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Abstract

The prosperity of Massive Open Online
Courses (MOOCs) provides fodder for many
NLP and AI research for education applica-
tions, e.g., course concept extraction, prerequi-
site relation discovery, etc. However, the pub-
licly available datasets of MOOC are limited
in size with few types of data, which hinders
advanced models and novel attempts in related
topics. Therefore, we present MOOCCube, a
large-scale data repository of over 700 MOOC
courses, 100k concepts, 8 million student be-
haviors with an external resource. Moreover,
we conduct a prerequisite discovery task as an
example application to show the potential of
MOOCCube in facilitating relevant research.
The data repository is now available at http:
//moocdata.cn/data/MOOCCube.

1 Introduction

Massive open online courses (MOOCs) boom
swiftly in recent years and have provided conve-
nient education for over 100 million users world-
wide (Shah, 2019). As a multi-media, large-scale
online interactive system, MOOC is an excellent
platform for advanced application research (Vol-
ery and Lord, 2000). Since MOOC is committed
to helping students learn implicit knowledge con-
cepts from diverse courses, many efforts from NLP
and AI raise topics to build novel applications for
assistance. From extracting course concepts and
their prerequisite relations (Pan et al., 2017b; Roy
et al., 2019; Li et al., 2019) to analyzing student
behaviors (Zhang et al., 2019; Feng et al., 2019),
MOOC-related topics, tasks, and methods snowball
in recent years.

Despite the plentiful research interests, the re-
source from real MOOCs is still impoverished.
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Most of the publicly available datasets are de-
signed for a specific task or method, e.g., Zhang
et al.(2019) build a MOOC enrollment dataset for
course recommendation and (Yu et al., 2019) is
only for course concept expansion, which merely
contains a subset of MOOC elements. Conse-
quently, they are not feasible enough to support
ideas that demand more types of information.
Moreover, these datasets only contain a small size
of specific entities or relation instances, e.g., pre-
requisite relation of TutorialBank (Fabbri et al.,
2018) only has 794 cases, making it insufficient for
advanced models (such as graph neural networks).

Therefore, we present MOOCCube, a data repos-
itory that integrates courses, concepts, student
behaviors, relationships, and external resources.
Compared with existing education-related datasets,
MOOCCube maintains the following advantages:
• Large-scale: MOOCCube contains over 700

MOOC courses, 38k videos, 200k students, and
100k concepts with 300k relation instances, which
provide sufficient resources for models that require
large-scale data.
• High-coverage: Obtained from real MOOC

websites and external resources, the courses, con-
cepts, and student behaviors in MOOCCube have
profuse attributes and relationships, offering com-
prehensive information for various related tasks.

As shown in Figure 1, a data cell of MOOC-
Cube is in terms of concepts, courses, and students,
which represents a learning fact, i.e., a student s
learns concept k in course c. Through different
queries, MOOCCube can provide various combina-
tions of these data cells to support existing research.
In this paper, we first introduce the data collection
process and then give an insight into the character-
istics of MOOCCube by analyzing its statistics in
different aspects. We also conduct a typical NLP
application task on MOOCCube and discuss the
future directions on the usage of our datasets.
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Figure 1: The framework of MOOCCube.

Our contribution is in two folds: a) an investiga-
tion of NLP and AI application research in online
education, especially in MOOCs; b) a large-scale
data repository of MOOCs, which organizes data in
three dimensions: student behaviors, courses, and
knowledge concepts.

2 Dataset Collection

2.1 An Overview of MOOCCube

Figure 1 gives an overview of MOOCCube, which
models various facts of MOOCs in three main di-
mensions: courses, concepts and students. Due
to the rich relationships among these entities, we
organize the data into a form of a knowledge base
for convenient storage and query. Through spe-
cific queries, MOOCCube can support diverse re-
lated applications, e.g., we can build a dataset
for dropout prediction tasks by collecting a stu-
dent’s all behaviors in a certain course, and build a
concept extraction dataset with all concepts in all
courses. In subsequent sections, we introduce how
to obtain and process the abundant data from Xue-
tangX1, one of the largest MOOC website in China,
while considering the issue of privacy protection.

2.2 Course Extraction

Courses are the foundation of MOOCs and con-
sist of a series of pre-recorded videos. Regarding
each course as an entity, we extract the synopsis,
video list, teacher, and the organization, offering
this course as its attributes. As shown in Figure
1, We obtain each video’s subtitle and save the or-
der of videos for further knowledge discovery in
MOOCs. Notably, we also record the description
of the teacher and the organization from Wikidata2

as an external resource.
1https://next.xuetangx.com/
2https://www.wikidata.org

2.3 Concept and Concept Graph

Course concepts refer to the knowledge concepts
taught in the course videos. For each video, we ex-
tract 10 most representative course concepts from
subtitles (Pan et al., 2017b). We also record the
concept description from Wikidata and search top
10 related papers for each concept via AMiner3

(Tang et al., 2008) as external resource. Moreover,
as many NLP types of research are interested in dis-
covering semantic relationships among concepts,
we further build a novel concept taxonomy with
prerequisite chains as a concept graph (Gordon
et al., 2016).
Concept Taxonomy. A solid concept taxonomy
is favorable for further research in course con-
tent (Gordon et al., 2017). However, existing tax-
onomies like ConceptNet (Liu and Singh, 2004) or
Wiki Taxonomy (Ponzetto and Strube, 2007) can-
not be directly applied to course concepts because
course concepts are mostly academic terms and
the non-academic categories greatly interfere with
the quality of taxonomy. Thus, we select a cross-
lingual term taxonomy from CNCTST4 as a basis
and lead manual annotation to build a serviceable
course concept taxonomy for MOOCCube.
Prerequisite Chain. Prerequisite relation is de-
fined as: If concept A can help understanding con-
cept B, then there is a prerequisite relation from
A to B (Gordon et al., 2016). Prerequisite rela-
tion has received much attention in recent years
(Pan et al., 2017a; Fabbri et al., 2018; Li et al.,
2019) and has a direct help for teaching applica-
tions. To build prerequisite chains, we first reduce
the amount of candidate concept pairs by utiliz-
ing taxonomy information (Liang et al., 2015) and
video dependency (Roy et al., 2019), and then lead

3https://aminer.org
4http://www.cnctst.cn/
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manual annotation. The annotation results are then
employed to train different models to build a much
larger distant supervised prerequisite dataset.

2.4 Student Behavior
Student behavior data not only supports relevant
research (such as course recommendation (Zhang
et al., 2019), video navigation (Zhang et al., 2017),
dropout prediction (Feng et al., 2019)), but also in-
dicates the relationships between courses and con-
cepts (Liang et al., 2015). To meet different needs,
we preserve the enrollment records and video watch
logs of over 190,000 users from 2017 to 2019. Note
that video watch logs record student behavior in
detail, e.g., click a certain sentence, jump back to a
video point, etc. Considering the data quality and
privacy, we first remove the users with less than
two video watching records and then anonymize
the user names into UserIDs. We further shuffled
these IDs and relinked them to the “most popular
names”5.

2.5 Data Processing and Annotation
We lead data processing and annotations, including
1) process the extracted course videos into subti-
tles; 2) process the related papers into Json files;
3) the annotation of course/video dependency; 4)
large-scale annotation of concept taxonomy and
prerequisite relations. All the annotations are pro-
vided by students in corresponding domains with
strict quality controls6.

3 Data Analysis

In this section, we analyze various aspects of
MOOCCube to provide a deeper understanding
of the dataset.
Comparison with similar datasets. Table 1
shows statistics of MOOCCube and other AI-In-
Education datasets, including KDDCup2015 (Pre-
dicting dropout in MOOCs) (Cup, 2015), hierarchi-
cal MOOC recommendation (HMR) (Zhang et al.,
2019), prerequisite relation learning(PRL) (Pan
et al., 2017a), TutorialBank (Fabbri et al., 2018)
and LectureBank (Li et al., 2019). The comparison
is conducted in two aspects:
• Data Size. MOOCCube contains the largest data
size, especially the course concept graph. For ex-
ample, the number of prerequisite concept pairs

5Published by Social Security Administration, https:
//www.ssa.gov/

6Some annotation and quality control details are in Ap-
pendix.

exceeds the existing datasets by almost 100 times,
and hereafter supports the attempts of advanced
models such as neural networks on related tasks.
• Data Dimension. Existing datasets are clearly
divided into two categories: datasets centered on
user behavior, such as HMR, they only contain very
little course content information; datasets centered
on course content, such as LectureBank, they focus
on the concepts in the education material instead.
MOOCCube organically combines these types of
data in the MOOC environment so that researchers
can analyze specific learning behavior.
Concept Graph. Figure 2 shows the concept distri-
bution over different categories. Overall, we divide
the concepts into 24 domains. There are signifi-
cantly more concepts in engineering courses than
in natural sciences or social sciences, while the
number of sub-fields is the opposite. Since there
are more than 1,500 valid concepts in each field, the
concept information in MOOCCube is abundant.
Moreover, the statistic of prerequisite concept pairs
in Table 1 indicates its rarity: only 6% of concept
pairs maintain a solid prerequisite relation, which
explains its scarcity in existing datasets.
Student Behavior. Figure 3(a) shows the course
distribution of enrolled users, which substantially
fits a normal distribution. Despite a few courses
with rare students, 451 courses are enrolled by over
100 users. Figure 3(b) presents a user view of the
data, indicating more than 70% of users possess
over ten videos watching records. These statistical
results give an insight into abundant interaction be-
tween MOOCCube students, courses, and videos.

4 Application

Such a wealth of data enables MOOCCube to sup-
port multiple tasks such as course recommendation
(Zhang et al., 2019), concept mining (Yu et al.,
2019), etc. In this section, we conduct an impor-
tant and typical task, prerequisite relation discov-
ery as an example application of MOOCCube by
utilizing different types of data from it. As intro-
duced in Section 2.3, prerequisite relation indicates
“what should a student learn at first”. Since existing
efforts have attempted to discover such relation-
ships among concepts from different types of in-
formation, we reproduce the following methods on
MOOCCube and present some basic new models.
•MOOC-LR and MOOC-XG learn such rela-

tions from the course video list and the abstracts of
Wikipedia (Pan et al., 2017b), we select Logic Re-

https://www.ssa.gov/
https://www.ssa.gov/


Dataset Course Video Concept Prerequisite Taxonomy Student Enrollment Video Watching External Resource

KDDCup2015 39 – – – – 112,448 200,904 1,319,032 –
HMR 1,302 – – – – 82,535 458,454 – –
PRL 20 1,356 573 3,504 – – – – Corpus

TutorialBank – – 200 794 200 – – – Corpus, Paper
LectureBank 60 208 921 1,221 – – – Corpus, Paper, Blog
MOOCCube 706 38,181 106,056 17,686 3,152 199,199 682,753 4,874,298 Corpus, Paper

Course, Video, Concept, Student are the sum of respective entities. Prerequisite is the number of relation instances, Taxonomy
is the number of finest taxonomy categories, and Enrollment and Video Watching are the records of behavior.

Table 1: Statistics of existing NLP-in-Education datasets.

Figure 2: Concept distribution over taxonomy

(a) Courses Enrollment. (b) Video Watching.

Figure 3: (a) shows the number of courses for different
enrolled users while (b) is the user with different video
watching records.

gression and Xgboost as the classifier of the model.
• PREREQ employs a network to detect such

relationships from course and video dependency
(Roy et al., 2019). Here we present an im-
proved version PREREQ-S by introducing stu-
dents’ video watch order to enhance the video de-
pendency network, i.e., we sort the watched videos
of each student by time and utilize these sequences
for replacing the video sequences in the original
paper.
• PCNN and PRNN. We present two simple

DNN models, which first encode the embeddings
(Cao et al., 2017) of the concept pairs and then train
an MLP to classify the prerequisite ones.
Result Analysis. Overall, PREREQs perform best
in F1-score, while student behavior is beneficial to

P R F1-Score

MOOC-LR 0.667 0.479 0.565
MOOC-XG 0.607 0.507 0.552
PREREQ 0.606 0.755 0.672

PREREQ-S 0.651 0.730 0.688
PCNN 0.629 0.636 0.630
PRNN 0.681 0.668 0.659

Table 2: Results of prerequisite discovery.

the precision of this model (PREREQ-S improves
the precision to 0.651). We argue that the diverse
information provided by MOOCCube helps to dis-
cover such relationships. Meanwhile, two simple
DNN models perform competitive results in this
task, which indicates that the existing methods are
indeed limited by the amount of data (Most ad-
vanced models cannot be trained on small datasets).

5 Related Work

In this section, we introduce the research of NLP in
education, especially in MOOCs, as well as several
publicly available related datasets.

Existing research in MOOCs uses courses and
students as the main resource, which can be di-
vided into two categories according to the research
object: one focuses on the content of the courses,
such as the course concept extraction (Pan et al.,
2017b), prerequisite relation discovery (Pan et al.,
2017a), and course concept expansion (Yu et al.,



2019); the other focuses on the learning behavior of
students, such as the prediction of dropouts (Feng
et al., 2019), course recommendations (Zhang et al.,
2019; Cao et al., 2019), etc. Due to the different
tasks, researchers have to repeat the work to build
their datasets, which arouses the original motiva-
tion of MOOCCube.

In addition, some researchers also try to obtain
education information from other resources, e.g.,
ACL Anthology (Radev et al., 2013), TutorialBank
(Fabbri et al., 2018), and LectureBank (Li et al.,
2019). They collected concepts and relationships
from papers and lectures and also built diverse
datasets. Though they are also limited in data scale,
these beneficial attempts guide the construction of
MOOCCube.

6 Conclusion and Future Work

We present MOOCCube, a multi-dimensional data
repository containing courses, concepts, and stu-
dent activities from real MOOC websites. Obtain-
ing large-scale data in all dimensions, MOOCCube
can support new models and diverse NLP appli-
cations in MOOCs. We also conduct prerequisite
relation extraction as an example application, and
experimental results show the potential of such a
repository. Promising future directions include: 1)
utilize more types of data from MOOCCube to fa-
cilitate existing topics; 2) employ advanced models
in existing tasks; 3) more innovative NLP applica-
tion tasks in online education domain.
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A Data Annotation and Quality Control

As introduced in Section A, we conduct man-
ual annotations with a quality control mechanism.
Three relations need tagging: Course Dependency
Chain, Concept Taxonomy, and Concept Prerequi-
site Chain.
• Course Dependency Chain is the recom-

mended course order of learning, which is often pre-
sented by teaching assistance or mentor in school.

Many efforts for extracting prerequisite relation uti-
lize this information (Liang et al., 2015; Roy et al.,
2019). For each domain of courses, we invite three
experts who have corresponding teaching experi-
ence to annotate the dependency relation among
them.
• Concept Taxonomy annotation is in two pro-

cesses: 1) For each course concept, we use a pre-
trained word embedding to calculate the most likely
category of it. Then three annotators in the corre-
sponding field are asked to label whether the con-
cept belongs to this category. 2) For the concept-
category pairs that are labeled as “not belong to”,
we choose the brother category of the prior one
as a new candidate and put the refreshed pair into
the annotation pool again. Such process effectively
reduces the number of invalid annotations.
• Concept Prerequisite Chain. To detect the

prerequisite relation between concepts, we convene
students in the corresponding domain as annotators.
However, labeling all possible pairs is infeasible,
for 100K concepts may generate over 500 billion
candidate pairs. Thus we lead a distantly super-
vised annotation in three stages. First, we only
select the concepts which occur in the same course
to sample candidate concept pair. As in prior work,
the annotators label if concept A is helpful to un-
derstand B. Second, we train a model as (Pan et al.,
2017a) and classify other unlabeled pairs. Finally,
the results with a low confidence score are labeled
again to train another classifier and give all pairs a
new label. This process repeats for several rounds7,
and the voting result of each pair is finally adopted.
In total, 3,500 pairs are in manual labeling, and the
experiments in Application use them as the test set.

Quality Control. Both of concept taxonomy
and prerequisite relations are subjective (Liang
et al., 2015). To prevent low-quality annotation
results, we mix some golden standards (which are
from existing well-organized datasets (Fabbri et al.,
2018)) into the annotation pool. Once the label-
ing result is different from the golden standard, we
lead another expert estimation to specifically con-
firm the truth of these conflicts and identify the
annotators that can’s meet the requirements.

B MOOC Q&A Dataset

Except for the data types that are introduced in the
paper, we also collect and build a Q&A dataset
of MOOCs, which requires an ability of language

7This process is experimentally set to 5 rounds.



Course Name Number of concepts included
Data and Structure 1 140
Data and Structure 2 117

Network Technology and Applications 125
The Basics of Programming in C++ Language 84

The Advanced Design of C++ Program 77
Introduction to Computer Science and Python Programming 116

Operating System 143
Java Programming Design 62

Artificial Intelligence 66
Artificial Intelligence for Beginner 54

5G and Artificial Intelligence 71
Big Data and Machine Learning 236

Table 3: Course name list.

Type One-hop Multu-hop Total All Types

MOOCQA
Dataset

Query(Type A) 5,504 10,615 16,119
53,311Judge(Type B) 16,324 14,301 30,625

Count(Type C) 3,384 3,183 6,567

Table 4: Statistics of questions.

Entity/Relationship Table Name Number of Rows

Entity

concept 700
course 12
paper 5,927
school 208
teacher 1,733

user 4,723
video 1,242

Relationship

concept field 44
concept paper 5,927
course concept 10,346
course video 1,591
school course 705
school teacher 2,130
teacher course 2,349

user course 24,933
video concept 4,040

Table 5: Statistics of entities and relationships in
MOOC Q&A.

understanding and multi-hop reasoning , to pro-
vide a comprehensive resource for more possible
applications of MOOCs.

Here are the methods we followed to collect the
QA dataset. We divide the dataset into one-hop
questions and multi-hop questions. An one-hop
question only involves a single head entity and a
single predicate in the knowledge, while a multi-
hop question may contain several entities and to

answer the question needs to reason over several
facts in the knowledge graph.

We design 22 types of 1-hop question schema
and 20 types of multi-hop question schema based
on the meaningful real queries we collected from
MOOC platform. Each schema is paraphrased into
4 different templates and questions are generated
by random sampling from the text template pool.
Triples related with twelve typical courses are used
in case that the model wont run out of memory.
The twelve courses are listed as Table 3.

The twelve courses are all from the computer
science field. They cover different levels of
courses in computer science and the internal
prerequisite-successive relationships between the
twelve courses typically represent the real rela-
tions between courses in MOOC platform. The
model trained on our dataset is expected to provide
MOOC users with information and further related
knowledge they need. The type and number of
entities and relationships are shown in Table 5.

Besides, to make our dataset closer to the actual
scenario, three types of questions are contained in
MOOCQA Dataset, which are Query, Judge and
Count. When answering Query questions, model is
expected to offer the correct entities in knowledge
graph. As for Count questions, the count of the
related entities is required. For Judge questions,
the model should make a clear judgement of the



factoid description in the question.
In MOOCQA Dataset, each line is a question

sample. In addtion to the question and its corre-
sponding answer, we provide more information
including entity ids, question type, etc. Question,
supporting fact and answer are separated by “\t”.
If the answer consist of several entities, they will
be separated by ‘|’.


