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Motivation and Problem Formulation

Problem Formulation
Give a network G = (V,E), aim to learn a function f : V → Rp to
capture neighborhood similarity and community membership.

Applications:

I link prediction

I community detection

I label classification

Figure 1: A toy example (Figure from DeepWalk).
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Two Genres of Network Embedding Algorithm

I Local Context Methods:
I LINE, DeepWalk, node2vec, metapath2vec.
I Usually be formulated as a skip-gram-like problem, and

optimized by SGD.

I Global Matrix Factorization Methods.
I NetMF, GraRep, HOPE.
I Leverage global statistics of the input networks.
I Not necessarily a gradient-based optimization problem.
I Usually requires explicit construction of the matrix to be

factorized.
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Notations

Consider an undirected weighted graph G = (V,E) , where
|V | = n and |E| = m.

I Adjacency matrix A ∈ Rn×n
+ :

Ai,j =

{
ai,j > 0 (i, j) ∈ E
0 (i, j) 6∈ E .

I Degree matrix D = diag(d1, · · · , dn), where di is the
generalized degree of vertex i.

I Volume of the graph G: vol(G) =
∑

i

∑
j Ai,j .
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Computation Challanges of NetMF

For small world networks,

vol(G)

b

 1

T

T∑
r=1

(
D−1A

)r︸ ︷︷ ︸
matrix power

D−1 is always a dense matrix .

Why?

I In small world networks, each pair of vertices (i, j) can reach
each other in a small number of hops.

I Make the corresponding matrix entry a positive value.

Idea

I Sparse matrix is easier to handle.

I Can we achieve a matrix sparse but ‘good enough’ matrix.
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Observation

Definition
For

∑T
r=1 αr = 1 and αr non-negative,

L = D −
T∑

r=1

αrD
(
D−1A

)r
(1)

is a T -degree random-walk matrix polynomial.

Observation
For α1 = · · · = αT = 1

T :

log◦

(
vol(G)

b

(
1

T

T∑
r=1

(
D−1A

)r)
D−1

)

= log◦
(
vol(G)

b
D−1(D −L)D−1

)
≈ log◦

(
vol(G)

b
D−1(D − L̃)D−1

)
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Random-walk Matrix Polynomial Sparsification

Theorem
[CCL+15] For random-walk matrix polynomial
L = D −∑T

r=1 αrD
(
D−1A

)r
, one can construct, in time

O(T 2mε−2 log2 n), a (1 + ε)-spectral sparsifier, L̃, with
O(n log nε−2) non-zeros. For unweighted graphs, the time
complexity can be reduced to O(T 2mε−2 log n).

15 / 32



NetSMF—Algorithm

The proposed NetSMF algorithm consists of three steps:

I Construct a random walk matrix polynomial sparsifier, L̃, by
calling PathSampling algorithm proposed in [CCL+15].

I Construct a NetMF matrix sparsifier.

trunc log◦
(
vol(G)

b
D−1(D − L̃)D−1

)

I Truncated randomized singular value decomposition.

Detailed Algorithm
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Algorithm Details

PathSampling:
I Sample an edge (u, v) from edge set.
I Start very short random walk from u and arrive u′.
I Start very short random walk from v and arrive v′.
I Record vertex pair (u′, v′).

Randomized SVD:
I Project origin matrix to low dimensional space by Gaussian

random matrix.
I Deal with the projected small matrix.
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NetSMF — System Design

Figure 2: The System Design of NetSMF.
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Setup

Label Classification:

I BlogCatelog, PPI, Flickr, YouTube, OAG.

I Logistic Regression

I NetSMF (T = 10), NetMF (T = 10), DeepWalk, LINE.

Table 1: Statistics of Datasets.

Dataset BlogCatalog PPI Flickr YouTube OAG
|V | 10,312 3,890 80,513 1,138,499 67,768,244
|E| 333,983 76,584 5,899,882 2,990,443 895,368,962

#Labels 39 50 195 47 19

20 / 32



Experimental Results
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Figure 3: Predictive performance on varying the ratio of training data.
The x-axis represents the ratio of labeled data (%), and the y-axis in the
top and bottom rows denote the Micro-F1 and Macro-F1 scores
respectively.
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Running Time

Table 2: Running Time

LINE DeepWalk node2vec NetMF NetSMF
BlogCatalog 40 mins 12 mins 56 mins 2 mins 13 mins

PPI 41 mins 4 mins 4 mins 16 secs 10 secs
Flickr 42 mins 2.2 hours 21 hours 2 hours 48 mins

YouTube 46 mins 1 day 4 days × 4.1 hours
OAG 2.6 hours – – × 24 hours
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Conclusion and Future Work

We propose NetSMF, a scalable, efficient, and effective network
embedding algorithm.

Future Work

I A distributed-memory implementation.

I Extension to directed, dynamic, heterogeneous graphs.
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Thanks.
I Network Embedding as Matrix Factorization: Unifying DeepWalk,

LINE, PTE, and node2vec (WSDM ’18)

I NetSMF: Network Embedding as Sparse Matrix Factorization
(WebConf ’19)

Code for NetMF available at github.com/xptree/NetMF
Code for NetSMF available at github.com/xptree/NetSMF

Q&A
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On the Large-dimensionality Assumption of [LG14]

Recall the objective of skip-gram model:

min
X,Y
L(X,Y )

where

L(X,Y ) = |D|
∑
w

∑
c

(
#(w, c)

|D| log g(x>wyc) + b
#(w)

|D|
#(c)

|D| log g(−x>wyc)

)

Theorem
For DeepWalk, when the length of random walk L→∞,

#(w, c)

|D|
p→ 1

2T

T∑
r=1

(
dw

vol(G)
(P r)w,c +

dc
vol(G)

(P r)c,w

)
.

#(w)

|D|
p→ dw

vol(G)
and

#(c)

|D|
p→ dc

vol(G)
.

Back
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NetSMF — Approximation Error

Denote M = D−1 (D −L)D−1 in

trunc log◦
(
vol(G)

b
D−1(D − L̃)D−1

)
,

and M̃ to be its sparsifier the we constructed.

Theorem
The singular value of M̃ −M satisfies

σi(M̃ −M) ≤ 4ε√
didmin

,∀i ∈ [n].

Theorem
Let ‖·‖F be the matrix Frobenius norm. Then

∥∥∥∥trunc log◦
(
vol(G)

b
M̃

)
− trunc log◦

(
vol(G)

b
M

)∥∥∥∥
F

≤ 4ε vol(G)

b
√
dmin

√√√√ n∑
i=1

1

di
.
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Spectrally Similar

Definition
Suppose G = (V,E,A) and G̃ = (V, Ẽ, Ã) are two weighted

undirected networks. Let L = DG −A and L̃ = D
G̃
− Ã be their

Laplacian matrices, respectively. We define G and G̃ are
(1 + ε)-spectrally similar if

∀x ∈ Rn, (1− ε) · x>L̃x ≤ x>Lx ≤ (1 + ε) · x>L̃x.
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NetSMF—Algorithm

Algorithm 1: NetSMF
Input : A social network G = (V,E,A) which we want to learn network embedding;

The number of non-zeros M in the sparsifier; The dimension of embedding d.
Output: An embedding matrix of size n× d, each row corresponding to a vertex.

1 G̃← (V, ∅, Ã = 0)

/* Create an empty network with E = ∅ and Ã = 0. */

2 for i← 1 to M do
3 Uniformly pick an edge e = (u, v) ∈ E
4 Uniformly pick an integer r ∈ [T ]
5 u′, v′, Z ← PathSampling(e, r)

6 Add an edge
(
u′, v′, 2rm

MZ

)
to G̃

/* Parallel edges will be merged into one edge, with their weights

summed up together. */

7 end

8 Compute L̃ to be the unnormalized graph Laplacian of G̃

9 Compute M̃ = D−1
(
D − L̃

)
D−1

10 Ud,Σd,Vd ← RandomizedSVD(trunc log◦
(

vol(G)
b

M̃
)
, d)

11 return Ud
√

Σd as network embeddings

Back
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NetSMF—Algorithm

Algorithm 2: PathSampling algorithm as described in [CCL+15].

1 Procedure PathSampling(e = (u, v), r)
2 Uniformly pick an integer k ∈ [r]
3 Perform (k − 1)-step random walk from u to u0
4 Perform (r − k)-step random walk from v to ur
5 Keep track of Z(p) =

∑r
i=1

2
Aui−1,ui

along the length-r path p

between u0 and ur
6 return u0, ur, Z(p)

Back
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Randomized SVD

Algorithm 3: Randomized SVD on NetMF Matrix Sparsifier

1 Procedure RandomizedSVD(A, d)
2 Sampling Gaussian random matrix O // O ∈ Rn×d

3 Compute sample matrix Y = A>O = AO // Y ∈ Rn×d

4 Orthonormalize Y

5 Compute B = AY // B ∈ Rn×d

6 Sample another Gaussian random matrix P // P ∈ Rd×d

7 Compute sample matrix of Z = BP // Z ∈ Rn×d

8 Orthonormalize Z

9 Compute C = Z>B // C ∈ Rd×d

10 Run Jacobi SVD on C = UΣV >

11 return ZU , Σ, Y V

/* Result matrices are of shape n× d, d× d, n× d resp. */
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Time and Space Complexity

Table 3: Time and Space Complexity of NetSMF.

Time Space

Step 1
O(MT log n) for weighted networks
O(MT ) for unweighted networks

O(M + n+m)

Step 2 O(M) O(M + n)
Step 3 O(Md+ nd2 + d3) O(M + nd)
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