
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

SketchNE: Embedding Billion-Scale Networks
Accurately in One Hour

Yuyang Xie, Yuxiao Dong, Jiezhong Qiu, Wenjian Yu, Xu Feng, Jie Tang

Abstract—We study large-scale network embedding with the goal of generating high-quality embeddings for networks with more than
1 billion vertices and 100 billion edges. Recent attempts LightNE and NetSMF propose to sparsify and factorize the (dense) NetMF
matrix for embedding large networks, where NetMF is a theoretically-grounded network embedding method. However, there is a
trade-off between their embeddings’ quality and scalability due to their expensive memory requirements, making embeddings less
effective under real-world memory constants. Therefore, we present the SketchNE model, a scalable, effective, and memory-efficient
network embedding solution developed for a single machine with CPU only. The main idea of SketchNE is to avoid the explicit
construction and factorization of the NetMF matrix either sparsely or densely when producing the embeddings through the proposed
sparse-sign randomized single-pass SVD algorithm. We conduct extensive experiments on nine datasets of various sizes for vertex
classification and link prediction, demonstrating the consistent outperformance of SketchNE over state-of-the-art baselines in terms of
both effectiveness and efficiency. SketchNE costs only 1.0 hours to embed the Hyperlink2012 network with 3.5 billion vertices and
225 billion edges on a CPU-only single machine with embedding superiority (e.g., a 282% relative HITS@10 gain over LightNE).

Index Terms—network embedding, network representation learning, randomized matrix factorization, memory-efficient.

✦

1 INTRODUCTION

R EPRESENTATION learning on graphs has recently pro-
vided a new paradigm for modeling real-world net-

works [1]. Learning structural representations for networks,
i.e., network embedding, aims to map network entities into
a latent space. The learned entity embeddings have been
used to power various billion-scale online services, such
as DeepWalk [2] in Alibaba [3], LINE [4] in LinkedIn [5],
metapath2vec [6] and NetSMF [7] in Microsoft Academic [8],
PinSage in Pinterest [9].

Take Facebook for example, it leverages the
word2vec [10] based graph embedding system [11] to learn
structural embeddings for its 3 billion user base. These
embeddings are then consumed in various downstream
applications. To maintain the quality of these embeddings,
it is required to periodically embed such networks as
its underlying structure consistently evolves, ideally as
frequently as possible, e.g., every few hours in Alibaba [3].
However, according to our estimates, state-of-the-art
(SOTA) graph embedding systems, i.e., GraphVite [12]—a
DeepWalk [2] based system—and PyTorch-BigGraph [11]—
would cost days if not weeks by using powerful CPU and
GPU clusters to embed a network of 3B users.

Though skip-gram based embedding models, e.g., Deep-
Walk [2], LINE [4], and metapath2vec [6], have been widely
adopted in large-scale solutions. They are still limited to
handle billion-scale networks at speed, as discussed above.
Recently, a theoretical study demonstrates that these models
can be transformed as implicit factorization of a closed-form
matrix [13]. Based on this discovery, the NetMF model is
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proposed to explicitly construct and factorize the matrix that
is implicitly factorized by DeepWalk, i.e., the NetMF matrix1

f◦(M), in which M can be approximated by L and R—
the two matrices formed by the eigen-decomposition over
the graph Laplacian of a given network—and f◦(·) is an
element-wise logarithm function. Additionally, addressing
the matrix form f◦(LR) can benefit various machine learn-
ing scenarios, such as the attention mechanism in Trans-
former [14]—softmax(·), the linear layer with ReLU [15]
activation—ReLU(·), and the kernel method [16].

Despite its outperformance over skip-gram based meth-
ods, it is computationally prohibitive for NetMF to handle
million-scale networks as it needs to construct and factorize
f◦(M), which is an n × n dense matrix with n being the
number of vertices. To address this, one recent attempt
NetSMF [7] proposes to construct a sparse version of f◦(M)
by a graph spectral based sampling technique and then
leverage sparse matrix factorization to produce vertex em-
beddings. More recently, LightNE [17] advances NetSMF by
further reducing its sampling cost, utilizing other system-
wise optimizations, and borrowing the spectral propagation
strategy from ProNE [18]. In doing so, LightNE outperforms
SOTA systems, including NetSMF, ProNE, GraphVite, and
PyTorch-BigGraph, in terms of both computational cost and
embedding effectiveness.

However, the performance of LightNE and NetSMF
heavily relies on the number of samplings that directly
corresponds to the memory cost, that is, more samplings
make the sparse matrix more close to f◦(M) and thus
yield better embeddings, while consuming more memory.
For example, to generate competitive embeddings for the
OAG data [17] of 67M vertices and 895M edges, LightNE
requires 1493GB memory space to have a sufficient number

1. The detailed NetMF matrix f◦(M) can be found in Table 1.
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Fig. 1: The overview of SketchNE vs. NetMF and NetSMF/LightNE. The symbols used are listed in Table 1.

of samples. In order to embed larger networks, such as those
of billions of vertices, LightNE has to sacrifice the quality of
the embeddings under the real-world memory constraint.

Contributions. In light of the limitations of existing large-
scale graph embedding solutions, the goal of this work
is to learn effective embeddings for billion-scale networks
efficiently under certain memory constraints, e.g., to embed
networks with 3B vertices and 200B edges within 1 hour by
using a single machine with 1500GB memory. To achieve
this, we present the SketchNE2 model, an effective, scalable,
and memory-efficient method for billion-scale network em-
bedding. Figure 1 illustrates the two technical components
in SketchNE—a fast eigen-decomposition algorithm and a
sparse-sign randomized single-pass SVD, each of which
addresses the computational challenges in NetMF corre-
spondingly.

First, we propose to factorize the target matrix f◦(M)
without explicitly constructing it, avoiding the direct
or sparse construction and factorization in NetMF or
NetSMF/LightNE. To achieve this, we present the sparse-
sign randomized single-pass SVD algorithm by leveraging
the concept of the randomized sketch matrix.

Second, the step above still requires L and R, though
the explicit construction of f◦(M) is not demanded any-
more. Thus, we further introduce a fast randomized eigen-
decomposition algorithm to approximate the computation
of L and R and give an upper bound of the approximation
error. Empirical tests show that we can achieve about 90×
speedup over the original eigen-decomposition module in
NetMF without performance loss on (small) networks that
NetMF can actually handle.

Third, we combine the spectral propagation strategy
which is proposed in [18] to further improve the quality of
the inital embedding. We optimize our system for shared-
memory architectures with Graph Based Benchmark Suite
(GBBS) [19], which has already shown its superiority when
handling real-world networks with hundreds of billions of
edges on a single machine. Intel Math Kernel Library (MKL)
is used in SketchNE for basic linear algebra operations.

2. The code is publicly available at https://github.com/
xyyphant0m/SketchNE

We conduct extensive experiments to examine the per-
formance of SketchNE, including its effectiveness, efficiency,
and memory cost. Specifically, we test SketchNE and other
SOTA models/systems on five datasets for vertex classifica-
tion and four datasets for link prediction. The results show
that by using the least running time and memory among
SOTA models/systems, SketchNE can consistently outper-
form nine large-scale baselines across five datasets for vertex
classification and also offers significant improvements over
LightNE on three billion-scale networks for link prediction.
Notably, SketchNE can embed the Hyperlink2012 network with
3.5 billion vertices and 225 billion edges in 1.0 hours by
using 1,321GB memory on a single machine, and the learned
embeddings offer a 282% relative HITS@10 improvement over
LightNE on the link prediction task.

2 NETMF AND ITS CHALLENGES

Given an undirected network G = (V,E,A) with n vertices,
m edges, adjacency matrix A, degree matrix D and volume
vol(G) =

∑
i

∑
j Aij , the goal of network embedding is to

learn an embedding matrix E ∈ Rn×d so that row i captures
the structural property of vertex i [2], [4], [13], [20]. The
embeddings can be then fed into downstream applications.
The symbols are listed in Table 1.

Many network embedding algorithms are based on ran-
dom walk and skip-gram techniques, such as DeepWalk [2],
LINE [4], and node2vec [20]. Take DeepWalk for example,
the vertex sequences traversed by random walkers are fed
into the skip-gram model, which is usually parameterized
by the context window size T and the number of negative
samples b. Notably, these techniques are later shown to be

TABLE 1: Symbol used throughout this paper.
Symbol Description Symbol Description

G input network b #negative samples
V vertex set, |V | = n T context window size
E edge set, |E| = m E embedding matrix
A adjacency matrix d embedding dimension
vol(G) volume of G Uk truncated eigenvectors
D degree matrix Λk truncated eigenvalues
D−αAD−α modified Laplacian k rank parameter
L normalized Laplacian q power parameter
M

vol(G)
bT

∑T
r=1(D

−1A)rD−1 Y sketch of f◦(LR)
s oversampling parameter z column density

https://github.com/xyyphant0m/SketchNE
https://github.com/xyyphant0m/SketchNE
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Algorithm 1: NetMF under the new formulation
Input: adjacency matrix A, rank k, embedding

dimension d
Output: An embedding matrix E ∈ Rn×d

1 [Uk,Λk] = eigs(D−1/2AD−1/2, k)
// Eigen-decomposition

2 L= vol(G)
bT

D−1/2Uk, R=
(∑T

r=1 Λ
r
k

)
U⊤

k D−1/2

3 [Ud,Σd,Vd] = svds(f◦(LR), d) // Rank-d
truncated SVD

4 return E = UdΣ
1/2
d as network embedding

theoretically equivalent to matrix factorization [13]. Based
on this result, the NetMF algorithm is proposed to explicitly
construct and factorize the matrix that is implicitly factor-
ized by DeepWalk, namely the NetMF matrix:

trunc log◦
(
vol(G)

bT

T∑
r=1

(D−1A)rD−1

)
, (1)

where trunc log◦ denotes the element-wise truncated loga-
rithm, i.e., applying trunc log(x) = max(0, log(x)) to each
entry of a matrix. However, the explicit construction and
factorization of this matrix usually consumes O(n3) time
as it tends to be a dense matrix even with a small T . To
reduce time complexity, NetMF conducts truncated eigen-
decomposition such that D−1/2AD−1/2 ≈ UkΛkU

⊤
k , and

factorizes the following approximate matrix of (1):

trunc log◦
(
vol(G)

bT
D−1/2Uk

(
T∑

r=1

Λr
k

)
U⊤

k D−1/2

)
. (2)

Reformulate the Goal of NetMF. With the above descrip-
tion, we can reformulate and generalize the goal of NetMF
as follows:

Problem 1. Truncated SVD for element-wise function of a low-
rank matrix.
Given: Two low-rank matrices L ∈ Rn×k and R ∈ Rk×n, a
function f : R → R applied to each entry of LR, and desired
dimensionality d.
Goal: Compute the rank-d truncated SVD for f◦(LR) such that:

[Ud,Σd,Vd] = svds(f◦(LR), d). (3)

In NetMF, L = vol(G)
bT D−1/2Uk, R = (

∑T
r=1 Λ

r
k)U

⊤
k D−1/2

and f(·)=trunc log(·).

Alg. 1 describes NetMF under the above new formula-
tion. Unfortunately, it is still not capable of handling large
networks, even the YouTube dataset with 1.1 million vertices
used in DeepWalk [2], [21], mainly due to the following two
challenges presented in Problem 1.

Challenge One: How to Solve svds(f◦(LR), d) Efficiently?
The major challenge lies in the requirement to explicitly
construct and factorize f◦(LR), even after NetMF’s attempt
to perform the truncated eigen-decomposition. In fact, its
construction and factorization in Alg. 1 Line 3 demand
O(n2) memory cost and O(n2k) time cost, making it com-
putationally infeasible for large networks. It is worth noting
that the element-wise truncated logarithm is very important
to embedding quality and cannot be omitted [7], [13], [17],
[22]. Otherwise, the embeddings can be realized without

Algorithm 2: The basic randomized SVD
1 Procedure basic_randomized_SVD(X, k, q)
2 Ω = randn(n, k+s) // oversampling

parameter s: 10 or 20
3 Y = XΩ // sketch matrix Rn×(k+s)

4 Q = orth(Y ) // QR factorization
5 for i = 1, ..., q do // power

iteration (optional)
6 T = orth(X⊤Q) // QR factorization
7 Q = orth(XT ) // QR factorization
8 B = Q⊤X // reduced matrix B ∈ R(k+s)×n

9 [Û , Σ̂, V̂ ] = svd(B) // Full SVD
10 U = QÛ(:, 1 : k),Σ = Σ̂(1 : k, 1 : k),V = V̂ (:, 1 :

k)
11 return U ,Σ,V

constructing the dense form, as in NRP [23], RandNE [24],
and FastRP [25].

Challenge Two: How to Factorize D−1/2AD−1/2 Effi-
ciently? Although one may think the truncated eigen-
decomposition of D−1/2AD−1/2 (Line 1 of Alg. 1) is a
simple and efficient step, previous work [26], [27] and
our analysis show that it is in fact computationally very
expensive. In particular, Cohen-Steiner et al. [26] shows it
is very difficult to obtain the spectrum of a large graph,
and the eigen-decomposition of a large graph Laplacian [27]
is practically very slow. The cost of the truncated eigen-
decomposition [28] is O(βmk), where β ≥ 1 and its value
depends on the convergence speed. The convergence, in
turn, depends on the relative eigenvalue gap, making this
constant term very big and this operation practically very
expensive. This problem seems not prominent in NetMF
because the datasets in its paper [13] are relatively small
(the largest one is Flickr with 80K vertices). However, for
a slightly larger dataset YouTube with 1.1M vertices, we
observe that the SciPy implementation eigsh cannot finish
the computation in three days, not to mention for billion-
scale networks.

3 THE SKETCHNE MODEL

In this section, we present SketchNE for embedding
billion-scale networks at speed. In Sec. 3.1, we propose
a spare-sign single-pass SVD algorithm to resolve chal-
lenge one—factorizing f◦(LR) without constructing its
dense form. In Sec. 3.2, we introduce a fast randomized
eigen-decomposition algorithm to resolve challenge two—
accelerating the computation of L and R. Sec. 3.3 combines
the two sketching techniques and presents the overall algo-
rithm.

3.1 Sketching-Based svds(f◦(LR), d) without Explicitly
Computing & Factorizing f◦(LR)
In this part, we formally introduce a sketch-based solution
to svds(f◦(LR), d) without explicitly computing and fac-
torizing it.

Basic Randomized SVD. To solve the computational chal-
lenge of svds(f◦(LR), d), we first revisit the randomized
SVD in Alg. 2, where Ω (Line 2) is a Gaussian random



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

matrix, s (Line 2) is the oversampling parameter for better
accuracy, q (Line 5) is the power iteration index, and orth(·)
(Lines 4, 6 and 7) is the orthonormalization operation which
is usually implemented with QR factorization. The random
projection in Line 3 generates a sketch matrix Y , which
identifies a subspace that captures dominant information of
the input matrix X = f◦(LR). Then, with the subspace’s
orthonormal basis matrix Q computed in Line 4, one obtains
the approximation X ≈ QQ⊤X [29]. Lines 5˜8 are the
power iteration scheme which is optional to improve the
approximation accuracy. Next, Line 9 constructs a reduced
matrix B by projecting the input matrix X to the subspace
with orthonormal basis Q. Finally, the approximate trun-
cated SVD of X is obtained through performing SVD on
matrix B in Lines 10-11.

We can see that there are four places in Alg. 2 (Lines 3, 6,
7 and 9) requiring the explicit construction of X=f◦(LR).
For Lines 6-7, we can avoid them by skipping the optional
power iteration. We discuss how to deal with issues raised
by Lines 3 and 9, respectively.

Issue One (Alg. 2 Line 3): Sketching f◦(LR). Computing
sketch matrix Y requires matrix multiplication between
X = f◦(LR) and a random matrix Ω. However, f◦(LR)
cannot be explicitly computed due to its O(n2k) time com-
plexity and O(n2) memory cost.

Solution: The Sparse-Sign Matrix for Sketching. We
introduce the concept of the sparse-sign matrix to help
solve the multiplication XΩ = f◦(LR)Ω. The sparse-sign
matrix, with similar performance to the Gaussian matrix, is
another type of randomized dimension reduction map [30].
Alg. 3 describes how to generate a sparse-sign matrix. To
have a sparse-sign matrix S ∈ Rn×h with sketch size
h = d+s, where d is the embedding dimension, and s is the
oversampling parameter, we fix a column density parameter
z in the range 2 ≤ z ≤ n. We independently generate the
columns of the matrix at random. For each column, we draw
z i.i.d random signs and place them in z uniformly random
coordinates as shown in Alg. 3 Lines 5˜6. Line 8 is to get the
unique row coordinates. According to [30], z = min(n, 8)
will usually be a good choice.

After generating the sparse-sign matrix S, we can use
it as the random matrix, which multiplies f◦(LR) on its
right side to obtain the sketch matrix Y . Considering that
a column of the sparse-sign matrix S only has z nonzeros,
it will generate at most z × h coordinates in the range of
[1, n] and z × h ≪ n. Therefore, we can perform column
sampling according to these unique coordinates p. Assum-
ing that v = size(p, 1), then v satisfy v ≤ z × h ≪ n.
Based on the fact that S has only v non-zero rows, we can
immediately observe that we can have a sampling matrix
R(:, p). Therefore, computing Y = f◦(LR)S is exactly
equivalent to

Y = f◦ (LR(:, p))S. (4)

The time cost of (4) is O(nvk + nvh) and the memory cost
is O(nk + nv). However, when calculating LR(:, p) for
a network with billions of vertices, it will introduce O(nv)
memory cost, which is still infeasible. To solve this, we adopt
the batch matrix multiplication by selecting the fixed-size
rows of L in turn to complete the multiplication, which
further reduces the memory cost to O(nk).

Algorithm 3: Generate a sparse-sign matrix
1 Procedure gen_sparse_sign_matrix(n, h, z)
2 S = zeros(n, h) // sketch size h
3 p = zeros(zh, 1) // column density

parameter z
4 for j = 1, 2, ..., h do
5 p((z(j − 1) + 1) : zj) = randperm(n, z)
6 S(p((z(j − 1) + 1) : zj), j) = sign(randn(z, 1))
7 p = unique(p) // make coordinates unique
8 return S,p

Issue Two (Alg. 2 Line 9): Form the Reduced Matrix
B. According to Alg. 2 Line 9, the reduced matrix B is
constructed by B = Q⊤f◦(LR), where Q is a dense matrix
and f◦(LR) is implicitly stored, making it too expensive to
obtain B.

Solution: The Randomized Single-Pass SVD. We leverage
the idea of randomized single-pass SVD [30] to solve this is-
sue. The basic idea is to obtain the approximate SVD results
by visiting the target matrix f◦(LR) only once. The process
of single-pass SVD is as follows: First, we draw multiple
sketch matrices that capture the row and column dominant
information of matrix f◦(LR) and compute SVD based
on these sketch matrices. In [30], four sparse-sign random
matrices C ∈ Rn×h,S ∈ Rn×h,H ∈ Rn×l,O ∈ Rn×l are
drawn for target matrix f◦(LR). Then three sketch matrices

K = f◦(LR)⊤C,Y = f◦(LR)S,Z = H⊤f◦(LR)O (5)

are generated respectively. Second, we obtain the orthonor-
mal matrices

P = orth(K),Q = orth(Y ), (6)

which capture the row and column dominant information
of f◦(LR), respectively. Then we get a great approximation
as

f◦(LR) ≈ QQ⊤f◦(LR)PP⊤. (7)

By updating Z with Eq. 7, we can have

Z = H⊤f◦(LR)O ≈ (H⊤Q)(Q⊤f◦(LR)P )(P⊤O). (8)

Third, we get the reduced matrix

W =
(
H⊤Q

)†
Z
(
P⊤O

)†
≈ Q⊤f◦(LR)P (9)

by solving the least-squares problem. Finally, it will form a
low rank approximation of the target matrix f◦(LR) via

f◦(LR) ≈ QWP⊤, (10)

and the approximate truncated SVD of f◦(LR) can be
derived from performing SVD on W . Therefore, f◦(LR)
is required only in the sketching process, and the reduced
matrix W is constructed only by sketch matrices and ran-
dom matrices.

In addition, we note that f◦(LR) is symmetric in NetMF,
thus the row dominant information is equal to column
dominant information which means we can omit K and H .
This enables us to replace P with Q in Eq. 7˜10 and replace
H with O in Eqs. 5, 8, and 9. In other words, we can
further simplify and improve the above randomized single-
pass SVD process: When the multiplication Y = f◦(LR)S
is performed, we can simultaneously draw another sketch
matrix Z = O⊤f◦(LR)O with a sparse-sign random ma-
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Algorithm 4: Sparse-sign randomized single-pass SVD
1 Procedure sparse_sign_rand_single_pass_SVD(L,R, d)
2 h = d+ s1, l = d+ s2 // sketch size h, l
3 [S,p] = gen sparse sign matrix(n, h, z) // Alg. 3
4 Y = f◦ (LR(:, p))S // sketch matrix Y ∈ Rn×h

5 Q = orth(Y )
6 [O,p] = gen sparse sign matrix(n, l, z) // Alg. 3
7 Z = O⊤f◦ (L (p, :)R (:, p))O // sketch matrix

Z ∈ Rl×l

8 W = (O⊤Q)†Z(Q⊤O)† // reduced matrix
W ∈ Rh×h

9 [Û , Σ̂, V̂ ] = svd(W ) // Full SVD
10 U = QÛ(:, 1 : d),Σ = Σ̂(1 : d, 1 : d),V = QV̂ (:, 1 : d)
11 return U ,Σ,V

trix O ∈ Rn×l.

Overall: Sparse-Sign Randomized Single-Pass SVD. By
combining the sparse-sign random matrix with single-pass
SVD, we propose a sparse-sign randomized single-pass SVD
algorithm to avoid the explicit construction and factoriza-
tion of f◦(LR) as Alg. 4.

In Alg. 4, Line 8 generates the reduced matrix W , which
involves solving the least-squares problem twice. The first is
to solve (O⊤Q)T = Z for the temporary matrix T and the
second is to solve (O⊤Q)W⊤ = T⊤ for the reduced matrix
W . The matrix O⊤Q ∈ Rl×h is well-conditioned when l ≫
h which suggests choosing s2 ≫ s1. Lines 3 and 6 generate
two sparse-sign random matrices. Considering that s1 and
s2 are small numbers, the time cost of Line 4 is O(nv(k+d))
and Line 7 costs O(v2(k + d) + vd2). Line 5 costs O(nd2),
Lines 8˜9 cost O(d3), and Line 10 costs O(nd2). Therefore,
the time complexity of Alg. 4 is O(n(vk + vd + d2)), linear
to the number of vertices n, which is much more efficient
than the explicit construction and factorization in NetMF
(O(n2k)).

Overall, we present the sparse-sign randomized single-
pass SVD to address the computational challenges in
NetMF, which is the first attempt to introduce single-pass
low-rank matrix factorization into network embedding. It
not only solves the challenges of NetMF, but also gives a
solution to the general problem of factorizing f◦(LR). Re-
cently, Han et al. [31] proposes polynomial tensor sketch for
this problem, which combines a polynomial approximation
of f (e.g., Taylor and Chebyshev expansion) with tensor
sketch for approximating monomials of entries of LR. We
will see an ablation study which applies polynomial tensor
sketch to NetMF in Sec. 4.4.

3.2 Fast Eigen-Decomposition via Sketching

By now, we bypass the major bottleneck of Alg. 1 (Lines
3) without explicitly computing f◦(LR). However, the
solution in Alg. 4 still requires the separate L and R as
input, which are computed by the eigen-decomposition on
D−1/2AD−1/2 in Alg. 1 Line 1. Though the truncated
eigen-decomposition costs only O(βmk) FLOPs in theory
(β ≥ 1) [28], it is in practice almost infeasible to handle large
networks due to the big constants in its complexity. In fact,
the computation of this step for the YouTube dataset with 1.1
million vertices cannot complete within three days by using
the commonly-used eigsh implementation, while the goal

Algorithm 5: Fast randomized eigen-decomposition
1 Procedure freigs(X, k, q)
2 [∼, n] = size(X, 2)
3 Ω = randn(n, k + s)

4 Y = XΩ // sketch matrix Y ∈ Rn×(k+s)

5 [Q,∼,∼] = eigSVD(Y ) // fast
orthonormalization

6 for i = 1, 2, ..., q do // power iteration
7 [Q,∼,∼] = eigSVD(XXQ)

8 S = Q⊤XQ // reduced matrix S ∈ R(k+s)×(k+s)

9 [Û ,Λ] = eig(S) // Full eigen-decomposition
10 U = QÛ
11 return U(:, 1 : k),Λ(1 : k, 1 : k)

of this work is to embed billion-scale networks efficiently,
e.g., in one hour.

To address this practical challenge, we introduce a fast
randomized eigen-decomposition method to approximate
D−1/2AD−1/2. According to [29], the symmetric approx-
imation formula should be X ≈ QQ⊤XQQ⊤ and the
truncated eigen-decomposition result of X can be derived
by performing eigen-decomposition on the small matrix
Q⊤XQ. By combining the techniques of the power iteration
scheme and acceleration strategy [32], the fast randomized
eigen-decomposition can be described as Alg. 5.

Practically, a good decomposition of D−1/2AD−1/2

by freigs requires a large q, increasing the time cost
(see the experiment in Sec. 4.4). To balance the trade-off
between effectiveness and efficiency, we propose to per-
form Alg. 5 on a modified Laplacian matrix D−αAD−α,
where α ∈ (0, 0.5]. Therefore, we have UkΛkU

⊤
k ≈

D−αAD−α. It means D−1/2AD−1/2 is computed as
D−1/2+αUkΛkU

⊤
k D−1/2+α approximately. We give an up-

per bound of the approximation error by Lemma 4 and
its proof both in Appendix A. In doing so, Eq. (1) can be
approximated by

f◦(L′R′) = f◦

(
vol(G)

bT
D−1+αUkΛk

(
T∑

r=1

Kr−1

)
U⊤

k D−1+α

)
,

(11)
where L′ = vol(G)

bT D−1+αUk, K = U⊤
k D−1+2αUkΛk,

R′ = Λk(
∑T

r=1 K
r−1)U⊤

k D−1+α and f(·) = trunc log(·).
K is a k×k matrix, making the computation of

∑T
r=1 K

r−1

cheap. We further give an upper bound of the approxima-
tion error between the NetMF matrix and f◦(L′R′) by the
following theorem. We can see the approximation is better
with a larger k.

Theorem 1. Suppose f◦ denotes trunc log◦, i.e. the element-
wise truncated logarithm, f◦(M) is the matrix in (1), and
f◦(L′R′) is defined by (11) which includes the quantities
obtained with Alg. 5. Then,

∥f◦(M)−f◦(L′R′)∥F ≤ (1 + ε)d−1+2α
min B

(c− 1)bT

with high probability. Here |λj | is the j-th largest absolute value of
eigenvalue of D−αAD−α, B =

√∑n
j=k+1 |λj |2((cT −1)(1 +

n
c−1 )−nT )vol(G), c = n(dmax

dmin
)1−2α. dmin and dmax are the

minimum and maximum vertex degrees, respectively.

Proof. See Appendix A.
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Algorithm 6: SketchNE
Input: A network G = (V,E,A); Normalized parameter α;

rank parameter k; power parameter q; Embedding
dimension d;

Output: An embedding matrix E ∈ Rn×d

1 [Uk,Λk] = freigs(D−αAD−α, k, q) // Alg. 5
2 K = U⊤

k D−1+2αUkΛk

3 L′ = vol(G)
bT

D−1+αUk,R
′ = Λk

(∑T
r=1 K

r−1
)
U⊤

k D−1+α

4 [Ud,Σd,∼]=sparse sign rand single pass SVD(L′,R′, d)
// Alg. 4

5 E = UdΣ
1/2
d // inital embedding

6 E =
∑p

r=0 crLrE // spectral propagation
7 return E as network embedding

In Alg. 5, the ”eigSVD” is used as the orthonormal-
ization operation. Compared with the QR factorization,
eigSVD is much faster especially when n ≫ (k + s) [32].
Since the oversampling parameter s is smaller than k, Lines
4˜5 cost O(mk + nk2). According to [32], Lines 6˜8 cost
O(q(mk + nk2)), Line 9 costs O(mk + nk2), Line 10 costs
O(k3), and Line 11 costs O(nk2). Overall, the time complex-
ity of Alg. 5 is O(q(mk+ nk2)). However, the actual FLOPs
of Alg. 5 is far fewer than that of eigsh. In practice, our
empirical tests suggest that by setting α=0.4, Alg. 5 with
a small q shows on average ˜90X speedup to eigsh on
the small datasets that can be handled by eigsh without
noticeable impacts on the eigenvalues computed and by
extension on the embeddings learned (See Fig. 3 (a)).

3.3 The Overall Algorithm
In Sec. 3.1, we develop a sparse-sign randomized single-pass
SVD algorithm (Alg. 4) to solve svds(f◦(LR), d) without
the explicit computation and factorization of the full matrix
f◦(LR). In Sec. 3.2, we propose a fast randomized eigen-
decomposition method to get L and R for large networks.
Empowered by these two techniques, we address the two
computational challenges faced by NetMF, respectively. To
this end, we present the SketchNE algorithm to learn em-
beddings for billion-scale networks in Alg. 6.

In Alg. 6, Line 1 computes the fast randomized
eigen-decomposition for the modified Laplacian matrix
D−αAD−α. Lines 2˜3 form the approximations of matrices
L and R. Line 4 is to compute the SVD of f◦(L′R′) by
L′ and R′ through the sparse-sign randomized single-pass
SVD. Then we form the inital embedding in Line 5. Line 6
conducts spectral propagation, which is a commonly-used
and computationally-cheap enhancement technique [17],
[18] that further improves embedding quality. cr in Line
6 is the coefficients of Chebyshev polynomials, p is spec-
tral propagation steps (the default setting is 10) and L =
I − D−1A is normalized graph Laplacian matrix (I is the
identity matrix).

Complexity of SketchNE. For Line 1, the input matrix
D−αAD−α is still an n×n sparse matrix and has 2m nonze-
ros. According to Section 3.2, it requires O(q(mk + nk2))
time and O(m + nk) space. As for Lines 2˜3, O(nk2) time
and O(nk) space are required. The time cost of Line 4 is
O(n(d2 + vk + vd)) and its space cost is O(n(k + d)).
Lines 5˜6 demand O(pmd + nd) time and O(m + nd)
space. In total, the SketchNE has the time complexity of

O(q(mk + nk2) + nd2 + nvk + nvd + pmd) and the space
complexity of O(m + nk). Therefore, there is a trade-off
between efficiency and effectiveness on the choice of q. In
practice, we can easily find q that offers clear superiority
on both efficacy and efficiency, including both memory
cost and computing time, over existing large-scale network
embedding techniques. Consider that q, k, d, v, p are all very
small compared to m and n, the overall time complexity
of SketchNE is linear to the number of edges m and the
number of vertices n.

3.4 Implementation Details

Memory Reduction. Considering the memory cost of
SketchNE is O(m + nk), while NetSMF/LightNE ties per-
formance to memory cost. Therefore, we consider to fur-
ther optimize the memory cost of SketchNE by the Graph
Based Benchmark Suite (GBBS) [19], which is an exten-
sion of the Ligra [33] interface. We optimize the memory
cost of SketchNE with the Graph Based Benchmark Suite
(GBBS) [19], which is an extension of the Ligra [33] interface.
The GBBS is easy to use and has already shown its practi-
cality for many large scale fundamental graph problems.
LightNE [17] introduces GBBS to network embedding prob-
lems and shows its superiority to real-world networks with
hundreds of billions of edges. The main benefit of GBBS
to SketchNE is the data compression. A sparse adjacency
matrix is usually stored in the compressed sparse row (CSR)
format, which is also regarded as an excellent compressed
graph representation [34]. However, the CSR format still
incurs a huge memory overhead for the networks with
hundreds of billions of edges. For example, storing a net-
work with 1 billion vertices and 100 billion edges costs
1121 GB memory. Therefore, we need to compress it further
and reduce memory cost. The GBBS can be regarded as
a compressed CSR format for the graph from Ligra+ [35],
which supports fast parallel graph encoding and decoding.

Parallelization. Two major computational steps of the
SketchNE are sparse matrix-matrix multiplication (SPMM)
and matrix-matrix product (GEMM), which are well sup-
ported by the Intel MKL library. SPMM operation is well
supported by MKL’s Sparse BLAS Routine. However, MKL’s
Sparse BLAS Routine requires the sparse matrix in CSR
format as the input, which contradicts the original intention
of using GBBS. Fortunately, GBBS supports traversing all
neighbors of a vertex u for the compressed CSR format, and
we can propose an SPMM operation with the help of GBBS.
In order to use GBBS to save memory cost, we propose a
parallel GBBS-based SPMM operation to replace the SPMM
operation in MKL’s sparse BLAS routine. The parallel GBBS-
based SPMM is implemented as follows. Firstly, we traverse
n vertices parallelly. Then, we traverse neighbor vertex v
of vertex u to compute the quantity D(u, u)−αD(v, v)−α

corresponding to the sparse matrix. Finally, with the support
of cblas_saxpy in MKL, we multiply the v-th row of the
row-major matrix with the quantity and add the result to the
u-th row of the target matrix. The SPMM operation based
on GBBS is slightly slower than MKL’s SPMM operation,
but ensuring memory-efficient. The ”eigSVD”, ”eig” and
other operations in SketchNE are well supported by Intel
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MKL routines. Line 4 and Line 7 of the Alg. 6 involve
matrix column sampling and batch GEMM operation. They
are easily parallelized with the ”parallel for” derivative in
OpenMP [36].

In conclusion, SketchNE is implemented in C++. We use
GBBS to reduce memory usage and implement a GBBS-
based SPMM operation. For better efficiency, we use the
Intel MKL library for basic linear algebra operations and
the OpenMP programming.

4 EXPERIMENTS

In this section, we evaluate SketchNE on multi-label vertex
classification and link prediction tasks, following exactly the
same experimental settings as existing studies [2], [4], [7],
[11], [12], [13], [17], [20]. We introduce datasets in Section 4.1
our experimental settings and results in Section 4.2 and
Section 4.3, respectively. The ablation and case studies is
in Section 4.4.

4.1 Datasets
We employ five datasets for the multi-label vertex classifica-
tion task. BlogCatalog and YouTube are small graphs with
less than 10 million edges, while the others are large graphs
with more than 10 million but less than 10 billion edges.
For the link prediction task, We have four datasets in which
vertex labels are not available. Livejournal is the large graph,
while the others are very large graphs with more than 10B
edges. These datasets are of different scales and but have
been widely used in network embedding literature [7], [17].
The statistics of datasets are listed in Table 2.

BlogCatalog [37] is a network of relationships of online
users. The labels represent the interests of the users.

YouTube [21] is a video-sharing website, which allows user
to upload, view, rate and share videos. The vertex labels
represent the user’s taste in the video.

Friendster-small [38] is a sub-graph induced by all the la-
beled vertices in Friendster. The vertex labels in this network
are the same as those in Friendster.

Friendster [38] is a large social network in an online gaming
site. For some of the vertices, they have labels representing
the groups the user joined.

OAG [39] is a publicly available academic graph opened
by Microsoft Academic [39] and AMiner.org [40]. The vertex
labels represent the study fields of each author.

Livejournal [41] is an online blogging site, where users can
follow others to form a large social network.

ClueWeb [42] was created to support research on informa-
tion retrieval and related human language technologies. The
links between webs form the very large graphs.

Hyperlink2014 [43] was extracted from the Common Crawl
Corpus released in April 2014, covering 1.7 billion web
pages and 124 billion hyperlinks between these pages.

Hyperlink2012 [43] was extracted from the 2012 Common
Crawl Corpus covering 3.5 billion web pages and 225 billion
hyperlinks between these pages.

4.2 Experimental Settings

Baselines and Hyper-parameters Setting. We compare
SketchNE with nine SOTA network embedding methods,
including PyTorch-BigGraph (PBG) [11], GraphVite [12],
NetMF [13], NetSMF [7], ProNE [18], LightNE [17],
RandNE [24], FastRP [25] and NRP [23]. We also compare
SketchNE with two GNN methods, including DGI [44] and
GraphSAGE [45]. For all the baselines originally run on
CPU and SketchNE, we test them with all the datasets with
88 threads on a server with two Intel® Xeon® E5-2699 v4
CPUs (88 virtual cores in total) and 1.5 TB memory. For
GraphVite, we present the results obtained from the original
paper (if existed), which uses a 4×P100 GPU server, and
otherwise run it on a 4×V100 GPU server to get the results.
For GNN methods, we run it on a server with 8× GeForce
RTX 2080 Ti GPUs to get the results. All the baselines
are evaluated with the hyperparameters set default in the
corresponding paper’s GitHub Repository or tuned for the
best performance. Their settings are as follows.
NetMF [13]. We download the authors’ official source
codes3, and run experiments with default setting: T = 10,
k = 256.
RandNE [24]. We download the authors’ official source
codes4, and follow the default hyper-parameter setting for
BlogCatalog. For other datasets, we follow the suggestion of
tuning hyper-parameters from the source codes. The order
is from 1 to 3, and the weights are searched according to
wi+1 = βiwi where βi is from {0.01, 0.1, 1, 10, 100}.
FastRP [25]. We download the authors’ official source
codes5, and follow the authors’ suggestion for hyper-
parameter setting. α1, α2 and α3 are set to 0, 0 and 1,
respectively. We use the official tuning script to tune α4 and
the normalization strength β. The search ranges for β and
α4 are [−1, 0] and [2−3, 26], respectively.
NRP [23]. We download the authors’ official source codes6,
and follow setting in [23]: l1 = 20, l2 = 10, α = 0.15, ϵ =
0.2, and λ = 10.
PBG [11]. We download the authors’ official source codes7,
and run the example script for Livejournal. For other
datasets, we run the codes with default 30 iterations and
report the best result.
GraphVite [12]. We adopt the reported results for YouTube,
Friendster-small and Friendster in the original paper [12].
For other datasets, we run the authors’ official source codes8

with default setting. For Livejournal, other methods select
d = 1024, while the official implementation of GVT9 only
allows the selection of d up to 512.
NetSMF [7]. We download the authors’ official source
codes10, and run with the default hyper-parameter setting.
ProNE [18]. We use the high-performance version of ProNE
released by the LightNE GitHub Repository11, and keep the

3. https://github.com/xptree/NetMF.
4. https://github.com/ZW-ZHANG/RandNE.
5. https://github.com/GTmac/FastRP.
6. https://github.com/AnryYang/NRP-code.
7. https://github.com/facebookresearch/PyTorch-BigGraph.
8. https://github.com/DeepGraphLearning/graphvite.
9. https://graphvite.io/docs/0.2.1/api/solver.html#graphvite.

solver.GraphSolver
10. https://github.com/xptree/NetSMF.
11. https://github.com/xptree/LightNE.

https://github.com/xptree/NetMF
https://github.com/ZW-ZHANG/RandNE
https://github.com/GTmac/FastRP
https://github.com/AnryYang/NRP-code
https://github.com/facebookresearch/PyTorch-BigGraph
https://github.com/DeepGraphLearning/graphvite
https://graphvite.io/docs/0.2.1/api/solver.html##graphvite.solver.GraphSolver
https://graphvite.io/docs/0.2.1/api/solver.html##graphvite.solver.GraphSolver
https://github.com/xptree/NetSMF
https://github.com/xptree/LightNE
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TABLE 2: Statistics of datasets.
Multi-label Vertex Classification Task Link Prediction Task

BlogCatalog YouTube Friendster-small Friendster OAG Livejournal ClueWeb Hyperlink2014 Hyperlink2012

|V | 10,312 1,138,499 7,944,949 65,608,376 67,768,244 4,847,571 978,408,098 1,724,573,718 3,563,602,789
|E| 333,983 2,990,443 447,219,610 1,806,067,142 895,368,962 68,993,773 74,744,358,622 124,141,874,032 225,840,663,232

hyper-parameters the same as those in [18]: p = 10, θ =
0.5, µ = 0.2.
LightNE [17]. We download the authors’ official source
codes12, and run experiments with the default scripts and
the parameter setting according to its original paper.
SketchNE. We set parameters b = 1, z = 8, s1 = 100, s2 =
1000 for all datasets and choose T equal 2, 5 or 10, except
on the very large graphs where we set s1 = 0. We follow
the embedding dimension d setting in [11], [12], [17], and
let the other baselines follow the same setting. The eigen-
decomposition rank k should be larger than d. The parame-
ters α and q affect the experimental results to a larger extent.
The bigger q, the more accurate the eigen-decomposition
and thus the better the performance. We tune α and q in the
experiments, choosing α in the range [0.35, 0.5] with step
0.05 and q in the range [5, 30] with step 5. All parameter
settings for SketchNE are listed in Table. 3.

TABLE 3: Hyper-parameters for SketchNE.
Datasets T k q α s1 s2 d

BlogCatalog 10 256 20 0.5 100 1000 128

YouTube 10 256 30 0.35 100 1000 128

Friendster-small 2 256 2 0.35 100 1000 128

Friendster 2 128 2 0.4 100 1000 96

OAG 10 256 30 0.45 100 1000 128

Livejournal 5 1024 10 0.35 100 1000 1024

ClueWeb 5 32 6 0.45 0 1000 32

Hyperlink2014 5 32 10 0.45 0 1000 32

Hyperlink2012 5 16 5 0.45 0 1000 16

The Setting for GNN methods. To compare SketchNE with
GNN methods, we choose DGI [44] and GraphSAGE [45]
as the baselines. DGI and GraphSAGE both propose to
use an unsupervised loss function to train model in an
unsupervised manner. Considering that GNN methods usu-
ally require a feature matrix as the input information, we
follow the experimental setting in [46]. The idea is to gen-
erate non-informative features for vertices. Specifically, we
generate a 128-dimensional random vector following the
Xavier uniform or normal distribution for each vertice [47].
After the unsupervised training process of the GNN model
converges, we obtain the embedding matrix.

The Setting for Vertex Classification. To facilitate a fair
comparison, we follow the training ratio setting in [2], [7],
[12], [17]. A portion of labeled vertices are sampled for train-
ing and the remaining are used for testing. We complete the
task by using one-vs-rest logistic regression implemented by
LIBLINEAR [48]. The prediction procedure is repeated five
times and the average performance is evaluated in terms of
both Micro-F1 and Macro-F1 [49].

12. https://github.com/xptree/LightNE.

The Setting for Link Prediction. For Livejournal, we follow
the exactly same settings in Pytorch-BigGraph. For other
three billion-scale graphs, we follow LightNE to set up the
link prediction evaluation.We randomly excludes 0.00001%
edges from the training graph for evaluation. When training
SketchNE on these three graphs, the spectral propagation
step is omitted due to memory cost and we set d = 32 except
Hyperlink2012, where we use d = 16. We rank positive
edges among randomly sampled corrupted edges to get the
ranking metrics on the test set after training. We evaluate
the link prediction task with four metrics—mean rank (MR),
HITS@10, HITS@50, and AUC.

4.3 Experimental Results

Vertex Classification Results. We summarize the multi-
label vertex classification performance in Fig. 2. In BlogCat-
alog, SketchNE achieves significantly better Micro-F1 and
Macro-F1 than the second best method LightNE (by 3.5%
on average). In YouTube [21], SketchNE show comparable
performance to LightNE and GraphVite, while show signif-
icantly better results than others. In OAG [39], SketchNE
achieves better performance than LightNE—the second best
baseline on this data (Micro-F1 improved by 5.4% on av-
erage). In Friendster-small, and Friendster [38], SketchNE
achieves the best performance among all baselines. To
illustrate the effectiveness of SketchNE versus GNN meth-
ods, we tested DGI and GraphSAGE on the BlogCatalog
and YouTube datasets. The non-informative features with
Xavier uniform distribution or Xavier normal distribution
show almost the same performance and we retain the
better results between the two distributions in Fig. 2. In
BlogCatalog, SketchNE achieves significantly better Micro-
F1 and Macro-F1 than DGI (with 57.7% and 101.6% in-
crease) and GraphSAGE (with 33.9% and 95.9% increase). In
YouTube, SketchNE also outperforms DGI (with 73.7% and
433.6% increase) and GraphSAGE (with 89.0% and 106.2%
increase) by large margins. For very large graphs, DGI and
GraphSAGE cannot complete the training due to either the
limitation of GPU memory size or unconvergence within a
reasonable time.

Overall, SketchNE has significantly better or comparable
classification results compared to other methods. Compared
to RandNE, FastRP and NRP, which omit element-wise
function for scalability, SketchNE shows significantly better
performance. It proves that the element-wise function is
crucial for learning high quality embedding and that the
method in Sec. 3.1 to factorize element-wise function of low
rank matrix is practical. Overall, the vertex classification
results illustrate the effectiveness superiority of SketchNE.

Link Prediction Results. Table 4 lists the link predic-
tion performance. For Livejournal, SketchNE outperforms
all baselines in terms of MR, HITS@10, and HITS50. For
the three billion-scale networks—Clueweb, Hyperlink2014,

https://github.com/xptree/LightNE
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Fig. 2: Vertex classification performance (Micro-F1 and Macro-F1) w.r.t. the ratio of training data. For methods that cannot handle
computation or cannot finish job in one day, the results are not available and thus not plotted in this figure.

and Hyperlink2012, we only report the results of LightNE
and SketchNE, while other methods cannot finish running
due to excessive memory or/and time cost. The results of
LightNE are reported by choosing edge sample parameters
to reach 1.5 TB memory bound. On these datasets, SketchNE
produces significant outperformance over LightNE as mea-
sured by all four metrics. Take Hyperlink2012—the largest
one with 3.5 billion vertices and 225 billion edges—for
example, SketchNE achieves relative gains of 278%, 282%,
130%, and 24% over LightNE (the second best baseline on
Livejournal) in terms of MR, HITS@10, HITS@50, and AUC.

TABLE 4: Link prediction comparison.
Datasets Systems MR ↓ HITS@10 ↑ HITS@50 ↑ AUC ↑

Livejournal

PBG 4.25 0.929 0.974 0.968
GraphVite 3.06 0.962 0.982 0.973
NetSMF 3.09 0.954 0.986 0.935
RandNE 5.19 0.912 0.966 0.957
FastRP 4.51 0.928 0.973 0.965
NRP 2.98 0.949 0.993 0.934
ProNE 3.31 0.950 0.982 0.932
LightNE 2.13 0.977 0.993 0.945
SketchNE 2.10 0.977 0.994 0.945

ClueWeb LightNE 105.9 0.753 0.803 0.903
SketchNE 32.0 0.771 0.869 0.968

Hyperlink2014 LightNE 129.7 0.5 0.628 0.874
SketchNE 110.3 0.593 0.693 0.890

Hyperlink2012 LightNE 257.7 0.189 0.348 0.751
SketchNE 68.1 0.722 0.802 0.933

Time and Memory Efficiency. We report the running time
and memory cost of SketchNE and other eight baselines on
all nine datasets in Table 5. Time-wise, on small datasets
with millions of edges, the running time of SketchNE is
relatively comparable to other baselines. However, on net-
works of billions of edges, e.g., Friendster, ClueWeb, Hy-
perlink2014 and Hyperlink2012, it takes SketchNE the least
time to embed them. Memory-wise, we can observe that
SketchNE demands less memory than all baselines on all
datasets except using slightly more memory than NetSMF
and ProNE on the small Livejournal data, empowering it
to go for the largest networks considered and beyond. For
example, the running time of SketchNE on ClueWeb [42] is
37.7 minutes and the peak memory cost is 612GB, which

is 2× faster than LightNE and saves more than 59% mem-
ory. The results on Hyperlink2014 and Hyperlink2012 [43]
further demonstrate the efficiency of SketchNE. It is worth
noting that SketchNE can embed the Hyperlink2012 net-
work with 3.5 billion vertices and 225 billion edges in 1.0
hours by using 1,321GB memory on a single machine. In
conclusion, the results on the three very large-scale graphs
demonstrate that SketchNE can achieve consistently and
significantly better efficiency than LightNE in terms of both
running time and memory cost.

4.4 Ablation and Case Studies

0 50 100 150
k

0

1

2

3

4

λ

YouTube
eigsh of D−0.4AD−0.4

freigs (q=20) of D−0.4AD−0.4

freigs (q=20) of D−0.5AD−0.5

freigs (q=100) of D−0.5AD−0.5

(a) The computed eigenvalues w.r.t.
α

20 40 60 80
Training Ratio(%)

39

40

41

42

43

44
M

ic
ro

-F
1(

%
)

BlogCatalog

NetMF(w/ freigs)
NetMF

(b) NetMF vs. NetMF (w/ freigs)

Fig. 3: The validation of the effectiveness of freigs.

Efficiency and Effectiveness of Each Step of SketchNE.
First, we focus on the fast randomized eigen-decomposition
(freigs, Alg. 6 Line 1). Halko et al. [29] has shown
that it is challenging to perform eigen-decomposition on
D−1/2AD−1/2. We choose YouTube as an example, whose
related eigenvalues are shown in Fig. 3 (a). The eigenvalues
of D−1/2AD−1/2 with power iteration q = 20 and q = 100
are far from correct, as the correct largest eigenvalue should
be 1. The eigsh [28] is not able to complete this job in three
days. The results illustrate the requirement to use modified
Laplacian matrix for fast randomized eigen-decomposition.
When we choose α = 0.4, the eigenvalues of fast ran-
domized eigen-decomposition (q = 20) on D−0.4AD−0.4

is indistinguishable from the eigenvalues computed by
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TABLE 5: Efficiency comparison.
Metric Datasets RandNE FastRP NRP PBG GraphVite NetSMF ProNE LightNE SketchNE

Time

BlogCatalog 0.5 s 1.0 s 3.0 s 174.0 s 4.0 s 11.3 m 79.0 s 152.0 s 2.0 s
YouTube 12.0 s 17.0 s 173.0 s 12.5 m 44.0 s 3.7 h 65.0 s 96.0 s 40.0 s

Friendster-small 11.8 m 40.0 m 3.5 h 22.7 m 2.8 h 52 m 5.3 m 7.5 m 5.2 m
Friendster 57.8 m 3.5 h 16.1 h 5.3 h 20.3 h 16.5 h 19.5 m 37.6 m 16.0 m

OAG 33.7 m 3.5 h 11.4 h 20 h 1+day 22.4 h 22.6 m 1.5 h 1.1 h
Livejournal 9.0 m 18.0 m 4.3 h 7.3 h 29.0 m 2.1 h 12.8 m 16.0 m 12.5 m

ClueWeb × × × 1+day 1+day × × 1.3 h 37.7 m
Hyperlink2014 × × × 1+day 1+day × × 1.8 h1 0.98 h
Hyperlink2012 × × × 1+day 1+day × × 5.6 h1 1.0 h

Mem
(GB)

BlogCatalog 0.2 0.3 0.6 ⋆ ⋆ 135 18 273 17
YouTube 6.9 12.5 9.7 ⋆ ⋆ 854 28 83 27

Friendster-small 125 125 105 ⋆ ⋆ 85 84 541 56
Friendster 548 583 400 ⋆ ⋆ 1144 326 559 236

OAG 429 746 473 ⋆ ⋆ 1500 403 1391 283
Livejournal 224 417 282 ⋆ ⋆ 140 131 532 147

ClueWeb × × × ⋆ ⋆ × × 1493 612
Hyperlink2014 × × × ⋆ ⋆ × × 15001 1076
Hyperlink2012 × × × ⋆ ⋆ × × 15001 1321

1 LightNE requires sufficient samples that cost more than 1500GB mem (and more time), so it has to stop before it reaches the mem limit.
”⋆” indicates that we do not compare the memory cost of the CPU-GPU hybrid system (GraphVite) or distributed memory system (PBG).
”×” indicates that the corresponding algorithm is unable to handle the computation due to excessive space and memory consumption.
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Fig. 4: The embedding performance comparison.

eigsh when k < 140. The running time of fast random-
ized eigen-decomposition is 20 seconds while eigsh costs
31 minutes, which proves the accuracy and efficiency of
fast randomized eigen-decomposition. Then, we replace the
eigen-decomposition (eigsh) of NetMF with Alg. 5 and
evaluate the Micro-F1 result of BlogCatalog between NetMF
and NetMF (w/ freigs) in Fig. 3 (b). The results show
the effectiveness of freigs. Next, we focus on the effects
of sparse-sign randomized single-pass SVD and spectral
propagation. SketchNE (w/o spectral) and SketchNE (w/
spectral) represent the result of initial and enhanced embed-
dings, respectively. The vertex classification result is shown
in Fig. 4. The performance of model (w/o spectral) has been
satisfactory, which proves the effectiveness of the sparse-
sign randomized single-pass SVD. Combining with spectral
propagation, SketchNE (w/ spectral) shows better results,
demonstrating the effect of spectral propagation.

The effects of parameter q. Here we need to pay at-
tention to q, which determines the accuracy of the fast
randomized eigen-decomposition. Thus, we make a trade-
off between the quality of the learned embeddings and
the overall running time. The peak memory cost is con-
stant when we fix the oversampling parameters, col-
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Fig. 5: The trade-offs between efficiency and performance.

umn density z, eigen-decomposition rank k, and embed-
ding dimension d. By fixing other parameters for OAG,
we enumerate q from {10, 15, 20, 25, 30}, the efficiency-
effectiveness trade-off of OAG is shown as Fig. 5. We also
add LightNE results with different edge samples M from
{1Tm, 5Tm, 7Tm, 10Tm, 13Tm, 17Tm}. The peak mem-
ory of SketchNE is still 283GB while that of LightNE is
553 GB, 682 GB, 776 GB, 936 GB, 1118 GB and 1391
GB, respectively. Fig. 5 shows that SketchNE can learn
more effective embeddings than LightNE when the running
time is constant with less memory cost. The experiment
proves that users can adjust SketchNE flexibly according to
time/memory budgets and performance requirements.

The effects of parameter α. We also analyze the influence
of parameter α, which balances the accuracy of fast random-
ized eigen-decomposition on modified Laplacian matrix and
the approximation error of Eq. (11). We select here YouTube
and OAG as example datasets for the ablation study. We
vary the parameter α from {0.25, 0.3, 0.35, 0.4, 0.45, 0.5}
and fix other parameters. The change of SketchNE’s per-
formance as the α varies can be shown in Fig. 6. From it we
can see that when setting α = 0.5, the eigen-decomposition
on the Laplacian matrix has a bad accuracy and therefore
causes a loss of performance in Fig. 6. Fig. 6 also shows
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Fig. 7: Runtime of SketchNE v.s. the number of threads.

that SketchNE can learn almost the best embeddings when
setting α in the range [0.35, 0.45].

The Sketching Method. We download the official source
codes13 of Polynomial Tensor Sketch [31], and set k =
10, r = 11,m = 12, which makes dimension m × r + 1
slightly bigger than SketchNE’s d = 128 for BlogCatalog.
We replace the sparse-sign randomized single-pass SVD
in SketchNE with the polynomial tensor sketch algorithm,
which is an alternative solution to factorize f◦(LR). Ex-
periments on BlogCatalog show that SketchNE with sparse-
sign randomized single-pass SVD performs much better
than SketchNE with polynomial tensor sketch, achieving
a 44%/67.8% relative improvement on Micro-F1/Macro-F1
with 10% of training data.

The Number of Threads. In this work, we use a
single-machine shared memory implementation with multi-
threading acceleration. We set the number of threads to be 1,
3, 5, 10, 20, 40, 60, 88, and report the corresponding running
time of SketchNE in Fig. 7. SketchNE takes 22.8 hours to
embed the Hyperlink2012 network with 1 threads and 1.9
hours with 40 threads, achieving a 12× speedup ratio (with
ideal being 40×). This relatively good sub-linear speedup
supports SketchNE to scale up to networks with hundreds
of billions of edges.

5 RELATED WORK

This section reviews the related work of network embed-
ding and randomized matrix factorization.

Network Embedding. Network embedding has been com-
prehensively studied over the past decade. Recent work

13. https://github.com/insuhan/polytensorsketch.

about network embedding can be divided into three cat-
egories. The first category is based on skip-gram methods,
inspired by word2vec [10], including DeepWalk [2], Line [4],
node2vec [20]. These methods rely on stochastic gradient
descent to optimize a logistic loss. The second category
is based on deep learning methods, including GCN [50],
GAT [51], GIN [52], ie-HGCN [46], GCC [53], GraphCL [54],
DGI [44] and GraphSAGE [45]. Here we only focus on
graphs with no additional information and pre-train general
network embeddings in an unsupervised manner. Graph-
SAGE [45] and DGI [44] propose a loss function which
can be used to train GNN models in an unsupervised
manner. GCC [53] propose a framework to capture the
universal network topological properties across multiple
networks. GraphCL [54] improves the performance of graph
contrastive learning by data augmentations. ie-HGCN [46]
presents an interpretable and efficient heterogeneous graph
convolutional network. In contrast, these methods pre-train
in a supervised manner with vertex attributes. The third cat-
egory method is based on matrix factorization, using SVD to
generate the best low-rank approximation [55]. GraRep [56],
HOPE [57], NetMF [13], NetSMF [7], ProNE [18], NRP [23]
and LightNE [17] are methods in this category, while
PANE [58] is designed for networks with attributes. There
are several high performance embedding systems for large
graphs have been developed. GraphVite [12], a CPU-GPU
hybrid network embedding system, is developed based on
DeepWalk [2] and LINE [4]. In GraphVite, CPU is used
to perform graph operation, and GPU is used to compute
linear algebra. Nevertheless, the GPU memory is a disad-
vantage when processing billion scale networks, limiting
widespread use. Based on DeepWalk [2] and LINE [4],
PyTorch-BigGraph [11] has been proposed for distributed
memory machines. It achieves load balancing by graph
partition and synchronization through a shared parameter
server. In this work, we propose SketchNE, which leverages
the merit of NetMF and addresses its limitation in speed and
memory overhead. Then spectral propagation is applied to
improve the quality of final embedding.

Randomized Matrix Factorization. As the amount of data
continues to increase, the popularity of randomized matrix
computations has grown significantly. Randomized SVD
can be an alternative to conventional SVD methods, be-
cause it involves the same or fewer floating-point operations
and is more efficient for truly large high-dimensional data,
by exploiting modern computing architectures [29]. As an
application, frPCA [32] is developed for large-scale sparse
data with better performance than conventional PCA algo-
rithms. Randomized SVD has shown superiority in recent
network embedding methods such as NetSMF, ProNE, and
LightNE. Over the past few years, several single-pass SVD
algorithms [30], [59] based on randomized matrix sketch
have been introduced for streaming data scenarios. The
efficiency and memory limitation of NetMF will be solved
by randomized matrix factorization.

6 CONCLUSION

In this work, we propose SketchNE, a fast, memory-efficient,
and scalable network embedding method. We formulate

https://github.com/insuhan/polytensorsketch
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the computation goal of NetMF as factorizing an element-
wise function of low-rank matrix and then analyze its com-
putational challenges. SketchNE resolves these challenges
by leveraging various randomized linear sketch techniques,
including but not limited to sparse-sign matrix, single-pass
SVD, and fast eigen-decomposition. We use sparse-sign
random projection matrix to solve the matrix multiplication
challenge between f◦(LR) and random projection matrix,
and generate a sketch that can caputure the dominant in-
formation of f◦(LR). Then, we solve the challenge in con-
structing reduced matrix by single-pass SVD. Secondly, we
propose a fast randomized eigen-decomposition algorithm
for modified Laplacian matrix. To enhance the performance
of embedding, spectral propagation is adopted and a high-
performance parallel graph processing stack GBBS is used to
achieve memory-efficiency. The main computation steps of
SketchNE are highly parallelizable, which is thus well sup-
ported by the MKL library and OpenMP. With the help of
these techniques, SketchNE achieves the best performance
on vertex classification and link prediction among state-of-
the-art methods across diverse datasets. Notably, SketchNE
can learn high-quality embeddings for a network with 3.5
billion vertices and 225 billion edges in 1.0 hour by using
1,321GB memory on a single machine, and the learned
embeddings offer a 282% relative HITS@10 improvement
over LightNE on the link prediction task.

In the future, we plan to extend the method to handle
dynamic and heterogeneous networks. Since the sparse-sign
randomized single-pass SVD is proposed for solving the
problem f◦(LR), it is foreseeable that Alg. 4 may have
advantages in approximating the basic compoents in deep
learning network.
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