
TDGIA: Effective Injection Attacks on Graph Neural Networks
Xu Zou

†
, Qinkai Zheng

+
, Yuxiao Dong

‡
, Xinyu Guan

•

Evgeny Kharlamov
⋄
, Jialiang Lu

+
, Jie Tang

†§
†
Department of Computer Science and Technology, Tsinghua University,

‡
Facebook AI

+
Shanghai Jiao Tong University,

•
Biendata,

⋄
Bosch Center for Artificial Intelligence

zoux18@mails.tsinghua.edu.cn

{qinkai.zheng1028,ericdongyx,guanxinyu}@gmail.com,evgeny.kharlamov@de.bosch.com

jialiang.lu@sjtu.edu.cn,jietang@tsinghua.edu.cn

ABSTRACT
Graph Neural Networks (GNNs) have achieved promising perfor-

mance in various real-world applications. However, recent studies

find that GNNs are vulnerable to adversarial attacks. In this paper,

we study a recently-introduced realistic attack scenario on graphs—

graph injection attack (GIA). In the GIA scenario, the adversary

is not able to modify the existing link structure or node attributes

of the input graph, instead the attack is performed by injecting

adversarial nodes into it. We present an analysis on the topological

vulnerability of GNNs under GIA setting, based on which we pro-

pose the Topological Defective Graph Injection Attack (TDGIA) for

effective injection attacks. TDGIA first introduces the topological

defective edge selection strategy to choose the original nodes for

connecting with the injected ones. It then designs the smooth fea-

ture optimization objective to generate the features for the injected

nodes. Extensive experiments on large-scale datasets show that TD-

GIA can consistently and significantly outperform various attack

baselines in attacking dozens of defense GNN models. Notably, the

performance drop on target GNNs resultant from TDGIA is more

than double the damage brought by the best attack solution among

hundreds of submissions on KDD-CUP 2020.

CCS CONCEPTS
• Security and privacy→ Software and application security;
• Mathematics of computing→ Graph algorithms.

KEYWORDS
Graph Neural Networks; Adversarial Machine Learning; Graph

Injection Attack; Graph Mining; Graph Adversarial Attack

ACM Reference Format:
Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov,

Jialiang Lu, Jie Tang. 2021. TDGIA: Effective Injection Attacks on Graph

Neural Networks. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD ’21), August 14–18, 2021, Virtual

§
Jie Tang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467314

Event, Singapore. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3447548.3467314

1 INTRODUCTION
Recent years have witnessed widespread adoption of graph ma-

chine learning for modeling structured and relational data. Particu-

larly, the emergence of graph neural networks (GNNs) has offered

promising results in diverse graph applications, such as node clas-

sification [14], social recommendation [22], and drug design [12].

Despite the exciting progress, studies have shown that neural

networks are commonly vulnerable to adversarial attacks, where

slight, imperceptible but intentionally-designed perturbations on

inputs can cause incorrect predictions [7, 11, 18]. Attacks on general

neural networks usually focus on modifying the attributes/features

of the input instances, such as minor perturbations in individual

pixels of an image. Uniquely, adversarial attacks can also be ap-

plied to graph-structured input, requiring dedicated strategies for

exploring the specific vulnerabilities of the underlying models.

The early attacks on GNNs usually follow the setting of graph

modification attack (GMA) [5, 17, 25, 26], as illustrated in Figure 1

(a): given an input graph with attributes, the adversary can directly

modify the links between its nodes (red links) and the attributes of

existing nodes (red nodes). However, in real-world scenarios, it is

often unrealistic for the adversary to get the authority to modify

existing data. Take the citation graph for example, it automatically

forms when papers are published, making it practically difficult to

change the citations and attributes of one publication afterwards.

But what is relatively easy is to inject new nodes and links into the

existing citation graph, e.g., by “publishing” fake papers, to mislead

the predictions of GNNs.

In view of the gap, very recent efforts [17, 19], including the

KDD-CUP 2020 competition
1
, have been devoted to adversarial

attacks on GNNs under the setting of graph injection attack (GIA).

Specifically, the GIA task in KDD-CUP 2020 is formulated as follows:

(1) Black-box attack, where the adversaries do not have access to

the target GNN model or the correct labels of the target nodes; (2)

Evasion attack, where the attacks can only be performed during the

inference stage. The GIA settings present unique challenges that

are not faced by GMA, such as how to connect existing nodes with

injected nodes and how to generate features for injected nodes from

scratch. Consequently, though numerous attacks are submitted by

hundreds of teams, the resultant performance drops are relatively

limited and no principled models emerge from them.

1
https://www.biendata.xyz/competition/kddcup_2020_formal/

https://doi.org/10.1145/3447548.3467314
https://doi.org/10.1145/3447548.3467314
https://doi.org/10.1145/3447548.3467314
https://www.biendata.xyz/competition/kddcup_2020_formal/

modification attack

injection attack

(a) GMA vs. GIA

topological defective
edge detection

smooth adversarial
optimization

sequential injection

(b) Topological Defective Graph Injection Attack (TDGIA)

weighted average accuracy (%)

CLEAN

adver
s

dafts

simong

ntt

SPEIT

u1234

TDGIA

68.57

67.09

67.02

66.29

66.27

66.13

64.87

60.49 8.08

3.7

58 62 66 7060 64 68

(c) TDGIA vs. The Best Results in KDD-CUP 2020

Figure 1: An overview of graph injection attack, the proposed TDGIA method, and its performance.

Contributions. In this work, we study the problem of GIA under

the black-box and evasion attack settings, where the goal is to

design an effective injection attack framework that can best fool the

target GNN models and thus worsen their prediction capability. To

understand the problem and its challenges, we present an in-depth

analysis of the vulnerability of GNNs under the graph injection

attack and show that GNNs, as non-structural-ignorant models, are

GIA-attackable. Based on this, we present the topological defective

graph injection attack (TDGIA) (Cf. Figure 1 (b)). TDGIA consists

of two modules—topological defective edge selection and smooth

adversarial optimization for injected node attribute generation—

that corresponds to the problem setup of GIA. Specifically, we

leverage the topological vulnerabilities of the original graph to

detect existing nodes that can best help the attack and then inject

new nodes surrounding them in a sequential manner. With that,

we design a smooth loss function to optimize the nodes’ features

for minimizing the the performance of the target GNN model.

Both the studied problem and the proposed TDGIA method

differ from existing (injection) attack methods. Table 1 summarizes

the differences. First, NIPA [17] and AFGSM [19] are developed

under the poison setting, which requires the re-training of the

defense models for each attack. Differently, TDGIA follows KDD-

CUP 2020 to use the evasion attack setting, where different attacks

are evaluated based on the same set of models and weights. Second,

the design of TDGIA enables it to attack large-scale graphs that

can not be handled by the reinforcement-learning based NIPA.

Third, compared with AFGSM, TDGIA proposes a more general

way to consume the topological information, resulting in significant

performance improvements. Finally, attacks in previous works are

only evaluated onweak defense models like rawGCN, while TDGIA

is shown to be effective even against the top defense solutions

examined in KDD-CUP 2020.

We conduct extensive experiments on large-scale datasets to

demonstrate the performance and transferability of the proposed

attack method. Figure 1 (c) lists the results for TDGIA and the top

submissions on KDD-CUP 2020 as measured by weighted average

accuracy. The experimental results show that TDGIA significantly

Table 1: Summary of graph adversarial attacks.

Attack Task Type Method
Attack
Setting

Dai et al. [5]

Node cl.

Graph cl.

GMA

Reinforcement

learning

Evasion

Nettack [25]

Node cl.

Graph cl.

GMA

Greedy algorithm

Model linearization

Evasion

Poison

Meta [26] Node cl. GMA Meta-learning Poison

NIPA [17] Node cl. GIA

Reinforcement

learning

Poison

AFGSM [19] Node cl. GIA

Fast Gradient Sign

Model linearization

Poison

TDGIA (ours) Node cl. GIA

Defective edge selection

Smooth optimization

Evasion

and consistently outperforms various baseline methods. For exam-

ple, the best KDD-CUP 2020 attack (u1234) can make the perfor-

mance of the target GNN models drop 3.7%, while TDGIA can drag

its performance down by 8.08%—a 118% increase in damage. More-

over, TDGIA achieves this attack performance by injecting only a

limited number of nodes (1% of target nodes). Additionally, various

ablation studies demonstrate the effectiveness of each module in

TDGIA.

To sum up, this work makes the following contributions:

• We study the GIA problem with the black-box and evasion

settings, and theoretically show that non-structural-ignorant

GNN models are vulnerable to GIA.

• We develop the Topological Defective Graph Injection Attack

(TDGIA) that can explore and leverage the vulnerability of

GNNs and the topological properties of the graph.

• We conduct experiments that consistently demonstrate TD-

GIA’s significant outperformance over baselines (including

the best attack submission at KDD-CUP 2020) against various

defense GNN models across different datasets.

2 RELATEDWORKS

Adversarial Attacks on Neural Networks. The phenomenon

of adversarial examples against deep-learning based models is first

discovered in computer vision [18]. Adding delicate and impercepti-

ble perturbations to images can significantly change the predictions

of deep neural networks. [8] proposes Fast Gradient Sign Method

(FGSM) to generate this kind of perturbations by using the gradi-

ents of trained neural networks. Since then, more advanced attack

methods are proposed [1, 3]. Adversarial attacks also grow in a

wider range of fields such as natural language processing [16], or

speech recognition [4]. Nowadays, adversarial attacks have become

one of the major threats to neural networks.

Adversarial Attacks on GNNs. Due to the existence of adversar-
ial examples, the vulnerability of graph learning algorithms has

also been revealed. By modifying features and edges on graph-

structured data, the adversary can significantly degrade the per-

formance of GNN models. As shown in Table 1, [5] proposes a

reinforcement-learning based attack on both node classification

and graph classification tasks. This attack only modifies the struc-

ture of graph. [25] proposes Nettack, the first adversarial attack

on attributed graphs. It shows that only few perturbations on both

edges and features of the graph can be extremely harmful for mod-

els like GCN. Nettack uses a greedy approximation scheme under

the constraints of unnoticeable perturbations and incorporates fast

computation. Furthermore, [26] proposes a poison attack on GNNs

via meta-learning, Meta-attack, which only modifies a small part of

the graph but can still decrease the performance of GNNs on node

classification tasks remarkably. A recent summary [13] summarizes

different graph adversarial attacks.

A more realistic scenario, graph injection attack (GIA), is studied

in [17, 19], which injects new vicious nodes instead of modifying

the original graph. [17] proposes Node Injection Poisoning Attack

(NIPA) based on reinforcement learning strategy. Under the same

scenario, Approximate Fast Gradient Sign Method (AFGSM) [19]

further uses an approximation strategy to linearize the model and

to generate the perturbations efficiently. These works are under the

poison setting, where models have to be re-trained after the vicious

nodes are injected onto the graph.

KDD-CUP 2020 Graph Adversarial Attack & Defense. KDD-

CUP 2020 introduces the GIA scenario in Graph Adversarial Attack
& Defense competition track. The adversary doesn’t have access

to the target model (i.e. black-box setting), and can only inject no

more than 500 nodes to a large citation network with more than

600,000 nodes and millions of links.

For attackers, the attack is conducted during the inference stage,

a.k.a. the evasion setting. For defenders, they should provide robust

GNN models to resist various adversarial attacks. Hundreds of

attack and defense solutions are submitted during the competition,

which serve as good references for further development of graph

adversarial attacks.

3 PROBLEM DEFINITION
Broadly, there are two types of graph adversarial attacks: graph

modification attack (GMA) and graph injection attack (GIA). The

focus of this work is on graph injection attack. We formalize the

attack problem and introduce the attack settings.

The problem of graph adversarial attack was first formalized in

Nettack [25], which we name as graph modification attack. Specif-

ically, we define an attributed graph G = (A, F) with A ∈ R𝑁×𝑁

being the adjacency matrix of its 𝑁 nodes and F ∈ R𝑁×𝐷 as its

𝐷-dimensional node features. Let M : G → {1, 2, ...,𝐶}𝑁 be a

model that predicts the labels for all 𝑁 nodes in G, and denote its

predictions asM(G). The goal of GMA is to minimize the number

of correct predictions ofM on a set of target nodes T by modifying

the original graph G:

min

G′
|{M(G′)𝑖 = 𝑦𝑖 , 𝑖 ∈ T }|

𝑠 .𝑡 . G′ = (A′, F′), 𝑓ΔA (A
′ − A) + 𝑓ΔF (F

′ − F) ≤ Δ
(1)

where G′ is the modified graph, 𝑦𝑖 is the ground truth label of node

𝑖 , 𝑓ΔA and 𝑓ΔF are pre-defined functions that measure the scale of

modification. The constraint Δ ensures that the graph can only be

slightly modified by the adversary.

Graph Injection Attack. Instead of GMA’s modifications of G’s
structure and attributes, GIA directly injects 𝑁𝐼 new nodes into

G while keeping the original edges and attributes of 𝑁 nodes un-

changed. Formally, GIA constructs G′ = (A′, F′) with

A′ =
[

A V𝐼
V𝑇
𝐼

A𝐼

]
,A ∈ R𝑁×𝑁 ,V𝐼 ∈ R𝑁×𝑁𝐼 ,A𝐼 ∈ R𝑁𝐼×𝑁𝐼

(2)

F′ =
[

F
F𝐼

]
, F ∈ R𝑁×𝐷 , F𝐼 ∈ R𝑁𝐼×𝐷

(3)

where A𝐼 is the adjacency matrix of the injected nodes, V𝐼 is a
matrix that represents edges between G’s original nodes and the

injected nodes, and F𝐼 is the feature matrix of the injected nodes.

The objective of GIA can be then formalized as:

min

G′
|{M(G′)𝑖 = 𝑦𝑖 , 𝑖 ∈ T }|

𝑠 .𝑡 . G′ = (A′, F′), 𝑁𝐼 ≤ 𝑏, 𝑑𝑒𝑔(𝑣)𝑣∈𝐼 ≤ 𝑑, | |F𝐼 | | ≤ Δ𝐹
(4)

where 𝐼 is the set of injected nodes, 𝑁𝐼 is limited by a budget 𝑏,

each injected node’s degree is limited by a budget 𝑑 , and the norm

of injected features are restricted by Δ𝐹 . These constraints are to
ensure that GIA is as unnoticeable as possible by the defender.

The Attack Settings of GIA. GIA has recently attracted signifi-

cant attentions and served as one of the KDD-CUP 2020 competition

tasks. Considering its widespread significance in real-world scenar-

ios, we follow the same settings used in the competition, that is,

black-box and evasion attacks.

Black-box attack. In the black-box setting, the adversary does

not have access to the target modelM, including its architecture,

parameters, and defense mechanism. However, the adversary is

allowed to access the original attributed graphG = (A, F) and labels
of training and validation nodes but not the ones to be attacked.

Evasion attack. Straightforwardly, GIA follows the evasion attack

setting in which the attack is only performed to the target model

during inference. This makes it different from the poison attack [17,

19], where the target model is retrained on the attacked graph.

In addition, the scale of the KDD-CUP 2020 dataset is signifi-

cantly larger than those commonly used in existing graph attack

studies [19, 25, 26]. This makes the task more relevant to real-world

applications and also requires more scalable attacks.

The GIA Process. Due to the black-box and evasion settings,

GIA needs to conduct transfer attack with the help of surrogate

models as done in [5, 25]. First, a surrogate model is trained; Second,

injection attack is performed on this model; Finally, the attack is

transferred to one or more target models.

To handle large-scale datasets, GIA can be separated into two

steps based on its definition. First, the edges between existing nodes

and injected nodes (AI, V) are generated; Second, the features of
injected nodes are optimized. This breakdown can largely reduce

the complexity and make GIA applicable to large-scale graphs.

The target modelM could be any graph machine learning mod-

els. Following the community convention [19, 25, 26], the focus of

this work is on graph neural networks as the target models.

4 GNNS UNDER GRAPH INJECTION ATTACK
In this section, we analyze the behavior of graph neural networks

(GNNs) under the general injection attack framework. The analysis

results can be used to design effective GIA strategies.

4.1 The Vulnerability of GNNs under GIA
Intuitively, the function of GIA requires the injected nodes to spread

(misleading) information over edges in order to influence other

(existing) nodes. Which kind of models are vulnerable to such in-

fluence? In this section, we investigate the vulnerability of GNN

models under GIA.

Definition 1 (Permutation Invariant). Given G = (A, F), the
graph ML modelM is permutation invariant, if for anyG′ = (A′, F′)
withG′ as a permutation ofG such that∀𝑖 ∈ {1, 2, ..., 𝑁 },M(G′)𝜎𝑖 =
M(G)𝑖 . Note that G′ is a permutation of G, if there exists a permuta-
tion 𝜎 : {1, ..., 𝑁 } → {𝜎1, ..., 𝜎𝑁 } such that ∀𝑖 ∈ {1, 2, ..., 𝑁 }, F′𝜎𝑖 = F𝑖
and ∀(𝑖, 𝑗) ∈ {1, 2, ..., 𝑁 }2,A′𝜎𝑖𝜎 𝑗

= A𝑖 𝑗 .

Definition 2 (Gia-Attackable). The model M is GIA-
attackable, if there exist two graphs G1 and G2 containing the same
node 𝑖 , such that G1 is an induced subgraph of G2 andM(G1)𝑖 ≠
M(G2)𝑖 .

A GIA-attackable graph ML model is a model that an attacker

can change its prediction of a certain node by injecting nodes into

the original graph. By definition, the index of node 𝑖 in G1 and G2
do not matter for permutation invariant models, since permutations

can be applied to make it to index 0 in both graphs.

Definition 3 (Structural-Ignorant Model). The modelM is
a structural-ignorant model, if ∀G1 = (A1, F),G2 = (A2, F) such that
∀𝑖 ∈ {1, 2, ..., 𝑁 },M(G1)𝑖 =M(G2)𝑖 , that is,M gives the same pre-
dictions for nodes that have the same features F. On the contrary,M
is non-structural-ignorant, if there exist G1 = (A1, F),G2 = (A2, F),
A1 ≠ A2, andM(G1)𝑖 ≠M(G2)𝑖 .

According to this definition, most GNNs are non-structural-

ignorant, as they rely on the graph structure A for node classi-

fication instead of only using node features F. We use a lemma to

show that non-structural-ignorant models are GIA-attackable, the

proof of the lemma is included in the Appendix A.3. According to

the lemma, we demonstrate that if a permutation-invariant graph

ML model is not structural-ignorant, it is GIA-attackable.

Lemma 4.1 (Non-structural-ignorant Models are GIA-At-

tackable). If a modelM is non-structural-ignorant and permutation
invariant,M is GIA-attackable.

Figure 2: Top: A GNN layer aggregates information from 𝑛-
hop neighbors of node 𝑣 . Bottom: GIA perturbs the output
embedding through 1-hop node injection.

4.2 Topological Vulnerability of GNN Layers
In order to better design injection attacks to GNNs, we explore

the topological vulnerabilities of GNNs. Generally, a GNN layer

performed on a node 𝑣 can be represented as the aggregation pro-

cess [9, 21]:

h𝑘𝑣 = 𝜙 (h𝑘−1𝑣 , f ({h𝑘−1𝑢 }𝑢∈A(𝑣))) (5)

where 𝜙 (·) and f (·) are vector-valued functions, A(𝑣) denotes
the neighborhood of node 𝑣 , and h𝑘𝑣 is the vector-formed hidden

representation of node 𝑣 at layer 𝑘 .

Note that A(𝑣) include nodes that are directly connected to

𝑣 and nodes that can be connected to 𝑣 within certain number of

steps. We useA𝑡 (𝑣) to represent the 𝑡-hop neighbors of 𝑣 , i.e. nodes
that can reach 𝑣 within 𝑡 steps. We use f𝑡 (·) as the corresponding
aggregation functions. Therefore, Eq. 5 can be further expressed by

h𝑘𝑣 =𝜙 (f0 (h𝑘−1𝑣), f1 ({h𝑘−1𝑢 }𝑢∈A1 (𝑣)), f2 ({h
𝑘−1
𝑢 }𝑢∈A2 (𝑣)),

..., f𝑛 ({h𝑘−1𝑢 }𝑢∈A𝑛 (𝑣)))
(6)

Suppose we perturb the graph by injecting nodes so that A𝑡
changes to A ′𝑡 , and f𝑡 is changed by a comparable small amount,

i.e., f ′𝑡 − f𝑡 = Δf𝑡 . The new embedding for 𝑣 at layer 𝑘 becomes

h′𝑘𝑣 =h𝑘𝑣 +
𝜕𝜙

𝜕f0
(f ′
0
− f0) +

𝜕𝜙

𝜕f1
(f ′
1
− f1) + ... +

𝜕𝜙

𝜕f𝑛
(f ′𝑛 − f𝑛)

+𝑂 ((Δf0)2 + (Δf1)2 + ... + (Δf𝑛)2)
(7)

By denoting
𝜕𝜙

𝜕f𝑡
at layer 𝑘 as p𝑡,𝑘 , we have

Δh𝑘𝑣 = h′𝑘𝑣 − h𝑘𝑣 =

𝑛∑
𝑡=0

p𝑡,𝑘Δf𝑡 + 𝑜 (
∑
𝑡

Δf𝑡) (8)

Without loss of generality, we assume that f𝑡 has the form of

weighted average that is widely used in GNNs [14, 20, 24]

f𝑡 ({h𝑘−1𝑢 }𝑢∈A𝑡 (𝑣)) =
∑

𝑢∈A𝑡 (𝑣)
𝑤𝑢,𝑡h𝑘−1𝑢 (9)

where the weight 𝑤𝑢,𝑡 corresponds to the topological structure

within 𝑡-hop neighborhood of node 𝑣 . Therefore, we can exploit

the topological vulnerabilities of GNNs under GIA setting by con-

ducting 𝑡-hop node injection to constructA ′𝑡 (𝑣) and to perturb the
output of f𝑡

Δf𝑡 =
∑

𝑢∈A′𝑡 (𝑣)
(Δ𝑤𝑢,𝑡h𝑘−1𝑢 +𝑤𝑢,𝑡Δh𝑘−1𝑢) (10)

Figure 2 represents an example of 1-hop node injection. The in-

jected node can affect the embeddings of the 𝑡-hop neighborhoods

of node 𝑣 , resulting in final misclassification after the aggregation.

The problem now becomes how to harness the topological vulnera-

bilities of the graph to conduct effective node injection.

5 THE TDGIA FRAMEWORK
We present the Topological Defective Graph Injection Attack (TD-

GIA) framework for effective attacks on graph neural networks. Its

design is based on the vulnerability analysis of GNNs in Section 4.

The overall process of TDGIA is illustrated in Figure 1 (b).

Specifically, TDGIA consists of two steps that corresponds to

the general GIA process: topological defective edge selection and

smooth adversarial optimization. First, we identify important nodes

according to the topological properties of the original graph and

inject new nodes around them sequentially. Second, to minimize

the performance of node classification, we optimize the features of

the injected nodes with a smooth loss function.

5.1 Topological Defective Edge Selection
In light of the topological vulnerability of a GNN layer (Cf. Section

4.2), we design an edge selection scheme to generate defective edges

between injected nodes and original nodes to attack GNNs.

For a node 𝑣 , TDGIA can change its 𝑡-hop neighbors A𝑡 (𝑣) to
A ′𝑡 (𝑣). For original nodes 𝑢 ∈ A𝑡 (𝑣), their features h𝑢 remain

unchanged. For injected nodes 𝑢 ∈ A ′𝑡 (𝑣)\A𝑡 (𝑣), their features
h𝑢 are initialized by zeros, then Δh𝑢 = h′𝑢 . Then, Eq. 10 can be

developed into

Δf𝑡 =
∑

𝑢∈A𝑡 (𝑣)
Δ𝑤𝑢,𝑡h𝑘−1𝑢 +

∑
𝑢∈A′𝑡 (𝑣)\A𝑡 (𝑣)

𝑤𝑢,𝑡h′𝑘−1𝑢 (11)

We start from attacking a single-layer GNN, i.e. 𝑘 = 1. According

to Eq. 8, we shall maximize

∑
1

𝑡=0 p𝑡1Δf𝑡 to maximize Δh1𝑣 . Note
that Δf0 = Δh0𝑣 = 0 since the original features are unchanged. Thus,
we only need to maximize Δf1

Δf1 =
∑

𝑢∈A1 (𝑣)
Δ𝑤𝑢,1h0𝑢 +

∑
𝑢∈A′

1
(𝑣)\A1 (𝑣)

𝑤𝑢,1h′0𝑢 (12)

During edge selection stage, the features of injected nodes are not

yet determined. Thus, our strategy is to first maximize the influence

on

∑
𝑤𝑢,1, 𝑢 ∈ A ′𝑡 (𝑣) and to perturb Δf1 as much as possible.

We start from the common choices of 𝑤𝑢,1 used in GNNs. Fol-

lowing GCN [14], various types of GNNs [6, 20, 24] use

𝑤𝑢,1 =
1√

𝑑𝑒𝑔(𝑢)𝑑𝑒𝑔(𝑣)
, 𝑢 ∈ A1 (𝑣) (13)

while mean-pooling based GNNs like GraphSAGE [9] use

𝑤𝑢,1 =
1

𝑑𝑒𝑔(𝑣) , 𝑢 ∈ A1 (𝑣) (14)

In TDGIA, when deciding which nodes the injected nodes should

be linked to, we use a combination of weights from Eq. 13 and Eq.

14 to scale the topological vulnerability of node 𝑣 :

𝜆𝑣 = 𝑘1
1√

𝑑𝑒𝑔(𝑣)𝑑
+ 𝑘2

1

𝑑𝑒𝑔(𝑣) (15)

where 𝑑𝑒𝑔(𝑣) is the degree of the target node 𝑣 and 𝑑 is the budget

on degree of injected nodes. The higher 𝜆𝑣 is, the more likely a node

may be attacked by GIA. In TDGIA, we connect injected nodes to

existing nodes with higher 𝜆𝑣 by constructing defective edges.

In Appendix A.2, we theoretically demonstrate that Eq. 10 can

be generalized to multi-layer GNNs, thus this topological defective

edge selection strategy still works under general GNNs.

5.2 Smooth Adversarial Optimization
Once the topological defective edges of injected nodes have been

selected, the next step is to generate features for the injected nodes

to advance the effect of the attacks. Specifically, given a modelM,

an adjacencymatrixA′ after node injection, we further optimize the

features F𝐼 of the injected nodes in order to (negatively) influence

the model predictionM(A′, F′). To that end, we design a smooth

adversarial feature optimization with a smooth loss function.

Smooth Loss Function. Usually, in adversarial attack, we op-

timize reversely the loss function used for training a model. For

example, we can use the inverse of KL divergence as the attack loss

for a node 𝑣 in target set T
L𝑣 = −𝐷𝐾𝐿 (Ypred | |Ytest) = ln(𝑝𝑦𝑣,pred=𝑦𝑣,test) = ln𝑝𝑣 (16)

where 𝑝𝑣 is for simplicity the probability thatM correctly classifies

𝑣 . Using this loss may cause gradient explosion, as the derivative

𝜕L𝑣
𝜕𝑝𝑣

=
𝜕 ln𝑝𝑣

𝜕𝑝𝑣
=

1

𝑝𝑣
(17)

goes to∞ when 𝑝𝑣 → 0. To prevent such unstable behavior during

optimization, we use a smooth loss function

L𝑣 = max(𝑟 + ln𝑝𝑣, 0)2 (18)

where 𝑟 is a control factor. Therefore the derivative becomes

𝜕L𝑣
𝜕𝑝𝑣

=

{
2(𝑟+ln𝑝𝑣)

𝑝𝑣
, 𝑒−𝑟 < 𝑝𝑣 ≤ 1

0, 0 ≤ 𝑝𝑣 ≤ 𝑒−𝑟
(19)

where
𝜕L𝑣

𝜕𝑝𝑣
→ 0when 𝑝𝑣 → 0, and the optimization becomes stable.

Finally, the objective is to find optimal features 𝐹𝐼 for injected nodes,

which minimize the loss in Eq. 18 for all target nodes:

argmin

𝐹𝐼

1

|T |
∑
𝑣∈T

max(𝑟 + ln𝑝𝑣, 0)2 (20)

Smooth Feature Optimization. Under GIA settings, there’s a

constraint on the range of features of the injected nodes. Otherwise,

the defenders can easily filter out injected nodes based on abnor-

mal features. In TDGIA, we simply apply Clamp function during

optimization process to limit the range of features

𝐶𝑙𝑎𝑚𝑝 (𝑥,𝑚𝑖𝑛,𝑚𝑎𝑥) =


𝑚𝑖𝑛, 𝑥 < 𝑚𝑖𝑛

𝑥, 𝑚𝑖𝑛 < 𝑥 < 𝑚𝑎𝑥

𝑚𝑎𝑥, 𝑥 > 𝑚𝑎𝑥

(21)

However, this function may lead to zero gradient. If a feature ex-

ceeds the range, it will be stuck at maximal or minimal. To smooth

the optimization process of TDGIA, we design a 𝑆𝑚𝑜𝑜𝑡ℎ𝑚𝑎𝑝 func-

tion that remaps features onto (𝑚𝑖𝑛,𝑚𝑎𝑥) smoothly by using

𝑆𝑚𝑜𝑜𝑡ℎ𝑚𝑎𝑝 (𝑥,𝑚𝑖𝑛,𝑚𝑎𝑥) = 𝑚𝑎𝑥 +𝑚𝑖𝑛

2

+𝑚𝑎𝑥 −𝑚𝑖𝑛

2

𝑠𝑖𝑛(𝑥) . (22)

5.3 Overall attack process of TDGIA
In addition to topological defective edge selection and smooth ad-

versarial optimization, we also include the sequential attack and

the use of surrogate models in TDGIA.

Sequential Attack. In TDGIA, we adopt the idea of sequential

attack [19] and inject nodes in batches. In each batch we add a small

number of nodes to the graph, select their edges, and optimize their

features. We repeat this process until the injection budget is fulfilled.

Surrogate Model. Under the black-box setting, the attacker has
no information about the models being attacked, thus the attack

has to be performed on a surrogate model. Specifically, we first

train a surrogate modelM using the given training data on the

input graph and generate the surrogate labels {𝑦𝑣, 𝑣 ∈ T } usingM.

Then we optimize the TDGIA attack to lower the accuracy ofM
for {𝑦𝑣, 𝑣 ∈ T }. Note that when selecting defective edges, besides

𝜆𝑣 , we also use the correct probability 𝑝𝑣 based on the softmax

output ofM on node 𝑣 for its surrogate label 𝑦𝑣 . We then define

the defective score 𝜇𝑣 as shown in Algorithm 1.

Complexity. Given a base modelM with complexity𝑇 . Usually

for GNNs𝑇 = 𝑂 (𝐸𝐷), where 𝐸 is the number of edges and 𝐷 being

the dimension of input features. For edge selection, we needs to in-

ferenceM once to generate 𝑝𝑣 , which costs𝑂 (𝑇), and computation

for 𝜆𝑣 costs 𝑂 (𝐸) = 𝑜 (𝑇), so the computation costs 𝑂 (𝑇). For opti-
mization, suppose Δ𝑆 is the number of epochs and 𝐵 is the number

of batches for sequential injection, the optimization costs𝑂 (Δ𝑆𝐵𝑇).
So the overall complexity for TDGIA is 𝑂 (Δ𝑆𝐵𝑇). In practice, Δ𝑆𝐵
for TDGIA is usually set to be smaller than the number of epochs

for trainingM, therefore generating attacks using TDGIA costs

less time than trainingM. TDGIA is very scalable and can work

for any GNN as base model.

In summary, the attack of TDGIA is to first inject new nodes

(and edges) into the original graph and then learn the features for

the injected nodes. The injection of new nodes is determined by

the topological vulnerabilities of the graph and GNNs. The features

are learned via the smooth adversarial optimization. The overall

attack process of TDGIA is illustrated in Algorithm 1.

6 EXPERIMENTS
6.1 Basic Settings

Datasets. We conduct our experiments on three large-scale pub-

lic datasets including 1) KDD-CUP dataset
2
, a large-scale citation

dataset used in KDD-CUP 2020 Graph Adversarial Attack & Defense
competition 2) ogbn-arxiv [10], a benchmark citation dataset and

3) Reddit [9], a well-known online forum post dataset
3
. Statistics

of these datasets and injection constraints are displayed in Table 2.

2
https://www.biendata.xyz/competition/kddcup_2020_formal/

3
A previously-existing dataset originally extracted and obtained by a third party,

and hosted by pushshift.io, and downloaded from http://snap.stanford.edu/graphsage/

#datasets

Algorithm 1: The process of Topological Defective Graph
Injection Attack (TDGIA).

Input: Original graph G = {A, F}; surrogate modelM;set

of target nodes T ;
Output: Attacked graph G′ = (A′, F′);
Parameter :Budget on number of injected nodes 𝑏; budget

on degree of each injected node 𝑑 ; constraint

on range of features Δ𝐹 ;
/* Initialization */

1 G′ ← G;V𝐼 ← 0𝑁×𝑁𝐼
;A𝐼 ← 0𝑁𝐼×𝑁𝐼

;F𝐼 ← N(0, 𝜎)𝑁𝐼×𝐷
;

/* Sequential injection */

2 while 𝑏 > 0 do
/* Topological Defective Edge Selection */

3 for 𝑣 ∈ T do
4 Calculate the correct probability 𝑝𝑣 usingM(G′);
5 Calculate the defective factor 𝜆𝑣 using Eq. 15;

6 Calculate the defective score 𝜇𝑣 = (𝛼𝑝𝑣 + (1 − 𝛼))𝜆𝑣 ;
7 end
8 Set up the number of injected nodes 𝑏seq ≤ 𝑏;

9 V𝐼 ← Connect 𝑏seq injected nodes to 𝑏seq × 𝑑 target

nodes in T with the highest defective score 𝜇𝑣 ;

/* Smooth Adversarial Optimization */

10 F𝐼 ← Optimize the features of injected nodes smoothly

(Eq. 20) using𝐶𝑙𝑎𝑚𝑝 (Eq. 21) and 𝑆𝑚𝑜𝑜𝑡ℎ𝑚𝑎𝑝 (Eq. 22) ;

11 𝑏 ← 𝑏 − 𝑏seq, update the budget;
12 A′, F′ ← Update A′ and F′ by V𝐼 , F𝐼 using Eq. 2 and 3;

13 G′ ← (A′, F′);
14 end
15 return G′

Constraints. For each dataset, we set up the budget on the number

of injected nodes 𝑏 = 500 and the budget on degree 𝑑 = 100. The

feature limit Δ𝐹 is set according to the range of features in the

dataset (Cf Table 2). For experiments on KDD-CUP dataset, most

submitted defense methods include preprocessing that filters out

nodes with degree approaches to 100. Therefore, in our experiments,

we apply an artificial limit of 88 to avoid being filtered out. These

constraints is applied to both TDGIA and baseline attack methods.

Evaluation Metric. To better evaluate GIA methods, we consider

both the performance reduction and the transferability. Our evalu-

ation is mainly based on the weighted average accuracy proposed

in KDD-CUP dataset. The metric attaches a weight to each defense

model based on its robustness under GIA, i.e. more robust defense

gets higher weight. This encourages the adversary to focus on trans-

ferability across all defense models, and to design more general

attacks. In addition to weighted average accuracy, we also provide

the average accuracy among all defense models, and the average

accuracy of the Top-3 defense models. The three evaluation metrics

are formulated below:

𝑠avg =
1

𝑛

𝑛∑
𝑖=1

𝑠𝑖 , (23)

https://www.biendata.xyz/competition/kddcup_2020_formal/
http://snap.stanford.edu/graphsage/##datasets
http://snap.stanford.edu/graphsage/##datasets

Table 2: Statistics of datasets. We consider only unique undirected edges.

Dataset Nodes

Train

nodes

Val

nodes

Test

nodes

Edges Features Classes

Feature

range

Injection

feature range

Injected

nodes

Injection

degree limit

KDD-CUP 659,574 580,000 29,574 50,000 2,878,577 100 18 -1.74∼1.63 -1∼ 1 500 100

ogbn-arxiv 169,343 90,941 29,799 48,603 1,157,799 128 40 -1.39∼1.64 -1∼1 500 100

Reddit 232,965 153,932 23,699 55,334 11,606,919 602 41 -0.27∼0.26 -0.25∼0.25 500 100

𝑠top-3 =
1

𝑛

3∑
𝑖=1

𝑠𝑖 , (24)

𝑠
weighted

=

𝑛∑
𝑖=1

𝑤𝑖𝑠𝑖 ,

𝑛∑
𝑖=1

𝑤𝑖 = 1,𝑤1 ≥ 𝑤2 ≥ ... ≥ 𝑤𝑛 . (25)

where 𝑠1, 𝑠2, ...𝑠𝑛 are descending accuracy scores of 𝑛 different de-

fense models against one GIA attack, i.e. 𝑠1 ≥ 𝑠2 ... ≥ 𝑠𝑛 . For KDD-

CUP dataset, we use the given weights, for ogbn-arxiv and Reddit,

we set the weights in a similar way. More reproducibility details

are introduced in Appendix A.1.

6.2 Attack & Defense Settings

Baseline Attack Methods. We compare our TDGIA approach

with different baselines, including FGSM [18], AFGSM [19], and

the SPEIT method [23], the open-source attack method released by

the champion team of KDD-CUP 2020. For KDD-CUP dataset we

also include the top five attack submissions in addition to the above

baselines. Specifically, FGSM and AFGSM are adapted to the GIA

settings with black-box and evasion attacks. For FGSM [18], we

randomly connect injected nodes to the target nodes, and optimize

their features with inverse KL divergence (Eq. 16). AFGSM [19]

offers an improvement to FGSM, we also adapt it to our GIA settings.

Note that NIPA [17] covered in Table 1 is not scalable enough for

the large-scale datasets.

Surrogate Attack Model. GCN [14] is the most fundamental and

most widely-used model among all GNN variants. Vanilla GCNs

are easy to attack [19, 25]. However, when incorporated with Lay-

erNorm [2], it becomes much more robust. Therefore, it is used

by some top-competitors in KDD-CUP and achieved good defense

results. In our experiments, we mainly use GCN as the surrogate

model to conduct transfer attacks. We use GCNs (with LayerNorm)

with 3 hidden layers of dimension 256, 128, 64 respectively. Follow-

ing the black-box setting, we first train the surrogate GCN model,

perform TDGIA and various GIA on it, and transfer the injected

nodes to all defense methods.

Baseline DefenseModels. For KDD-CUP dataset, it offers 12 best
defense submissions (including models and weights), which are

considered as defense models. Note that these defense methods are

well-formed, which are much more robust than weak methods like

raw GCN (without LayerNorm or any other defense mechanism)

evaluated in previous works [5, 17, 19, 25, 26]. Most of top attack

methods can lower the performance of raw GCN from 68.37% to less

than 35%. However, they can hardly reduce the 68.57% weighted

average accuracy on these defenses by more than 4%.

For Reddit and ogbn-arxiv datasets, we implement the 7 most

representative defense GNN models (also appeared in top KDD-

CUP defense submissions), GCN [14] (with LayerNorm), SGCN [20],

TAGCN [6], GraphSAGE [9], RobustGCN [24], GIN [21] and [15]

as defense models. We train these models on the original graph and

fix them for defense evaluation against GIA methods. Details of

these models are listed in Appendix A.1.

6.3 Performance of TDGIA
Weuse GCN(with LayerNorm) as our surrogate attackmodel for our

experiments. We first evaluate the proposed TDGIA on KDD-CUP

dataset. Table 3 illustrates the average performance of TDGIA and

other GIA methods over 12 best defense submissions at KDD-CUP

competition. Different from previous works, TDGIA aims at the

common topological vulnerability of GNN layers, which makes it

more transferable cross different defense GNN models. As can be

seen, TDGIA significantly outperforms all baseline attack methods

by a large margin with more than 8% reduction onweighted average

accuracy.

We also test the generalization ability of TDGIA on other datasets.

As shown in Table 4, when attacking the 7 representative defense

GNN models on Reddit and ogbn-arxiv, TDGIA still shows domi-

nant performance on reducing the weighted average accuracy. This

suggests that TDGIA can well generalize across different datasets.

To summarize, the experiments demonstrate that TDGIA is an

effective injection attack method with promising transferability as

well as generalization ability.

Table 3: Performance(%) of different GIA methods on KDD-
CUP over 12 best KDD-CUP defense submissions.

Attack

Method

Average

Accuracy

Top-3

Defense

Weighted

Average

Reduction

Clean - 65.54 70.02 68.57 -

KDD-CUP

Top-5

Attack

Submissions

advers 63.44 68.85 67.09 1.48

dafts 63.91 68.50 67.02 1.55

ntt 60.21 68.80 66.27 2.30

simong 60.02 68.59 66.29 2.28

u1234 61.18 67.95 64.87 3.70

Baseline

Methods

FGSM 59.80 67.44 65.04 3.53

AFGSM 59.22 67.37 64.74 3.83

SPEIT 61.89 68.16 66.13 2.44

TDGIA TDGIA 55.00 64.49 60.49 8.08

6.4 Ablation Studies
In this section, we analyse in details the performance of TDGIA

under different conditions, and TDGIA’s transferability when we

use different surrogate models to attack different defense models.

Table 4: Performance(%) of different GIAmethods on Reddit
and ogbn-arxiv over 7 representative defense models.

Dataset

Attack

Method

Average

Accuracy

Top-3

Defense

Weighted

Average

Reduction

Reddit

Clean 94.86 95.94 95.62 -

FGSM 92.26 94.61 93.80 1.82

AFGSM 91.46 94.64 93.61 2.01

SPEIT 93.35 94.27 93.99 1.63

TDGIA 86.11 88.95 88.14 7.48

ogbn-arxiv

Clean 70.86 71.61 71.34 -

FGSM 66.40 69.57 68.62 2.72

AFGSM 62.60 69.08 66.96 4.38

SPEIT 66.93 69.56 68.63 2.71

TDGIA 57.00 59.23 58.53 12.81

(a) Different Edge Selection Methods (b) Different Optimization Methods

Figure 3: Left:Performance of different edge selection meth-
ods based on smooth adversarial optimization. Right: Com-
parison of smooth adversarial optimization and inverse KL-
divergence minimization. Results on KDD-CUP dataset.

Topological Defective Edge Selection. In Section 5.1 we pro-

pose a new edge selection method based on topological properties.

We analysis the effect of this method by illustrating experimental

results of different edge selection methods in Figure 3 (a). "Uniform"

method connects injected nodes to targeted nodes uniformly, i.e.

each target node receives the same number of links from injected

nodes, which is the most common strategy used by KDD-CUP can-

didates. "Random" method randomly assigns links between target

nodes and injected nodes. As illustrated, the topological defective

edge selection contributes a lot to attack performance, and almost

doubles the reduction on weighted accuracy of defense models.

Smooth Adversarial Optimization. The smooth adversarial

optimization, proposed in Section 5.2, also has its own advan-

tages. Figure 3 (b) shows the results of TDGIA and FGSM/AFGSM

with/without smooth adversarial optimization. The strategy pre-

vents the issues of gradient explosion and vanishing and does con-

tribute to the attack performance of all three methods.

Transferability across Different Models. We study the influ-

ence of different surrogate models on TDGIA. Figure 4 illustrates

the transferability of TDGIA across different models. An interest-

ing result is that GCN turns out to be the best surrogate model, i.e.

TDGIA applied on GCN can be better transferred to other models.

Figure 5 further offers the visualization of transferability of TD-

GIA on KDD-CUP and ogbn-arxiv. The heat-map shows that TDGIA

Figure 4: Weighted Accuracy Reduction of TDGIA on KDD-
CUP dataset using different surrogate models for attack.
GCN yields the best result.

Figure 5: Transferability of TDGIA across different models.
Using surrogate models for attack, and evaluate on defense
models. Darker color suggests larger performance reduction.
Left: KDD-CUP. Right: ogbn-arxiv.

is effective for whatever surrogate model we use, and can be trans-

ferred to all defense GNN models listed in this paper, despite that

the scale of transferability may vary. Again, we can see GCN yields

attacks with better transferability. A probable explanation may

be that most of GNN variants are designed based on GCN, mak-

ing them more similar to GCN. Therefore, TDGIA can be better

transferred using GCN as surrogate models. We also notice that

RobustGCN is more robust as defense models, as it is intentionally

designed to resist adversarial attacks. Still, our TDGIA is able to

reduce its performance.

Magnitude of Injection. In previous experiments, we limit the

number of injected nodes under 500. Note that this number is only

1% compared to the number of target nodes. To show the power

of TDGIA, we investigate the effect of the magnitude of injection.

Figure 6 (a) (b) show the attack performance of TDGIA and FGSM on

ogbn-arxiv and KDD-CUP datasets. For any magnitude of injection,

TDGIA always outperforms FGSM significantly, with a gap for more

than 10% reduction on weighted average accuracy.

Figure 6 (c) (d) further illustrate the detailed performance of

TDGIA on different defense models. When we expand the number

of injected nodes, there is a continuous performance drop for all

defense models. As the number increased to 2000, the accuracy

of several defense models (e.g. GraphSAGE, SGCN, APPNP) even

(a) TDGIA vs. FGSM (ogbn-arxiv) (b) TDGIA vs. FGSM (KDD-CUP)

(c) TDGIA on Defense Models (ogbn-arxiv) (d) TDGIA on Defense Models (KDD-CUP)

Figure 6: TDGIA under different numbers of injected nodes.

drop less than 10%. However, this number of injected nodes is still

less than 5% the size of target nodes, or 1.4% (ogbn-arxiv) / 0.4%

(KDD-CUP) the size of the whole graph. The results demonstrate

that most GNN models are quite vulnerable towards TDGIA.

7 CONCLUSION
In this work, we explore deeply into the graph injection attack (GIA)

problem and present the TDGIA attack method. TDGIA consists of

two modules: the topological defective edge selection for injecting

nodes and smooth adversarial optimization for generating features

of injected nodes. TDGIA achieves the best attack performance in

attacking a variety of defense GNN models, compared with various

baseline attack methods including the champion solution of KDD-

CUP 2020. It is also worth mentioning that with only a few number

of injected nodes, TDGIA is able to effectively attack GNNs under

the black-box and evasion settings.

In this work, we mainly focus on leveraging the first-level neigh-

borhood on the graph to design the attack strategies. In the future,

we would like to involve higher levels of neighborhood information

for advanced attacks. Another interesting finding is that among

all the GNN variants, using GCN as the surrogate model achieves

the best results. Further studies on this observation may deepen

our understandings of how different GNN variants work, and thus

inspire more effective attack designs.

Acknowledgements. Jie Tang and Tsinghua University are funded
by National Natural Science Foundation of China(Key Program, No.

61836013), National Science Foundation for Distinguished Young

Scholars (No. 61825602) and Tsinghua-Bosch Joint ML Center. We

thank Yang Yang for helpful discussions, Shuwen Liu and Yicheng

Zhao for the dataset preparation work on KDD CUP 2020, and all

participants of KDD CUP 2020 ML2 Track.

REFERENCES
[1] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated gradients

give a false sense of security: Circumventing defenses to adversarial examples.

In ICML’18. PMLR, 274–283.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).
[3] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of

neural networks. In 2017 IEEE Symposium on Security and Privacy. IEEE, 39–57.
[4] Nicholas Carlini and David Wagner. 2018. Audio adversarial examples: Targeted

attacks on speech-to-text. In 2018 IEEE Security and Privacy Workshops. IEEE.
[5] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.

Adversarial Attack on Graph Structured Data. In ICML’18.
[6] Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya

Kar. 2017. Topology adaptive graph convolutional networks. arXiv preprint
arXiv:1710.10370 (2017).

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial

nets. In NeurIPS’14. 2672–2680.
[8] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).
[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS’17. 1024–1034.
[10] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets

for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020).

[11] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel.

2017. Adversarial attacks on neural network policies. arXiv preprint
arXiv:1702.02284 (2017).

[12] Mingjian Jiang, Zhen Li, Shugang Zhang, Shuang Wang, Xiaofeng Wang, Qing

Yuan, and ZhiqiangWei. 2020. Drug–target affinity prediction using graph neural

network and contact maps. RSC Advances 10, 35 (2020), 20701–20712.
[13] Wei Jin, Yaxing Li, Han Xu, Yiqi Wang, Shuiwang Ji, Charu Aggarwal, and

Jiliang Tang. 2021. Adversarial Attacks and Defenses on Graphs. ACM SIGKDD
Explorations Newsletter 22, 2 (2021), 19–34.

[14] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[15] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-

dict then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997 (2018).

[16] J Li, S Ji, T Du, B Li, and T Wang. 2019. TextBugger: Generating Adversarial Text

Against Real-world Applications. In 26th Annual Network and Distributed System
Security Symposium.

[17] Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar.

2020. Adversarial Attacks on Graph Neural Networks via Node Injections: A

Hierarchical Reinforcement Learning Approach. In WWW’20. 673–683.
[18] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.

arXiv preprint arXiv:1312.6199 (2013).
[19] Jihong Wang, Minnan Luo, Fnu Suya, Jundong Li, Zijiang Yang, and Qinghua

Zheng. 2020. Scalable Attack on Graph Data by Injecting Vicious Nodes. arXiv
preprint arXiv:2004.13825 (2020).

[20] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In ICML’19. PMLR,

6861–6871.

[21] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful

are Graph Neural Networks?. In ICLR’18.
[22] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In KDD’18. 974–983.
[23] Qinkai Zheng, Yixiao Fei, Yanhao Li, Qingmin Liu,MinhaoHu, andQibo Sun. 2020.

KDD CUP 2020 ML Track 2 Adversarial Attacks and Defense on Academic Graph 1st
Place Solution. https://github.com/Stanislas0/KDD_CUP_2020_MLTrack2_SPEIT.

[24] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust graph

convolutional networks against adversarial attacks. In KDD’19. 1399–1407.
[25] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial

attacks on neural networks for graph data. In KDD’18. 2847–2856.
[26] Daniel Zügner and Stephan Günnemann. 2019. Adversarial attacks on graph

neural networks via meta learning. arXiv preprint arXiv:1902.08412 (2019).

A APPENDIX
In appendix we follow the citation index in the main article.

A.1 Reproducibility Details
In this section, we introduce the experimental details for TDGIA.

Surrogate Attack Models. Under the black-box setting, we need
to train surrogate models for attack. Each model is trained twice

using different random seeds. The first one is the surrogate model.

The second one is used as defense models. For KDD-CUP, we eval-

uate directly based on candidate submitted models and parameters.

All models are trained for 10000 epochs using Adam, with a learn-

ing rate of 0.001 and dropout rate of 0.1. We evaluate the model

on the validation set every 20 epochs and select the one with the

highest validation accuracy to be the final model.

Detailed Description of Baseline Defense Models. In section

6.2, We only provide detailed introduction to GCN (with Layer-

Norm). Here we explain in detail about the other defense models.

SGCN [20]. SGCN aims to simplify the GCN structure by remov-

ing the activations while improving the aggregation process. The

method introduces more aggregation than other methods and thus

has a much larger sensitivity area for each node, making the model

more robust against tiny local neighborhood perturbations. We use

an initial linear transformation that transforms the input into 140

dimensions, and 2 SGC layers with 120 and 100 channels respec-

tively, with 𝑘 = 4 and LayerNorm, a final linear transformation that

transfers that into the number of classes.

TAGCN [6]. TAGCN is a GCN variant that combines multiple-

level neighborhoods in every single-layer of GCN. This is the

method used by SPEIT, the champion of the competition. The model

in our experiments has 3 hidden layers, each with 128 channels and

with the propagation factor 𝑘 = 3.

GraphSAGE [9]. GraphSAGE represents a type of node-based

neighborhood aggregation mechanism, which aggregates direct

neighbors on each layer. The aggregation function is free to ad-

just. Many teams use this framework in their submissions, their

submissions vary in aggregation functions. We select a representa-

tive GraphSAGE method that aggregates neighborhoods based on

𝐿2-norm of neighborhood features. The model has 4 hidden layers,

each with 70 dimensions.

RobustGCN [24]. RobustGCN is a GCN variant designed to

counter adversarial attacks on graphs. The model borrows the idea

of random perturbation of features from VAE, and tries to encode

both the mean and variation of the node representation and keep

being robust against small perturbations. We use 3 hidden layers

with 150 dimensions each.

GIN [21]. GIN is introduced to maximize representation power

of GNNs by aggregating self-connected features and neighborhood

features of each node with different weights. Team "Ntt Docomo

Labs" uses this method as defensive model. We use 4 hidden layers

with 144 dimensions each.

APPNP [15]. APPNP is designed for fast approximation of per-

sonalized prediction for graph propagation. Like SGCN, APPNP

propagates on graph dozens of times in a different way and there-

fore more robust to local perturbations. In application we first

transform the input with a 2-layer fully-connected network with

hidden size 128, then propagate for 10 times.

Attack Parameters. We conduct our attacks using batch-based

smooth adversarial optimization. 𝑟 in Eq. 18 is set to 4. We follow

the Algorithm 1. For 𝜆𝑣 in Eq. 15, we take 𝑘1 = 0.9 and 𝑘2 = 0.1, for

𝛼 mentioned in Algorithm 1 is set to 0.33. We don’t follow exactly

the AFGSM description of one-by-one injection, as it costs too

much time to optimize on large graphs with hundreds of injected

nodes, instead we add nodes in batches, each batch contains nodes

equal to 20% of the injection budget, and is optimized under smooth

adversarial optimization with Adam optimizer with a learning rate

of 1, features are initialized by 𝑁 (0, 1). Each batch of injected nodes

is optimized on surrogate models to lower its prediction accuracy

on approximate test labels for 2,000 epochs.

Evaluation Mertric. The 𝑤 mentioned in Eq. 25 is set to

[0.24, 0.18, 0.12, 0.1, 0, 08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01] in the

KDD-CUP dataset, which offers a variety of 12 top candidate de-

fense submissions. For evaluation on ogbn-arxiv and Reddit,𝑤 is

set to [0.3, 0, 24, 0.18, 0.12, 0.08, 0.05, 0.03] for the 7 defense models.

In Figure 6 the KDD-CUP evaluation is based on the same models

and weights as ogbn-arxiv.

Additional Information on Datasets. In the raw data of the

Reddit dataset, unlike other dimensions, dimension 0 and 1 are

integers ranging from 1 to 22737. We apply a transformation 𝑓 (𝑥) =
0.025 × log(𝑥) to regularize their range to [−0.27, 0.26] to match

the scale of other dimensions. The ogbn-arxiv dataset has 1,166,243

raw links, however 8,444 of them are duplicated and only 1,157,799

are unique bidirectional links. So we take 1,157,799 as the number

of links for ogbn-arxiv dataset.

A.2 Generalizing Topological Properties of
Single-Layer GNN to Multi-Layer GNNs

In this section, we elaborate the topological properties of GNNs

from single-layer to multi-layer. We show in multi-layer GNNs, the

perturbation of h only relies on {Δ𝑤𝑢,𝑡 ∥𝑡 = 1, 2...}, therefore the
topological defective edge selection in Section 4.2 can be generalized

to multi-layer GNNs.

We start from Eq. 10, for a GNN layer,

Δf𝑡 =
∑

𝑢∈A′𝑡 (𝑣)
(Δ𝑤𝑢,𝑡h𝑢 +𝑤𝑢,𝑡Δh𝑢) (26)

Here, Δ𝑤𝑢 = 𝑤 ′𝑢 − 𝑤𝑢 ,Δh𝑢 = h′𝑢 − h𝑢 if 𝑢 ∈ A ′𝑡 (𝑣) and 𝑢 ∈
A𝑡 (𝑣). For 𝑢 ∈ A ′𝑡 (𝑣), 𝑢 ∉ A𝑡 (𝑣), Δ𝑤𝑢 = 𝑤 ′𝑢 ,Δh𝑢 = h′𝑢 . For GIA,

A𝑡 (𝑣) ⊆ A ′𝑡 (𝑣). Recall that p𝑡,𝑘 =
𝜕h𝑘𝑣
𝜕f𝑡

. Then

Δh𝑘𝑣 =

𝑛∑
𝑡=0

p𝑡𝑘
∑

𝑢∈A′𝑡 (𝑣)
(Δ𝑤𝑢h𝑘−1𝑢 +𝑤𝑢Δh𝑘−1𝑢) (27)

Δh𝑘𝑣 =
∑
𝑡

∑
𝑢∈A′𝑡 (𝑣)

(Δ𝑤𝑢,𝑡p𝑡,𝑘h𝑘−1𝑢 +𝑤𝑢,𝑡p𝑡𝑘Δh𝑘−1𝑢) (28)

This suggests that for single-layer GNNs the perturbation only

relies on {Δ𝑤𝑢,𝑡 ∥𝑡 = 1, 2...}.
Now let’s generalize this result to multi-layer GNNs using in-

duction. Suppose Δh𝑘𝑣 can be expressed in the following form

Δh𝑘𝑣 =
∑
𝑡

∑
𝑢∈A′𝑡 (𝑣)

(Δ𝑤𝑢,𝑡
𝑘∑
𝑙=1

p𝑡,𝑙h
𝑙−1
𝑢 +𝑤𝑢,𝑡p𝑡,𝑘Δh0𝑢) (29)

For induction, suppose it holds for 𝑘 = 𝑛,

Δh𝑛+1𝑣 =
∑
𝑡

∑
𝑢∈A′𝑡 (𝑣)

(Δ𝑤𝑢,𝑡p𝑡,𝑘+1h𝑘𝑢 +𝑤𝑢,𝑡p𝑡,𝑘+1Δh𝑘𝑢)

=
∑
𝑡

∑
𝑢∈A′𝑡 (𝑣)

(Δ𝑤𝑢,𝑡p𝑡,𝑘+1h𝑘𝑢+

𝑤𝑢,𝑡p𝑡,𝑘+1
∑
𝑡 ′

∑
𝑢′∈A′

𝑡′ (𝑢)
(Δ𝑤𝑢′,𝑡 ′

𝑘−1∑
𝑙=1

p𝑡 ′,𝑙h
𝑙−1
𝑢 +𝑤𝑢′,𝑡 ′p𝑡 ′,𝑘Δh0𝑢))

=
∑
𝑡

∑
𝑢∈A′𝑡 (𝑣)

(Δ𝑤𝑢,𝑡
𝑘∑
𝑙=1

p′
𝑡,𝑙
h𝑙−1𝑢 +𝑤𝑢,𝑡p′𝑡,𝑘+1Δh

0

𝑢)

(30)

where p′ is a function of the previous p. Therefore Eq. 29 holds

for 𝑘 = 𝑛 + 1. Also it obviously holds for 𝑘 = 1, by induction we

conclude that Eq. 29 holds for all 𝑘 . Therefore,

Δh𝑛𝑣 =
∑
𝑡

∑
𝑢∈A′𝑡 (𝑣)

(Δ𝑤𝑢,𝑡
𝑛∑
𝑙=1

p𝑡,𝑙h
𝑙−1
𝑢 +𝑤𝑢,𝑡p𝑡,𝑘Δh0𝑢) (31)

And when we have 𝑤𝑢,𝑡 = 0,∀𝑢 ∉ G for GIA, assuming

Δ𝑤𝑢,𝑡 << 1, the function becomes

Δh𝑛𝑣 =
∑
𝑡

∑
𝑢∈A′𝑡 (𝑣)

Δ𝑤𝑢,𝑡

𝑛∑
𝑙=1

p𝑡,𝑙h
𝑙−1
𝑢 (32)

This means the perturbation on multi-layer GNNs also only

relies on {Δ𝑤𝑢,𝑡 |𝑡 = 1, 2...}. Therefore, TDGIA can capture the

topological weaknesses of them, which is also demonstrated what

our extensive experiments on multi-layer GNNs.

A.3 Proof of Lemma 4.1
Proof. Assume model M is non-structural-igonorant, then

there exist G1 = (A1, F),G2 = (A2, F), A1 ≠ A2,M(G1) ≠M(G2).
Permute a common node of G1 and G2 to position 0, then

𝐴1 =

[
0 𝐵1
𝐶1 𝑆1

]
, 𝐴2 =

[
0 𝐵2
𝐶2 𝑆2

]
𝐵1, 𝐵2 ∈ R1×(𝑁−1) ,𝐶1,𝐶2 ∈ R(𝑁−1)×1, 𝑆1, 𝑆2 ∈ R(𝑁−1)×(𝑁−1)

Consider a case of GIA in which nodes with the same features

are injected to G1 and G2 in a different way, i.e. G∗
1
= (A∗

1
, F∗),

G∗
2
= (A∗

2
, F∗) where

𝐴∗
1
=


0 𝐵1 𝐵2
𝐶1 𝑆1 0
𝐶2 0 𝑆2

 , 𝐴∗2 =


0 𝐵2 𝐵1
𝐶2 𝑆2 0
𝐶1 0 𝑆1


SupposeM is not GIA-attackable, by Definition 2

M(G∗
1
) =M(G1),M(G∗2) =M(G2) (33)

Table 5: Full Performance(%) table on KDD-CUP dataset in-
cluding 28 competition submissions, baselinesmethods, and
result of GIA using all 7 different surrogate attack models,
evaluated on 12 top candidate submitted defenses in KDD-
CUP 2020. Best results are bolded.

Attack

Method

Average

Accuracy

Top-3

Defense

Weighted

Average

Reduction

Clean - 65.54 70.02 68.57 -

KDD-CUP

Attacks

advers 63.44 68.85 67.09 1.48

dafts 63.91 68.50 67.02 1.55

deepb 61.44 69.4 67.26 1.31

dminers 63.76 69.39 67.48 1.09

fengari 63.78 69.41 67.45 1.12

grapho 63.75 69.34 67.44 1.13

msupsu 65.49 69.97 68.52 0.05

ntt 60.21 68.80 66.27 2.30

neutri 63.62 69.42 67.42 1.15

runz 63.96 69.40 67.55 1.02

speit 61.97 69.49 67.32 1.25

selina 64.67 69.40 67.79 0.78

tsail 63.90 69.40 67.55 1.02

cccn 63.11 69.26 67.28 1.29

dhorse 63.94 69.33 67.51 1.06

kaige 63.90 69.41 67.49 1.08

idvl 63.57 69.42 67.39 1.18

hhhvjk 65.00 69.38 67.93 0.64

fashui 63.69 69.42 67.42 1.15

shengz 63.99 69.40 67.55 1.02

sc 64.48 69.11 67.41 1.16

simong 60.02 68.59 66.29 2.28

tofu 63.87 69.39 67.50 1.07

yama 64.21 68.77 67.23 1.34

yaowen 63.94 69.33 67.50 1.07

tzpppp 65.01 69.38 67.94 0.63

u1234 61.18 67.95 64.87 3.70

zhangs 63.73 69.43 67.51 1.06

Baseline

Methods

FGSM 59.80 67.44 65.04 3.53

FGSM

(Smooth)

58.45 67.13 64.43 4.14

AFGSM 59.22 67.37 64.74 3.83

AFGSM

(Smooth)

58.52 67.15 64.48 4.09

SPEIT 61.89 68.16 66.13 2.44

TDGIA

with

different

surrogate

models

RobustGCN 57.24 65.83 62.53 6.04

sgcn 58.01 66.28 62.88 5.69

tagcn 58.35 65.82 62.90 5.67

GCN 55.00 64.49 60.49 8.08
GIN 56.83 65.70 62.15 6.42

GraphSAGE 59.35 66.43 63.70 4.87

appnp 55.80 65.93 61.76 6.81

However, sinceM is permutation invariant, i.e. G∗
1
and G∗

2
are the

same graph under permutation, then

M(G1) =M(G∗1) =M(G
∗
2) =M(G2) (34)

which contradicts to the initial assumption thatM(G1) ≠M(G2),
soM is GIA-attackable. □

	Abstract
	1 Introduction
	2 Related Works
	3 Problem Definition
	4 GNNs under Graph Injection Attack
	4.1 The Vulnerability of GNNs under GIA
	4.2 Topological Vulnerability of GNN Layers

	5 The TDGIA Framework
	5.1 Topological Defective Edge Selection
	5.2 Smooth Adversarial Optimization
	5.3 Overall attack process of TDGIA

	6 Experiments
	6.1 Basic Settings
	6.2 Attack & Defense Settings
	6.3 Performance of TDGIA
	6.4 Ablation Studies

	7 Conclusion
	References
	A Appendix
	A.1 Reproducibility Details
	A.2 Generalizing Topological Properties of Single-Layer GNN to Multi-Layer GNNs
	A.3 Proof of Lemma 4.1

