
NetSMF: Large-Scale Network Embedding as
Sparse Matrix Factorization

Jiezhong Qiu

Tsinghua University

June 17, 2019

Joint work with Yuxiao Dong (MSR), Hao Ma (Facebook AI),
Jian Li (IIIS, Tsinghua), Chi Wang (MSR), Kuansan Wang (MSR),

and Jie Tang (DCST, Tsinghua)

1 / 32

Motivation and Problem Formulation

Problem Formulation
Give a network G = (V,E), aim to learn a function f : V → Rp to
capture neighborhood similarity and community membership.

Applications:

I link prediction

I community detection

I label classification

Figure 1: A toy example (Figure from DeepWalk).

2 / 32

Two Genres of Network Embedding Algorithm

I Local Context Methods:
I LINE, DeepWalk, node2vec, metapath2vec.
I Usually be formulated as a skip-gram-like problem, and

optimized by SGD.

I Global Matrix Factorization Methods.
I NetMF, GraRep, HOPE.
I Leverage global statistics of the input networks.
I Not necessarily a gradient-based optimization problem.
I Usually requires explicit construction of the matrix to be

factorized.

3 / 32

Notations

Consider an undirected weighted graph G = (V,E) , where
|V | = n and |E| = m.

I Adjacency matrix A ∈ Rn×n
+ :

Ai,j =

{
ai,j > 0 (i, j) ∈ E
0 (i, j) 6∈ E .

I Degree matrix D = diag(d1, · · · , dn), where di is the
generalized degree of vertex i.

I Volume of the graph G: vol(G) =
∑

i

∑
j Ai,j .

4 / 32

Contents

Revisit DeepWalk and NetMF

NetSMF: Network Embedding as Sparse Matrix Factorization

Experimental Results

5 / 32

DeepWalk and NetMF

//

Random
Walk Skip-gram

Output:
Node

Embedding
Input
G=(V,E)

6 / 32

DeepWalk and NetMF

Random
Walk Skip-gram

Output:
Node

Embedding
Input
G=(V,E)

Levy & Goldberg (NIPS 14)

//

#(w, c) #(w)

#(c)

Co-occurrence of w and c Occurrence of word w

Occurrence of context c|D| Total number of word-context pairs

b Number of negative samples

7 / 32

DeepWalk and NetMF

Random
Walk Skip-gram

Output:
Node

Embedding
Input
G=(V,E)

Levy & Goldberg (NIPS 14)

//

#(w, c) #(w)

#(c)

Co-occurrence of w and c Occurrence of word w

Occurrence of context c|D| Total number of word-context pairs

b Number of negative samples

8 / 32

DeepWalk and NetMF

Random
Walk Skip-gram

Output:
Node

Embedding
Input
G=(V,E)

Levy & Goldberg (NIPS 14)

//

Adjacency matrix

Degree matrix b Number of negative samples

9 / 32

DeepWalk and NetMF

Random
Walk Skip-gram

Output:
Node

Embedding
Input
G=(V,E)

Levy & Goldberg (NIPS 14)

Matrix
Factorization

//

10 / 32

Contents

Revisit DeepWalk and NetMF

NetSMF: Network Embedding as Sparse Matrix Factorization

Experimental Results

11 / 32

Contents

Revisit DeepWalk and NetMF

NetSMF: Network Embedding as Sparse Matrix Factorization

Experimental Results

12 / 32

Computation Challanges of NetMF

For small world networks,

vol(G)

b

 1

T

T∑
r=1

(
D−1A

)r︸ ︷︷ ︸
matrix power

D−1 is always a dense matrix .

Why?

I In small world networks, each pair of vertices (i, j) can reach
each other in a small number of hops.

I Make the corresponding matrix entry a positive value.

Idea

I Sparse matrix is easier to handle.

I Can we achieve a matrix sparse but ‘good enough’ matrix.

13 / 32

Computation Challanges of NetMF

For small world networks,

vol(G)

b

 1

T

T∑
r=1

(
D−1A

)r︸ ︷︷ ︸
matrix power

D−1 is always a dense matrix .

Why?

I In small world networks, each pair of vertices (i, j) can reach
each other in a small number of hops.

I Make the corresponding matrix entry a positive value.

Idea

I Sparse matrix is easier to handle.

I Can we achieve a matrix sparse but ‘good enough’ matrix.

13 / 32

Computation Challanges of NetMF

For small world networks,

vol(G)

b

 1

T

T∑
r=1

(
D−1A

)r︸ ︷︷ ︸
matrix power

D−1 is always a dense matrix .

Why?

I In small world networks, each pair of vertices (i, j) can reach
each other in a small number of hops.

I Make the corresponding matrix entry a positive value.

Idea

I Sparse matrix is easier to handle.

I Can we achieve a matrix sparse but ‘good enough’ matrix.

13 / 32

Observation

Definition
For

∑T
r=1 αr = 1 and αr non-negative,

L = D −
T∑

r=1

αrD
(
D−1A

)r
(1)

is a T -degree random-walk matrix polynomial.

Observation
For α1 = · · · = αT = 1

T :

log◦

(
vol(G)

b

(
1

T

T∑
r=1

(
D−1A

)r)
D−1

)

= log◦
(
vol(G)

b
D−1(D −L)D−1

)
≈ log◦

(
vol(G)

b
D−1(D − L̃)D−1

)
14 / 32

Random-walk Matrix Polynomial Sparsification

Theorem
[CCL+15] For random-walk matrix polynomial
L = D −∑T

r=1 αrD
(
D−1A

)r
, one can construct, in time

O(T 2mε−2 log2 n), a (1 + ε)-spectral sparsifier, L̃, with
O(n log nε−2) non-zeros. For unweighted graphs, the time
complexity can be reduced to O(T 2mε−2 log n).

15 / 32

NetSMF—Algorithm

The proposed NetSMF algorithm consists of three steps:

I Construct a random walk matrix polynomial sparsifier, L̃, by
calling PathSampling algorithm proposed in [CCL+15].

I Construct a NetMF matrix sparsifier.

trunc log◦
(
vol(G)

b
D−1(D − L̃)D−1

)

I Truncated randomized singular value decomposition.

Detailed Algorithm

16 / 32

Algorithm Details

PathSampling:
I Sample an edge (u, v) from edge set.
I Start very short random walk from u and arrive u′.
I Start very short random walk from v and arrive v′.
I Record vertex pair (u′, v′).

Randomized SVD:
I Project origin matrix to low dimensional space by Gaussian

random matrix.
I Deal with the projected small matrix.

17 / 32

NetSMF — System Design

Figure 2: The System Design of NetSMF.

18 / 32

Contents

Revisit DeepWalk and NetMF

NetSMF: Network Embedding as Sparse Matrix Factorization

Experimental Results

19 / 32

Setup

Label Classification:

I BlogCatelog, PPI, Flickr, YouTube, OAG.

I Logistic Regression

I NetSMF (T = 10), NetMF (T = 10), DeepWalk, LINE.

Table 1: Statistics of Datasets.

Dataset BlogCatalog PPI Flickr YouTube OAG
|V | 10,312 3,890 80,513 1,138,499 67,768,244
|E| 333,983 76,584 5,899,882 2,990,443 895,368,962

#Labels 39 50 195 47 19

20 / 32

Experimental Results

20
25
30
35
40
45
50

M
icr

o-
F1

 (%
)

BlogCatalog

0
5

10
15
20
25
30 PPI

15
20
25
30
35
40
45 Flickr

20
25
30
35
40
45
50 YouTube

20
25
30
35
40
45
50 OAG

25 50 7510
15
20
25
30
35
40

M
ac

ro
-F

1
(%

)

25 50 750
5

10
15
20
25
30

1 2 3 4 5 6 7 8 9 10
Training Ratio (%)

0
5

10
15
20
25
30

1 2 3 4 5 6 7 8 9 1015
20
25
30
35
40
45

1 2 3 4 5 6 7 8 9 100
5

10
15
20
25
30

DeepWalk LINE node2vec NetMF NetSMF

Figure 3: Predictive performance on varying the ratio of training data.
The x-axis represents the ratio of labeled data (%), and the y-axis in the
top and bottom rows denote the Micro-F1 and Macro-F1 scores
respectively.

21 / 32

Running Time

Table 2: Running Time

LINE DeepWalk node2vec NetMF NetSMF
BlogCatalog 40 mins 12 mins 56 mins 2 mins 13 mins

PPI 41 mins 4 mins 4 mins 16 secs 10 secs
Flickr 42 mins 2.2 hours 21 hours 2 hours 48 mins

YouTube 46 mins 1 day 4 days × 4.1 hours
OAG 2.6 hours – – × 24 hours

22 / 32

Conclusion and Future Work

We propose NetSMF, a scalable, efficient, and effective network
embedding algorithm.

Future Work

I A distributed-memory implementation.

I Extension to directed, dynamic, heterogeneous graphs.

23 / 32

Thanks.
I Network Embedding as Matrix Factorization: Unifying DeepWalk,

LINE, PTE, and node2vec (WSDM ’18)

I NetSMF: Network Embedding as Sparse Matrix Factorization
(WebConf ’19)

Code for NetMF available at github.com/xptree/NetMF
Code for NetSMF available at github.com/xptree/NetSMF

Q&A

24 / 32

github.com/xptree/NetMF
github.com/xptree/NetSMF

On the Large-dimensionality Assumption of [LG14]

Recall the objective of skip-gram model:

min
X,Y
L(X,Y)

where

L(X,Y) = |D|
∑
w

∑
c

(
#(w, c)

|D| log g(x>wyc) + b
#(w)

|D|
#(c)

|D| log g(−x>wyc)

)

Theorem
For DeepWalk, when the length of random walk L→∞,

#(w, c)

|D|
p→ 1

2T

T∑
r=1

(
dw

vol(G)
(P r)w,c +

dc
vol(G)

(P r)c,w

)
.

#(w)

|D|
p→ dw

vol(G)
and

#(c)

|D|
p→ dc

vol(G)
.

Back

25 / 32

NetSMF — Approximation Error

Denote M = D−1 (D −L)D−1 in

trunc log◦
(
vol(G)

b
D−1(D − L̃)D−1

)
,

and M̃ to be its sparsifier the we constructed.

Theorem
The singular value of M̃ −M satisfies

σi(M̃ −M) ≤ 4ε√
didmin

,∀i ∈ [n].

Theorem
Let ‖·‖F be the matrix Frobenius norm. Then

∥∥∥∥trunc log◦
(
vol(G)

b
M̃

)
− trunc log◦

(
vol(G)

b
M

)∥∥∥∥
F

≤ 4ε vol(G)

b
√
dmin

√√√√ n∑
i=1

1

di
.

26 / 32

Spectrally Similar

Definition
Suppose G = (V,E,A) and G̃ = (V, Ẽ, Ã) are two weighted

undirected networks. Let L = DG −A and L̃ = D
G̃
− Ã be their

Laplacian matrices, respectively. We define G and G̃ are
(1 + ε)-spectrally similar if

∀x ∈ Rn, (1− ε) · x>L̃x ≤ x>Lx ≤ (1 + ε) · x>L̃x.

27 / 32

NetSMF—Algorithm

Algorithm 1: NetSMF
Input : A social network G = (V,E,A) which we want to learn network embedding;

The number of non-zeros M in the sparsifier; The dimension of embedding d.
Output: An embedding matrix of size n× d, each row corresponding to a vertex.

1 G̃← (V, ∅, Ã = 0)

/* Create an empty network with E = ∅ and Ã = 0. */

2 for i← 1 to M do
3 Uniformly pick an edge e = (u, v) ∈ E
4 Uniformly pick an integer r ∈ [T]
5 u′, v′, Z ← PathSampling(e, r)

6 Add an edge
(
u′, v′, 2rm

MZ

)
to G̃

/* Parallel edges will be merged into one edge, with their weights

summed up together. */

7 end

8 Compute L̃ to be the unnormalized graph Laplacian of G̃

9 Compute M̃ = D−1
(
D − L̃

)
D−1

10 Ud,Σd,Vd ← RandomizedSVD(trunc log◦
(

vol(G)
b

M̃
)
, d)

11 return Ud
√

Σd as network embeddings

Back

28 / 32

NetSMF—Algorithm

Algorithm 2: PathSampling algorithm as described in [CCL+15].

1 Procedure PathSampling(e = (u, v), r)
2 Uniformly pick an integer k ∈ [r]
3 Perform (k − 1)-step random walk from u to u0
4 Perform (r − k)-step random walk from v to ur
5 Keep track of Z(p) =

∑r
i=1

2
Aui−1,ui

along the length-r path p

between u0 and ur
6 return u0, ur, Z(p)

Back

29 / 32

Randomized SVD

Algorithm 3: Randomized SVD on NetMF Matrix Sparsifier

1 Procedure RandomizedSVD(A, d)
2 Sampling Gaussian random matrix O // O ∈ Rn×d

3 Compute sample matrix Y = A>O = AO // Y ∈ Rn×d

4 Orthonormalize Y

5 Compute B = AY // B ∈ Rn×d

6 Sample another Gaussian random matrix P // P ∈ Rd×d

7 Compute sample matrix of Z = BP // Z ∈ Rn×d

8 Orthonormalize Z

9 Compute C = Z>B // C ∈ Rd×d

10 Run Jacobi SVD on C = UΣV >

11 return ZU , Σ, Y V

/* Result matrices are of shape n× d, d× d, n× d resp. */

30 / 32

Time and Space Complexity

Table 3: Time and Space Complexity of NetSMF.

Time Space

Step 1
O(MT log n) for weighted networks
O(MT) for unweighted networks

O(M + n+m)

Step 2 O(M) O(M + n)
Step 3 O(Md+ nd2 + d3) O(M + nd)

31 / 32

References I

Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and
Shang-Hua Teng, Spectral sparsification of random-walk
matrix polynomials, arXiv preprint arXiv:1502.03496 (2015).

Omer Levy and Yoav Goldberg, Neural word embedding as
implicit matrix factorization, Advances in neural information
processing systems, 2014, pp. 2177–2185.

32 / 32

	Revisit DeepWalk and NetMF
	NetSMF: Network Embedding as Sparse Matrix Factorization
	Experimental Results

