermore, we utilize the generated
linked authors’ coauthors to match more authors.

Since our groundtruth is generated by rules, it might be a little
bit easy for Author Linking task. Therefore, we implemented the
following two methods to harden this dataset:

(1) Add name ambiguity: for an already linked author entity,
we searched for authors with the same name, and generated
negative candidate pairs.

(2) Add noisy data: we randomly replace some attributes of
generated positive pairs, including affiliations, venues and
papers.

This author dataset contains 10,000 positive candidate pairs and
10,000 negative candidate pairs. It will also be published with our
model codes.

A.4 Discussions
It’s difficult to obtain a “ground truth” for entity linking evaluation.
In this paper, we manually label venue training data and construct
artificial difficult training data for papers and venues. In the fu-
ture, more ground truths may be obtained via crowd-sourced data
management.

In this work, we first link relatively easy entities (i.e. venues and
papers) and then link authors with more ambiguity. How to link
large-scale different types of entities in a joint framework is also a
challenge.

Furthermore, for author linking, we only consider authors with
not less than 5 papers for both sides. This is because, due to the name
ambiguity problem, both AMiner and MAG are facing with the
under-conflation and the over-conflation problem for author pro-
files. Therefore, how to improve author name disambiguation per-
formance by leveraging current disambiguation results and linked
entities is also an important challenge.
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