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Abstract

The few-shot natural language understanding
(NLU) task has attracted much recent attention.
However, prior methods have been evaluated
under a disparate set of protocols, which hin-
ders fair comparison and measuring progress
of the field. To address this issue, we intro-
duce an evaluation framework that improves
previous evaluation procedures in three key as-
pects, i.e., test performance, dev test corre-
lation, and stability. Under this new evalua-
tion framework, we re-evaluate several state-
of-the-art few-shot methods for NLU tasks.
Our framework reveals new insights: (1) both
the absolute performance and relative gap of
the methods were not accurately estimated in
prior literature; (2) no single method domi-
nates most tasks with consistent performance;
(3) improvements of some methods diminish
with a larger pretrained model; and (4) gains
from different methods are often complemen-
tary and the best combined model performs
close to a strong fully-supervised baseline. We
open-source our toolkit, FewNLU, that imple-
ments our evaluation framework along with a
number of state-of-the-art methods.1

1 Introduction

Few-shot learning for natural language understand-
ing (NLU) has been significantly advanced by
pretrained language models (PLMs; Brown et al.,
2020; Schick and Schütze, 2021a,b). With the goal
of learning a new task with very few (usually less
than a hundred) samples, few-shot learning benefits
from the prior knowledge stored in pretrained mod-
els. Various few-shot methods based on PLMs and
prompting have been proposed (Liu et al., 2021b;
Menon et al., 2021; Gao et al., 2020).

∗The authors have contributed equally to this work.
†Corresponding Authors.

1Our code repository is released at https://github.
com/THUDM/FewNLU and a leaderboard is available at
https://fewnlu.github.io.

Although the research of few-shot NLU is devel-
oping rapidly, the lack of a standard evaluation
protocol has become an obstacle hindering fair
comparison between various methods on a com-
mon ground and measuring progress of the field.
While some work (Schick and Schütze, 2021b;
Menon et al., 2021) experimented with a fixed set
of hyper-parameters, it was pointed out that such a
setting might be exposed to the risk of overestima-
tion (Perez et al., 2021; Zhang et al., 2020).2 Other
research (Liu et al., 2021b; Gao et al., 2020; Perez
et al., 2021) proposed to use a small development
set to select hyper-parameters, but their evaluation
protocols vary in a few key aspects (e.g., how to
construct data splits), which in fact lead to large
differences as we will show. The above phenomena
highlight the need for a common protocol for the
evaluation of few-shot NLU methods. However,
the fact that few-shot learning is extremely sensi-
tive to subtle variations of many factors (Dodge
et al., 2020; Gao et al., 2020) poses challenges for
designing a solid evaluation protocol.

In this work, aiming at addressing the aforemen-
tioned challenge, we propose an evaluation frame-
work for few-shot NLU. The evaluation framework
consists of a repeated procedure—selecting a hyper-
parameter, selecting a data split, training and evalu-
ating the model. To set up a solid evaluation frame-
work, it is crucial to specify two design choices:
(1) how to construct data splits for model selection
and (2) which hyper-parameters are critical in the
search space. We conduct a comprehensive set of
experiments to answer these two questions.

For the first question, we propose a “Multi-Splits”
strategy, which randomly splits the available la-
beled data into training and development sets multi-
ple times, followed by aggregating the results from
each data split. We show that this simple strategy

2This is because the fixed hyper-parameters are selected
according to practical considerations, which are informed by
the test set performance from previous evaluations.
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outperforms K-fold cross validation and minimum
description length (Perez et al., 2021) in three di-
mensions: (1) the test set performance of the se-
lected hyper-parameters; (2) correlation between
development set and true test set performance; and
(3) robustness to hyper-parameter settings.

For the second question, we conducted compre-
hensive experiments to study the effects of various
hyper-parameters. Experiments show that prompt
patterns and verbalizers (Schick and Schütze,
2021b) are critical hyper-parameters that largely
affect performance. Moreover, factors concerning
randomness like sample order during training are
also important in determining the performance.

We then take a step further to re-evaluate recent
state-of-the-art few-shot NLU methods under this
common evaluation framework. Our re-evaluation
leads to several findings summarized in Section 2.

To aid reproducing our results and benchmarking
few-shot NLU methods, we open-source FewNLU,
a toolkit that contains implementations of a number
of state-of-the-art methods, data processing utili-
ties, as well as our proposed evaluation framework.

To sum up, our contributions are as follows.
1. We introduce a new evaluation framework of

few-shot NLU. We propose three desiderata of
few-shot evaluation and show that our frame-
work outperforms previous ones in these as-
pects. Our framework makes it possible to
compare methods and to measure progress of
few-shot NLU in a justified manner.

2. Under the new evaluation framework, we
benchmark the performance of recent methods
individually as well as the best performance
with a combined approach. These benchmarks
reflect the current state of the art and will serve
as important baselines for future research.

3. Throughout our exploration, we arrive at sev-
eral key findings summarized in Section 2.

4. We open-source a toolkit, FewNLU, to facili-
tate future research with our framework.

2 Summary of Findings

For reference, we collect our key findings here and
discuss each of them throughout the paper.

Finding 1. Multi-Splits is a better data-split strat-
egy than K-fold cross validation and minimum
description length in terms of (1) test performance,
(2) correlation between development and test sets,
and (3) stability w.r.t. the number of runs.

Finding 2. We recommend to at least search over

prompt patterns during hyper-parameter tuning,
and it is also beneficial to search others. All com-
parison methods should be searched and compared
under the same set of hyper-parameters.

Finding 3. The absolute performance and the rel-
ative gap of few-shot methods were in general
not accurately estimated in prior literature. In
addition, the benefits of some few-shot methods
(e.g., ADAPET (Menon et al., 2021)) decrease on
larger models like DeBERTa. The gains of semi-
supervised few-shot methods (e.g., iPET (Schick
and Schütze, 2021b) and Noisy Student (Xie et al.,
2020)) are consistent even on larger models.

Finding 4. Gains from different methods are
largely complementary. A combination of recent
state-of-the-art methods largely outperforms in-
dividual methods and achieves the best perfor-
mance, close to a strong fully-supervised baseline
on RoBERTa (Liu et al., 2019). However, there is
still a sizeable gap between the best few-shot and
the fully-supervised system on DeBERTa (He et al.,
2020).

Finding 5. No single few-shot method dominates
most NLU tasks. This highlights the need for the
development of few-shot methods with more con-
sistent and robust performance across tasks.

3 Related Work

The “pretraining and fine-tuning” paradigm
(Howard and Ruder, 2018) shows tremendous suc-
cess in few-shot NLU tasks. Various methods
have been developed such as the [CLS] classifi-
cation fine-tuning (Devlin et al., 2018), prompting-
based methods with discrete prompts (Schick and
Schütze, 2021b; Gao et al., 2020) or continuous
prompts (Liu et al., 2021b; Shin et al., 2020; Li and
Liang, 2021; Lester et al., 2021), and methods that
calibrate the output distribution (Yang et al., 2021;
Zhao et al., 2021).

The fact that few-shot learning is sensitive to
many factors and thus is extremely unstable (Liu
et al., 2021a; Lu et al., 2021; Zhang et al., 2020;
Dodge et al., 2020) increases the difficulty of few-
shot evaluation. Several works address evaluation
protocols to mitigate the effects of instability: Gao
et al. (2020) and Liu et al. (2021b) adopt a held-out
set to select models. Perez et al. (2021) proposed
K-fold cross validation and minimum description
length evaluation strategies. Bragg et al. (2021)
and Ye et al. (2021) proposed few-shot NLP bench-
marks FLEX and CrossFit respectively, which fo-



cus mainly on datasets and metrics for few-shot
learning. In contrast, our work addresses inherent
problems of the evaluation procedure. It addition-
ally differs from other work on few-shot evaluation
in several aspects: (1) we propose three metrics to
evaluate data split strategies; (2) while most prior
work proposed evaluation protocols without justi-
fication, we conduct comprehensive experiments
to support our two key design choices; and (3) we
formulate a general evaluation framework.

4 Evaluation Framework

We first formally define the few-shot NLU problem.
For each NLU task, we have a small labeled dataset
Dlabel = {(xi, yi)}Ni=1 and a large test set Dtest =
{xtesti , ytesti }i where N is the number of labeled
data, xi is a text input (consisting of one or multiple
pieces of text), and yi ∈ Y is a label. The goal
is to fine-tune a pretrained model with Dlabel to
obtain the best performance on Dtest. An unlabeled
dataset Dunlab = {xunlabi }i may additionally be
used by semi-supervised few-shot methods (§5.1).

4.1 Fixed Hyper-Parameters are not Optimal

Some prior works (Schick and Schütze, 2021a,b;
Menon et al., 2021) perform few-shot learning with
a fixed set of hyper-parameters (determined by
practical considerations and experiences) without
early stopping and any model selection. We term
this evaluation strategy as fixed hyper-params.

Hyper-Parameters Test Acc. Avg.P LR Step WR

Fixed

0

1e-5 250 0

69.31 ±4.39

67.36
1 61.13 ±0.91

2 63.06 ±1.50

3 63.06 ±1.82

4 80.26 ±1.85

Optimal

0 1e-5 300 0.05 72.44 ±1.85

70.42
1 5e-6 300 0.05 63.78 ±1.37

2 5e-6 300 0 69.07 ±5.55

3 5e-6 300 0 65.70 ±1.25

4 5e-6 300 0 81.11 ±1.37

Table 1: The performance of PET on the RTE task with
different hyper-parameters. The patterns and fixed hyper-
parameters are provided by (Schick and Schütze, 2021b). Base
model: DeBERTa-xxlarge-v2, “P”: pattern ID, “LR”: learning
rate, “Step”: number of training steps, “WR”: warm-up ratio.

We would like to know how well fixed hyper-
parameters transfer to a new scenario, e.g. switch-
ing to another base pretrained model. We per-
form preliminary experiments on few-shot Super-
GLUE with a 64-sample labeled set based on De-
BERTa. Firstly, we experiment with the fixed
hyper-parameters used for ALBERT in (Schick and

Schütze, 2021b). Secondly, we manually try other
hyper-parameters to find out whether there are bet-
ter configurations. From Table 1, we observe:

1. Certain factors, especially the patterns, impact
the performance a lot (best 80.26%, and worst
61.13%). However, we cannot differentiate
between them without a development set.

2. There exists a hyper-parameter (the Optimal
in Table 1) that performs much better than the
fixed one. A mechanism to identify the best
hyper-parameter setting is thus necessary.

3. Results show a good hyper-parameter on AL-
BERT does not work well on DeBERTa. Fixed
hyper-parameters are not optimal and we need
to re-select them given new conditions.

4.2 Formulation of Evaluation Framework
The observations in Section 4.1 motivate us to
study a more robust evaluation framework for few-
shot NLU. The goal of an evaluation framework is
twofold: (1) benchmarking few-shot methods for
NLU tasks such that they can be fairly compared
and evaluated; and (2) obtaining the best few-shot
performance such that it could be used in practice.
In light of these two aspects, we propose the few-
shot evaluation framework shown in Algorithm 1.

Algorithm 1: A Few-Shot Evaluation Framework
Data: the labeled and test sets (Dlabel and Dtest), a

few-shot method M , a hyper-parameter space
H, the number of data splits K.

Result: test performance; best hyper-parameter h?.

1 for k ← 1 · · ·K do
2 Divide Dlabel into Dk

train and Dk
dev according

to certain data-split strategy;
3 end
4 for h ∈ H do
5 for k ← 1 · · ·K do
6 Run the method M by training on Dk

train

and evaluating on Dk
dev;

7 Report the dev-set performance Ph,k
dev .

8 end
9 Compute the mean and standard deviation over

K dev-set results, Ph
dev ± Sh

dev;
10 end
11 Select h? with the best Ph

dev .;
12 if the goal is to evaluate a method then
13 Evaluate on the test set Dtest with the K

checkpoints that correspond to h?;
14 Report the mean and standard deviation over the

K test results Ph?
test ± Sh?

test.
15 else if the goal is to obtain the best performance then
16 Re-run on the entire labeled set Dlabel by fixing

h? with L different random seeds;
17 Evaluate on the test set with the L checkpoints;
18 Report the mean and standard deviation results

over L test results.
19 end



The framework searches over a hyper-parameter
space H to evaluate a given few-shot method M ,
obtaining its test set results and the best hyper-
parameter setting h?. The measurement for each
h is estimated by performing training and evalua-
tion on multiple data splits (obtained by randomly
splitting the labeled data according to a strategy)
and reporting their average dev set results. Finally,
the method is evaluated on the test set using the
checkpoints corresponding to h?. For benchmark-
ing, we report the average and standard deviation
over multiple test set results. Otherwise, we re-run
on the entire labeled data with h?. Since this work
focuses on benchmarking, the experiments in later
sections report the mean and standard deviation
results without re-running on the entire labeled set.

The framework requires specifying two design
choices: how to construct the data splits and which
hyper-parameters are critical for searching, which
we discuss in Sections 4.3 and 4.4.3

4.3 How to Construct Data Splits

4.3.1 Desiderata: Performance, Correlation,
and Stability

We first propose the following three key desiderata
for the evaluation of different data split strategies.

1. Performance of selected hyper-parameter.
An effective data split strategy should select
a hyper-parameter that obtains a good test-
set performance. We report the same metrics
as (Schick and Schütze, 2021b), along with
corresponding standard deviations.

2. Correlation between the development and
test sets (over a hyper-parameter distribu-
tion). Since a small development set is used
for model selection, it is important for a good
strategy to obtain a high correlation between
the performances on the small development
set and test set over a distribution of hyper-
parameters. We report the Spearman’s rank
correlation coefficient for measurement.

3. Stability w.r.t. the number of runs K. The
choice of the hyper-parameter K should not
become another significant impacting factor to
the above two metrics (i.e., performance and
correlation). Besides, it is desirable to have
reduced variance when K increases. Thus we

3For simplicity and ease of use, we use grid search for
searching the hyper-parameter space H and identify critical
hyper-parameters to limit its size. More complex search meth-
ods such as Bayesian Optimization (Snoek et al., 2012) could
be used to search over larger hyper-parameter spaces.

MDL CV Multi-Splits

train set dev set unused data

Figure 1: Illustration of how different data split strategies
partition the labelled data, with K = 4 and r = 0.5.

report the above two metrics with different
values of K as well as the standard deviation
of test scores over K runs.

4.3.2 Data Split Strategies
This section considers three data split strategies,
including K-fold cross validation (CV), minimum
description length (MDL), and our Multi-Splits.
The first two are introduced by Perez et al. (2021),
while we introduce Multi-Splits as an adaptation of
previous work (Gao et al., 2020; Liu et al., 2021b).4

All three strategies fit into the pipeline of the pro-
posed framework in Section 4.2:

1. K-fold Cross Validation equally partitions
the labeled data into K folds. For each hyper-
parameter, it performs training K times, each
time using the kth (k = 1, 2, ...,K) fold as
the development set and the other K− 1 folds
as the training set.

2. Minimum Description Length assigns half
of the labeled data as joint training data and
equally partitions the other half into K folds.
Each time, it uses the kth fold as development
set, and uses the joint fold and all previous
k − 1 folds for training.

3. Multi-Splits performs training K times, each
time using a different data split obtained by
randomly splitting the labeled data into train-
ing and development sets by a fixed ratio r.

Figure 1 illustrates how each data split strategy
works. Essentially, they differ in several aspects.

1. For CV and MDL, K controls the number of
runs over multiple data splits as well as the
split ratio. For Multi-Splits, the split ratio is
decoupled from K and is controlled by an-
other hyper-parameter r.5

2. They use a different amount of data for train-
ing and development sets as Table 2 shows.

4MDL has also been used to evaluate the generalization
ability of pre-trained models (Yogatama et al., 2019) and for
probing (Voita and Titov, 2020).

5Though Multi-Splits uses an additional hyper-parameter,
r, we will show in Section 4.3.4 that performance is robust
with regard to different values of r.



CV MDL Multi-Splits
# train (K-1)*N /K N /2+N*(k-1)/(2K) N*r
# dev N /K N /(2K) N*(1-r)

Table 2: Number of examples of training and development
sets for different data split strategies. N is the total number
of labeled data, K is the number of runs, k is the kth split for
MDL, and r is the pre-specified split ratio for Multi-Splits.

3. There are cases when CV and Multi-Splits
share the same data-split ratio. The difference
is that Multi-Splits allows overlap between
different data splits while CV does not.

In the limit, Multi-Splits is similar to leave-
P -out cross-validation (LPOCV; Celisse, 2014)6

where LPOCV runs
(
N
P

)
times (P is the number of

dev set examples) while Multi-Splits runs K times.
As K increases, Multi-Splits gradually approaches
LPOCV. Since it is impossible to traverse the large
number of possible splits in practice, Multi-Splits
can be viewed as a practical version of LPOCV.
Compared with the strategy of (Gao et al., 2020)
that uses multiple datasets, our proposed Multi-
Splits strategy uses multiple data splits for a sin-
gle dataset. It is thus more practical as in real-
world scenarios, it is hard to obtain multiple labeled
datasets for a true few-shot problem; otherwise, it
becomes a fully supervised learning problem. The
strategy in (Liu et al., 2021b) is a special case of
Multi-Splits when K = 1, which samples a single
data split and suffers from higher variance.

4.3.3 Experimental Setup

We experiment with the few-shot SuperGLUE
benchmark (Wang et al., 2019a). We consider set-
tings using 32 labeled samples—the same as prior
work (Schick and Schütze, 2021b; Menon et al.,
2021)—as well as 64 labeled samples for each task.
We evaluate strategies based on the widely used
prompt-based few-shot method PET (Schick and
Schütze, 2021b) with DeBERTa-xxlarge as base
model.7 We run experiments on the same tasks with
the same hyper-parameter space to ensure a fair
comparison; in this experiment we searched learn-
ing rate, evaluation ratio, prompt pattern and maxi-
mum training step. More details about datasets and
hyper-parameters are in Appendix A.1.

6Leave-P -out cross-validation uses P data examples as
the development set and the remaining data examples as the
training set. This is repeated on all ways to cut the labeled
dataset in a development set and a training set.

7We fixed the parameters of DeBERTa’s bottom third lay-
ers due to GPU memory limitations, which did not affect the
performance much in our preliminary experiments.
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Figure 2: Few-shot performance, Spearman’s rank correla-
tion and standard deviation results along with selection of K
on BoolQ, RTE, and COPA tasks under different strategies. A
smooth and stable dot-line indicates the setting is insensitive
to the choice of K.

4.3.4 Main Results and Analysis

Figure 2 and Table 3 show results under the data set-
ting with 64 labeled data. Results with 32 labeled
examples are given in Appendix A.1.
Test Performance Results. From Table 3a, we ob-
serve both the Multi-Splits and CV strategies ob-
tain the best overall average test set performance.
Multi-Splits uses fewer labeled examples for train-
ing (128) while CV and MDL use more (192 and
176 respectively). Despite using more training data,
both CV and MDL do not substantially perform bet-
ter. This indicates few-shot performance is limited
by not being able to select the best model rather
than not having sufficient training data.
Correlation Results. In Table 3b, Multi-Splits sig-
nificantly outperforms both CV and MDL with an
advantage of around 0.2 points on average. For 5/7
tasks, Multi-Splits shows the best correlation re-
sults. A potential reason is that both CV and MDL
assign fewer labeled data examples to the develop-
ment set (64 and 32 respectively) than Multi-Splits
(128), which leads to poor correlation, and as a
result, poor model selection.
Stability w.r.t. the number of runs K. Figure 2
shows the results w.r.t. different K. We observe
the following: (1) Multi-Splits (blue lines) is the
most stable in correlation and performance, while
CV and MDL are more sensitive to the choice of
K. (2) Multi-Splits shows the smallest variance
over multiple runs on both BoolQ and RTE. For
COPA, though Multi-Splits shows high variance
when K = 2, the variance becomes smaller with
larger K, while CV and MDL suffer from increas-
ing or unstable variance.

A possible explanation is that increasing K does
not affect the number of training and development



Table 3: Results of different data-split strategies with PET on FewGLUE (K=4). Larger scores indicate that the
strategy effectively selects a model that achieves better test set performance. The best results are denoted in bold.

(a) The test performance under the data setting with 64 labeled data examples.

BoolQ RTE WiC CB MultiRC WSC COPA Avg.
Acc. Acc. Acc. Acc. F1 F1a EM. Acc. Acc

CV 79.01 77.8 65.3 90.18 87.52 80.08 45.02 82.69 92.25 78.35
±4.35 ±2.25 ±1.71 ±2.31 ±2.2 ±1.15 ±1.46 ±1.76 ±1.71

MDL 76.43 76.17 64.64 86.01 83.03 77.63 43.81 80.05 89.5 76.00
±7.12 ±8.42 ±2.93 ±4.09 ±4.79 ±1.2 ±1.32 ±1.21 ±3.32

Multi-Splits
(r = 1 : 1)

82.67 78.73 67.2 91.96 88.63 78.18 42.79 80.53 88.62 78.36
±0.78 ±2.2 ±1.34 ±3.72 ±4.91 ±1.59 ±2.42 ±1.82 ±2.88

Multi-Splits
(r = 3 : 1)

81.92 79.18 64.86 91.96 87.92 80.82 45.93 82.45 90.13 78.84
±0.90 ±5.23 ±1.41 ±3.09 ±5.20 ±0.60 ±1.06 ±2.87 ±3.68

(b) The correlation results under the data setting with 64 labeled data examples.

BoolQ RTE WiC CB MultiRC WSC COPA Avg.
CV -0.0497 0.8561 0.8184 0.5286 0.1493 0.5398 0.5668 0.4870
MDL -0.1143 0.7806 0.6326 0.3274 0.2652 0.4327 0.6342 0.4226
Multi-Splits (r = 1 : 1) 0.7079 0.8266 0.9464 0.7558 0.4530 0.1590 0.8997 0.6783
Multi-Splits (r = 3 : 1) 0.6220 0.8163 0.8007 0.0432 0.4470 0.2662 0.5049 0.5001

examples for Multi-Splits; instead, it increases the
confidence of results. An important practical ben-
efit of Multi-Splits is that one can always choose
to increase K for lower variance. However, for CV
and MDL, the sizes of training and development
sets are affected by K, where extremely large K
values lead to a failure mode and extremely small
K lead to unstable results. In practice, it is hard to
know which value of K to use a priori.

We experiment with two values for the r hyper-
parameter in Multi-Splits, 1 : 1 and 3 : 1. The
former equally splits labeled data. The latter con-
structs the same size of training and development
splits as CV. Results in Table 3b show that both val-
ues share similar test performance, while r = 1 : 1
has better correlation. The results of both ratios
outperform CV and MDL. For few-shot NLU with
less than a hundred labeled examples, r = 1 : 1
is empirically recommended. We adopt r = 1 : 1
throughout the experiments.

To sum up, based on the aforementioned results
and analysis, we arrive at the following finding.

Finding 1. Multi-Splits is a better data-split strat-
egy than K-fold cross validation and minimum
description length in terms of (1) test performance,
(2) correlation between development and test sets,
and (3) stability w.r.t. the number of runs.

4.4 Which Hyper-Parameters are Crucial

4.4.1 Should We Search Random Seeds?
In this work, we focus on two types of factors that
affect few-shot evaluation, hyper-parameters and

randomness. Randomness could cause different
weight initialization, data splits, and data order
during training. Empirically, how randomness is
dealt with differs depending on the use case. In
order to obtain the best possible performance, one
could search over sensitive random factors such
as random seeds. However, as we are focused on
benchmarking few-shot NLU methods, we report
mean results (along with the standard deviation) in
our experiments in order to rule out the effects of
randomness and reflect the average performance of
a method for fair comparison and measurement.

4.4.2 Experiments
Experimental Setup To examine to which degree
a certain factor affects few-shot performance, we
conduct experiments by assigning different val-
ues to the target factor and fixing all other hyper-
parameters. We report the standard deviation (SD)
over multiple performance results. Larger values
indicate that the target factor influences the few-
shot performance, and thus is crucial for searching.
We experiment with four tasks including BoolQ,
RTE, CB, and COPA. We consider the following
factors: sample order during training, prompt pat-
tern, training batch size, learning rate, evaluation
frequency, and maximum train steps. More experi-
mental details are given in Appendix A.2.
Results and Analysis Results are in Table 4. We
mark values larger than a threshold of 2.0 in bold.
We can see that the prompt pattern is the most in-
fluential factor among all, indicating the design or
selection of prompt patterns is crucial. Training



Table 4: Sensitivity analysis of different factors on BoolQ,
RTE, CB and COPA based on PET and DeBERTa. The met-
ric is standard deviation. We set hyper-parameters to be the
best-performing ones obtained in Section 5 while assigning dif-
ferent values to the target factor. For CB, A/B means Acc./F1.
“Train Order”: training sample order; “Train Batch”: total train
batch size; “Eval Freq”: evaluation frequency.

Hyper-params BoolQ RTE COPA CB

Dev
Set

Train Order 3.64 4.01 2.17 2.21/6.09
Prompt Pattern 3.44 10.28 5.80 3.18/4.07

Train Batch 3.34 1.33 2.64 1.01/5.87
Learning Rate 0.00 1.63 1.97 1.56/4.56

Eval Freq 2.39 2.96 2.73 0.45/0.82

Test
Set

Train Order 0.87 1.87 2.17 3.01/4.73
Prompt Pattern 2.85 10.03 2.65 6.45/7.08

Train Batch 2.44 1.09 0.72 0.89/1.32
Learning Rate 0.17 0.65 0.52 4.82/7.25

Eval Freq 0.84 0.53 1.18 0.77/2.07

example order also significantly affects the perfor-
mance. The evaluation frequency affects the score
on the small development but not on the test set.
We speculate that a lower frequency selects a model
with better performance on the small development
set, but the gains do not transfer to the test set be-
cause of partial overfitting. To conclude:

Finding 2. We recommend to at least search over
prompt patterns during hyper-parameter tuning,
and it is also beneficial to search others. All com-
parison methods should be searched and compared
under the same set of hyper-parameters.

5 Re-Evaluation of State-of-the-Art
Methods

5.1 Few-Shot Methods
We now proceed to re-evaluate state-of-the-art few-
shot methods under our new evaluation frame-
work with the Multi-Splits strategy. We consider
two types of few-shot methods: Minimal few-shot
methods, which only assume access to a small la-
beled dataset, including Classification (CLS; De-
vlin et al., 2018), PET (Schick and Schütze, 2021b),
ADAPET (Menon et al., 2021), and P-tuning (Liu
et al., 2021b); and semi-supervised few-shot meth-
ods, which allow accessing an additional unlabeled
dataset, including PET+MLM (Schick and Schütze,
2021a), iPET (Schick and Schütze, 2021b) and
Noisy Student (Xie et al., 2020).

5.2 Experimental Setup
We use the same benchmark datasets, metrics, and
hyper-parameter space as Section 4.3.3. Experi-
ments are conducted based on ALBERT-xxlarge
and DeBERTa-xxlarge under the data setting with
64 labeled examples. For semi-supervised methods

(i.e., iPET and Noisy Student), they require pseudo-
labels on unlabeled data for self-training. We con-
sider two labeling strategies, including single-split
labeling and cross-split labeling. In the single-split
setting (Schick and Schütze, 2021b), pseudo-labels
are generated by the models trained on the same
data split. In the cross-split setting in our evalua-
tion framework, the pseudo-labels are generated by
the models trained on multiple different data splits.
Details about configurations are in Appendix A.3.

5.3 Main Results and Analysis

Re-Evaluation Results Our re-evaluation results
are shown in Table 5. The results suggest that the
prompt-based fine-tuning paradigm significantly
outperforms the classification-based fine-tuning on
all tasks and on both pretrained models (with an
advantage of more than 15 points on average). De-
BERTa outperforms ALBERT consistently. We
observe significant differences in performance be-
tween different prompt-based minimal few-shot
methods on ALBERT (e.g., PET and ADAPET
differ by more than 4 points on average) while
differences with DeBERTa are slight (e.g., PET,
ADAPET and P-tuning have a performance gap of
less than 1.0 points on average). In contrast, semi-
supervised few-shot methods (including iPET and
Noisy) generally show 1-2 points improvement on
average compared to minimal few-shot methods on
both models.
Comparison to Prior Evaluations In Table 7, we
list the absolute performance as well as the relative
performance gap (to baseline PET) respectively
from previous evaluations as well as our evalua-
tion. Results show that the absolute performance
of few-shot methods in previouss evaluation were
generally overestimated on BoolQ, RTE and COPA.
Similar findings have also been highlighted in prior
works (Perez et al., 2021; Zhang et al., 2020), and
our evaluation framework confirms these obser-
vations under a more reliable setup. In addition,
prior evaluations inaccurately estimated the rel-
ative performance gap. For example, according
to previous evaluations, the relative performance
of several methods (i.e., ADAPET, P-tuning, and
PET+MLM) compared to PET is lower by more
than 6.0 points on COPA due to an overestimation
of PET’s performance in previous work. However,
when comparing them with PET on a common
ground, these methods generally show improve-
ments. More broadly, we observe that the perfor-



Table 5: Re-evaluation of few-shot methods on ALBERT and DeBERTa under our evaluation framework with the Multi-Splits
strategy on SuperGLUE test set of our setup. The data setting is 64 labeled examples. For iPET and Noisy Student, (cross)
and (single) respectively means cross-split labeling and single-split labeling strategies as introduced in Section 5.2. “Our Best
(few-shot)” is the results achieved by a combination method as introduced in Section 5.4. The globally best results for each
task are denoted in bold. The best results for minimal few-shot methods are underlined. The

:::
best

::::::
results

::
for

::::::::::::
semi-supervised

::::::
few-shot

:::::::
methods are marked with wavelines.

Base
Models

Few-Shot
Methods

BoolQ RTE WiC CB MultiRC WSC COPA Avg.
Acc. Acc. Acc. Acc. F1 F1a EM. Acc. Acc

ALBERT

CLS 55.01 53.97 50.82 67.97 52.18 59.95 18.86 51.44 64.25 53.57
±2.95 ±5.49 ±3.02 ±18.29 ±10.30 ±10.69 ±9.80 ±4.87 ±9.36

PET 76.70 72.83 53.87 84.38 62.56 76.51 36.46 75.72 81.75 70.12
±1.85 ±1.30 ±4.47 ±4.47 ±7.66 ±1.52 ±2.13 ±6.40 ±4.03

ADAPET 79.24 74.28 58.07 92.86 89.99 77.24 37.17 78.13 81.75 74.30
±1.42 ±3.57 ±2.96 ±1.46 ±3.91 ±1.99 ±2.64 ±3.46 ±3.95

P-tuning 76.55 63.27 55.49 88.39 84.24 75.91 38.01 73.56 85.25 71.06
±2.68 ±3.63 ±1.21 ±3.72 ±5.15 ±1.74 ±0.78 ±2.78 ±3.30

PET+MLM3 76.83 71.48 52.39 83.93 67.37 75.15 35.68 76.20 85.75 70.53
±1.18 ±1.64 ±1.44 ±5.05 ±8.31 ±0.34 ±1.10 ±5.52 ±3.40

iPET(single)3,4 74.29 72.35 54.78 84.67 76.92 76.33 37.72 71.39 84.00 70.66
±4.10 ±3.71 ±3.93 ±3.18 ±5.44 ±1.18 ±2.58 ±5.59 ±6.02

Noisy(single)3,4 76.11 72.62 54.11 84.38 72.57 76.59 37.00 73.16 83.50 70.68
±2.16 ±2.80 ±1.98 ±5.60 ±11.84 ±1.40 ±2.34 ±3.72 ±3.34

iPET(cross)3,4 76.83 74.28 58.35 83.48 73.86 75.71 37.30 76.20 83.25 72.01
±1.39 ±4.31 ±2.42 ±2.68 ±2.48 ±2.14 ±2.71 ±4.33 ±4.19

Noisy(cross)3,4 75.64 75.27 56.43 84.82 77.79 77.11 38.25 78.61 83.00 72.56
±1.82 ±1.97 ±2.67 ±4.49 ±8.46 ±1.49 ±0.92 ±2.76 ±4.76

DeBERTa

CLS 59.49 49.55 54.08 68.30 60.10 75.42 34.23 60.82 85.25 61.17
±1.74 ±2.23 ±2.15 ±3.96 ±10.14 ±2.39 ±5.02 ±14.23 ±2.22

PET 82.67 79.42 67.20 91.96 88.63 78.18 42.79 80.53 89.00 78.51
±0.78 ±2.41 ±1.34 ±3.72 ±4.91 ±1.59 ±2.42 ±1.82 ±2.94

ADAPET 81.28 82.58 66.50 89.73 86.63 77.88 43.05 83.41 88.75 78.74
±1.26 ±2.44 ±2.11 ±6.08 ±7.29 ±2.55 ±3.60 ±3.46 ±4.43

P-tuning 82.25 82.22 66.22 94.20 91.76 78.45 43.78 84.62 86.50 79.42
±0.85 ±1.23 ±1.18 ±2.25 ±3.30 ±1.46 ±3.93 ±4.64 ±3.70

PET+MLM3 82.80
::::
83.30 58.23 90.18 87.18 77.05 40.63 79.81 85.75 76.77

±0.97 ±2.40 ±4.98 ±3.09 ±6.17 ±1.80 ±1.64 ±4.08 ±3.40

iPET(single)3,4 81.27 81.11 64.75 89.88 87.70 79.99
::::
45.23 82.61 90.83 78.85

±1.61 ±1.89 ±4.27 ±5.01 ±6.52 ±1.94 ±2.19 ±3.68 ±2.79

Noisy(single)3,4 81.60 81.95 65.97
::::
91.67 89.17 79.85 45.10 82.61 90.67 79.38

±1.54 ±2.01 ±2.44 ±2.33 ±2.95 ±1.22 ±2.58 ±3.83 ±2.53

iPET(cross)3,4
::::
83.45 83.12

::::
69.63 91.52

::::
90.72 79.92 44.96

::::
85.58

:::::
93.75 81.30

±0.90 ±1.04 ±2.15 ±3.05 ±2.68 ±1.11 ±3.13 ±1.76 ±2.99

Noisy(cross)3,4 82.19 81.95 68.26 90.18 86.74 79.48 44.20 85.10
:::::
93.75 80.22

±0.65 ±0.51 ±1.12 ±2.31 ±3.00 ±2.53 ±4.14 ±3.28 ±3.30

DeBERTa
Our Best3,4 84.0 85.7 69.6 94.6 92.9 81.5 48.0 87.0 93.8 85.171

(few-shot) ±0.55 ±0.63 ±2.15 ±1.46 ±1.85 ±0.76 ±0.99 ±2.29 ±2.99

RoBERTa
RoBERTa 5

(fully sup.) 86.9 86.6 75.6 98.2 - 85.7 - 91.3 94.0 88.33

DeBERTa
DeBERTa 2

(fully sup.) 88.3 93.5 - - - 87.8 63.6 - 97.0 -

1 For comparison with RoBERTa (fully sup.), the average of Our Best (few-shot) 85.17 excludes MultiRC-EM and CB-F1.
2 The fully-supervised results on DeBERTa are reported in https://github.com/THUDM/GLM.
3 Unlabeled data are used.
4 The ensemble technique is used.
5 The RoBERTa (fully-sup.) results by (Liu et al., 2019). RoBERTa-large has less parameters than DeBERTa-xxlarge-v2.

Table 6: Combination of methods that achieves the best few-shot performance for each task. We consider three minimal
few-shot methods including PET, ADAPET, and P-tuning, and five training paradigms including single-run, iPET (single/cross),
and Noisy (single/cross). “+MLM” denotes whether we include the MLM as the additional regularization loss.

BoolQ RTE WiC CB MultiRC WSC COPA
Minimal Few-Shot Methods PET ADAPET PET PET ADAPET ADAPET PET
Training Paradigm iPET(cross) Noisy(cross) iPET(cross) iPET(cross) Noisy(cross) Noisy(cross) iPET(cross)
+ MLM X - - X - - -

https://github.com/THUDM/GLM


Table 7: Comparison of prior evaluations and our evaluation. We report the absolute performance (Abs.) and the
relative performance gap to PET (Schick and Schütze, 2021b) (Rel.) of different methods respectively from previ-
ous evaluation (Prev.) and our evaluation framework (Ours.) on BoolQ, RTE, WiC and COPA tasks. The results are
based on ALBERT. Results of previous evaluation are taken from the original papers, including ADAPET (Menon
et al., 2021), P-tuning (Liu et al., 2021b), PET+MLM (Schick and Schütze, 2021a) and iPET (Schick and Schütze,
2021b). Since (Schick and Schütze, 2021a) reported the effectiveness of PET+MLM on different tasks, we re-
experimented on the same tasks under the original setting reported in (Schick and Schütze, 2021a).

Methods BoolQ RTE WiC COPA
Prev. Ours Prev. Ours Prev. Ours Prev. Ours

PET (baseline) Abs. 79.40 76.70 69.80 72.83 52.40 53.87 95.00 81.75

ADAPET Abs. 80.30 79.24 76.50 74.28 54.40 58.07 89.0 81.75
Rel. +0.90 +2.54 +6.70 +1.45 +2.00 +4.20 -6.00 0.00

P-tuning Abs. 77.80 76.55 76.50 63.27 56.30 55.49 87.00 85.25
Rel. -1.60 -0.15 +6.70 -9.56 +3.90 +1.62 -8.00 +3.50

PET+MLM Abs. 76.00 76.83 62.20 71.48 51.30 52.39 86.70 85.75
Rel. -3.40 +0.13 -7.60 -1.35 -1.10 -1.48 -8.30 +4.00

iPET Abs. 80.60 74.29 74.0 72.35 52.20 54.78 95.0 84.00
Rel. +1.20 -2.41 +4.20 -0.48 -0.20 +0.91 0.00 +2.25

mance differences between many pairs of methods
were not accurately estimated by previous eval-
uation methods. For example, it was estimated
that ADAPET outperforms P-Tuning on COPA and
P-Tuning beats ADAPET on WiC, while our evalu-
ation reveals the opposite.

Finally, our re-evaluation first compares all meth-
ods on a common ground, revealing the following:

Finding 3. The absolute performance and the
relative gap of few-shot methods were gener-
ally not accurately estimated in the literature.
The benefits of some minimal few-shot methods
(i.e., ADAPET (Menon et al., 2021)) decrease on
larger models like DeBERTa. The gains of semi-
supervised few-shot methods (i.e., iPET (Schick
and Schütze, 2021b) and Noisy Student (Xie et al.,
2020)) are consistent even on larger models.

A possible reason for the lower performance of
ADAPET on DeBERTa is that larger pretrained
models have learned more prior knowledge. There-
fore, gains obtained by either adding additional
regularization terms (e.g. ADAPET) are not signif-
icant anymore. We also conjecture that larger mod-
els could have a higher capacity to adapt and may
thus benefit from more training examples. Thus,
the semi-supervised few-shot methods (i.e., iPET
and Noisy Student) that augment data demonstrate
consistent improvements compared to baselines.

5.4 What is the Best Performance Few-Shot
Learning can Achieve?

We explore the best performance few-shot learn-
ing can achieve by combining various methods

and techniques using our evaluation framework
with the Multi-Splits strategy and DeBERTa as
base model. We consider three minimal few-shot
methods including PET, ADAPET, and P-tuning,
five training paradigms including single-run, iPET
(single/cross), and Noisy Student (single/cross),
as well as the addition of a regularization loss
(+MLM). We experiment with all possible com-
binations among them and report the best perfor-
mance for each task.

The “Best (few-shot)” results are shown in Ta-
ble 5, achieving the best results on all tasks among
all methods. This demonstrates that existing few-
shot methods can be practically used in combina-
tion. Comparing our best few-shot results with the
results of RoBERTa-large (fully-sup) (Liu et al.,
2019), we observe the performance gap has been
further narrowed to 3.16 points on average8. Com-
pared to DeBERTa (fully-sup), there is still a size-
able gap between few-shot and fully-supervised
systems.

We list the best-performing method combination
for each task in Table 6. We observe that different
combinations perform best across tasks, and that
there is no single method that dominates all tasks.
PET and ADAPET as well as iPET and Noisy Stu-
dent are about equally preferred while cross-split
labeling and no regularization term perform better.
We thus recommend future work to focus on the de-
velopment of methods that achieve consistent and

8Note that the gap could be larger since RoBERTa-large
has a smaller number of parameters than DeBERTa-xxlarge-
v2, and RoBERTa (fully-sup) does not incorporate additional
beneficial techniques such as ensembling or self-training.



robust performance across tasks. We summarize
the following findings:

Finding 4. Gains from different methods are
largely complementary. A combination of recent
state-of-the-art methods largely outperforms in-
dividual methods and achieves the best perfor-
mance, close to a strong fully-supervised baseline
on RoBERTa (Liu et al., 2019). However, there is
still a sizeable gap between the best few-shot and
the fully-supervised system on DeBERTa (He et al.,
2020).

Finding 5. No single few-shot method dominates
most NLU tasks. This highlights the need for the
development of few-shot methods with more con-
sistent and robust performance across tasks.

6 FewNLU Toolkit

Evaluation Framework
- Multi-Splits
- K-fold Cross Validation
- Minimum Description Length

Training Framework
Iterative-run 

training process
single-run 

training process

Few-shot Methods

CLS PET ADAPET P-tuning iPET Noisy Student

Data Utilities

Pretrained Language Models (e.g., ALBERT, DeBERTa)

Preprocessor

Patterns

SuperGLUE
Benchmark

Customized Tasks

Customized 
Methods

Figure 3: Architecture of FewNLU. It contains implementa-
tion of several state-of-the-art methods, data processing util-
ities, a standardized few-shot training framework, and most
importantly, the proposed evaluation framework.

We open-source FewNLU, an integrated toolkit
designed for few-shot NLU. It contains implemen-
tations of several state-of-the-art methods, data pro-
cessing utilities, a standardized few-shot training
framework, and most importantly, the proposed
evaluation framework. FewNLU also allows cus-
tomizing new tasks/methods, and performing train-
ing and evaluation over them. Figure 3 shows the
relationships between the four blocks. The goal
of FewNLU is to facilitate benchmarking few-shot
learning methods for NLU tasks. For more detailed
features of FewNLU, please refer to the source
codes and documents.

7 Conclusions

We introduce an evaluation framework, re-evaluate
a number of few-shot learning methods under the
evaluation framework with a novel Multi-Splits
strategy, and release a few-shot toolkit. Apart from
this, we also aim at advancing the development of
few-shot learning by sharing several new experi-
mental findings. We identify several new direc-
tions for future work: (1) Our work revealed that

the prompt patterns and training sample order are
crucial hyper-parameters, but in practice how to
define the hyper-parameter search space a priori is
still a challenge. (2) It is critical for the community
to iterate and converge on a common evaluation
framework. (3) Few-shot natural language genera-
tion might also be studied in a similar framework.
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A Appendix

A.1 Details of Data-Split Strategy
Experiments

A.1.1 Datasets
To justify the proposed evaluation framework, we
perform experiments on the few-shot SuperGLUE
benchmark, which was constructed to include some
of the most difficult language understanding tasks
for current NLP approaches (Wang et al., 2019a).
Unlike other NLU benchmarks (e.g., GLUE (Wang
et al., 2019b)) that contain single-sentence tasks,
SuperGLUE consists of complicated ones that are
sentence-pair or sentence-triple tasks, which de-
mand advanced understanding capabilities. Seven
SuperGLUE tasks are considered, including ques-
tion answering (BoolQ (Clark et al., 2019) & Mul-
tiRC (Khashabi et al., 2018)), textual entailment
(CB (De Marneffe et al., 2019) & RTE (Dagan et al.,
2005)), word sense disambiguation (WiC (Pilehvar
and Camacho-Collados, 2018)), causal reasoning
(COPA (Roemmele et al., 2011)), and co-reference
resolution (WSC (Levesque et al., 2012)).

A.1.2 Hyper-parameters of Data-Split
Strategy Evaluation

To quantitatively evaluate different data-split strate-
gies, we perform extensive experiments with the
following hyper-parameter search space. Data-split
experiments are based on DeBERTa (xxlarge). The
hyper-parameter search space is shown in Table 8.
We use the same prompt patterns as in (Schick and
Schütze, 2021b). To observe the changes of perfor-
mance and correlation metrics w.r.t different K val-
ues, we also experimented with K = {2, 4, 8, 16}
over three tasks (i.e., BoolQ, RTE and COPA).
Table 8: Hyper-parameter Search Space for Data-Split
Strategy Evaluation

Hyper-parameter Value
Learning Rate {5e− 6, 1e− 5}
Maximum Training Step {250, 500}
Evaluation Frequency {0.02, 0.04}
Number of Runs K 4
Split Ratio r for Multi-Splits 1:1

A.1.3 32-Data-Setting Results for Data-Split
Strategy Evaluation

In data-split strategy evaluation, in addition to the
64-data-setting results in the main texts, we also
experimented with 32 labeled data as (Schick and
Schütze, 2021b,a; Menon et al., 2021). The 32-
data-setting results are also provided in Table 9.

A.2 Details of Crucial Factor Evaluation
To study whether a certain factor is crucial for
the searching procedure, we conduct multiple-time
experiments by assigning a certain factor with
multiple values and keeping all the other hyper-
parameters fixed. The standard deviation (STD)
over the multiple experimental results is reported,
where a larger STD indicates the few-shot perfor-
mance is sensitive to this targeted factor. It is worth
noting that we assign values under a small dis-
turbance to the target factor, without considering
the extreme values, which will definitely make the
model fail, so it doesn’t make much sense in fact.

For a given task and a target factor, we fixed the
hyper-parameters to be the best-performing ones
obtained in Section 4.3, and assigned multiple val-
ues for the target factor. For the prompt pattern,
we assigned it with the same values as (Schick and
Schütze, 2021b). Possible values for other hyper-
parameters are in Table 11.

A.3 Details of Few-Shot Method
Re-Evaluation

A.3.1 Details of Re-Evaluated Methods
The four considered minimal few-shot methods are
introduced as follows.

1. Classification is a conventional finetuning al-
gorithm, which uses the hidden states of a
special [CLS] token for classification.

2. PET is a prompt-based finetuning algorithm.
It transforms NLU problems into cloze prob-
lems with prompts, and then converts the
cloze outputs into the predicted class.

3. ADAPET is based on PET and decouples
the losses for the label tokens. It proposes
a label-conditioned masked language model-
ing (MLM) objective as a regularization term.

4. P-tuning is also based on PET and automati-
cally learns continuous vectors as prompts via
gradient update.

The three semi-supervised few-shot methods are
introduced as follows.

1. PET+MLM is based on PET and addition-
ally adds an auxiliary language modeling task
performed on unlabeled dataset. It was first
proposed by (Schick and Schütze, 2021a) to
resolve catastrophic forgetting.

2. iPET is a self-training method. It iteratively
performs PET for multiple generations. At
the end of each generation, unlabeled data
are assigned with pseudo-labels by the fully-



Table 9: Evaluation results of different few-shot data-split strategies with PET on FewGLUE (K=4) under the same data setting
as (Schick and Schütze, 2021b,a; Menon et al., 2021) with 32 labeled data. Larger scores indicate that a data-split strategy
effectively selects a model that achieves better test-set performance. The best results for each task are denoted in bold.

(a) Results of test performance of the selected hyper-parameter

BoolQ RTE WiC CB MultiRC WSC COPA Avg.
Acc. Acc. Acc. Acc. F1 F1a EM. Acc. Acc

CV 77.29 75.63 55.56 89.29 80.66 78.61 42.26 78.37 90.00 74.61
±3.32 ±4.26 ±1.06 ±3.86 ±14.87 ±0.84 ±2.07 ±4.26 ±2.45

MDL 79.29 75.87 53.53 79.61 59.25 75.77 37.30 77.82 76.25 69.82
±6.01 ±5.19 ±0.58 ±5.42 ±11.27 ±4.72 ±6.27 ±4.19 ±12.50

Multi-Splits
(r = 1 : 1)

78.11 79.42 61.72 83.04 70.93 78.23 41.45 74.52 84.75 73.62
±2.63 ±1.79 ±3.10 ±6.66 ±13.40 ±1.24 ±1.74 ±3.96 ±2.12

Multi-Splits
(r = 3 : 1)

79.18 75.00 52.90 87.05 81.06 76.70 41.13 78.37 84.50 73.27
±1.96 ±3.84 ±2.40 ±4.22 ±8.14 ±1.06 ±1.95 ±1.24 ±5.80

(b) Results of correlation between the development and training sets

BoolQ RTE WiC CB MultiRC WSC COPA Avg.
CV 0.4134 0.6759 0.4189 0.0938 0.1061 -0.1683 0.6567 0.3138
MDL 0.6394 0.5687 -0.0732 0.2127 0.1690 0.0741 0.1100 0.2429
Multi-Splits (r = 1 : 1) 0.5347 0.6911 0.8448 0.7232 0.6280 0.0853 0.4531 0.5657
Multi-Splits (r = 3 : 1) 0.3003 0.7601 0.4938 0.6867 0.3310 -0.1595 0.7024 0.4450

Table 10: The best hyper-parameters searched for PET. We search each task with a learning rate of {1e-5,5e-6},
max steps of {250,500}, evaluation frequency ratio of {0.02,0.04}, and all the available prompt patterns. Therefore,
each task has 8N hyper-parameter combinations, where N is the number of available prompt patterns, i.e., 6 for
BoolQ and RTE, 3 for WiC, and 2 for COPA.

BoolQ RTE WiC CB MultiRC WSC COPA
Learning Rate 1e-5 5e-6 5e-6 1e-5 1e-5 5e-6 1e-5
Maximum Training Step 250 250 250 250 500 250 500
Evaluation Frequency 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Prompt Pattern 1 5 2 5 0 2 0

Table 11: Hyper-parameter Search Space for Crucial
Factor Evaluation

Hyper-parameter Value
Learning Rate {6e− 6, 8e− 6, 1e− 5}
Evaluation Frequency {0.02, 0.04, 0.08}
Training Batch Size {8, 16, 32, 64}
Sample Order Seed {10, 20, 30, 40, 50, 60, 70, 80}

trained model, and will be used for training
along with train data in the next generation.

3. Noisy Student is similar to iPET with the dif-
ference that Noisy Student injects noises into
the input embeddings of the model.

A.3.2 Hyper-parameters for Re-Evaluation
For minimal few-shot methods on DeBERTa, such
as PET, ADAPET, and P-tuning, we search in the
same hyper-parameter space as introduced in Sec-
tion A.1.2. The hyper-parameter search space for
other few-shot methods are shown in Table 14.

A.3.3 The Searched Best Hyper-parameters
We list the searched best hyper-parameter configu-
ration for different tasks and methods in Table 10,
Table 12, and Table 13.

A.3.4 More Discussion on ADAPET

Since it is observed that ADAPET shows less
improvements on DeBERTa than it has achieved
on ALBERT, we further discuss the phenomena
by raising the question what other differences it
has made. We respectively visualize the few-
shot performance distribution over the same hyper-
parameter space of PET and ADAPET in Figure
4. We observe that PET is more likely to obtain
extremely bad results on BoolQ and RTE, while
ADAPET shows stable results. It suggests that
ADAPET appears to be more robust to the hyper-
parameters, and overall achieves good performance
regardless of hyper-parameter selection. However,
ADAPET is less inclined to produce better peak
results. To sum up, we can conclude: Loss reg-
ularization (e.g., ADAPET (Menon et al., 2021))
enhances stability w.r.t. hyper-parameters.

A.3.5 More Discussion on Semi-supervised
Few-shot Methods

We focus on semi-supervised methods that itera-
tively augment data (i.e., iPET and Noisy Student),



Table 12: The best hyper-parameters searched for ADAPET. We search each task with a learning rate of {1e-
5,5e-6}, max steps of {250,500}, evaluation frequency ratio of {0.02,0.04}, and all the available prompt patterns.
Therefore, each task has 8N hyper-parameter combinations, where N is the number of available prompt patterns,
i.e., 6 for BoolQ and RTE, 3 for WiC, and 2 for COPA.

BoolQ RTE WiC CB MultiRC WSC COPA
Learning Rate 1e-5 5e-6 5e-6 1e-5 5e-6 1e-5 5e-6
Maximum Training Step 250 500 500 500 500 500 500
Evaluation Frequency 0.04 0.04 0.02 0.02 0.02 0.02 0.04
Prompt Pattern 1 5 2 5 0 1 0

Table 13: The best hyper-parameters searched for P-tuning.We search each task with a learning rate of {1e-5,5e-6},
max steps of {250,500}, warmup ratio of {0.0,0.1}, evaluation frequency ratio of {0.02,0.04}, and prompt encoder
impelmented with {“mlp”, “lstm”}.

BoolQ RTE WiC CB MultiRC WSC COPA
Learning Rate 5e-6 5e-6 5e-6 1e-5 1e-5 1e-5 1e-5
Maximum Training Step 500 250 500 250 500 250 500
Warmup Ratio 0.0 0.0 0.0 0.1 0.1 0.0 0.1
Evaluation Frequency 0.02 0.02 0.02 0.04 0.02 0.04 0.04
Prompt Encoder Type mlp lstm lstm lstm lstm mlp mlp
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Figure 4: Visualization of few-shot performance over the same hyper-paramter space of ADAPET and PET based
on DeBERTa and Multi-Splits. The x-axis is the index of the hyper-parameter combination. We search each task
with a learning rate of 1e-5 or 5e-6, max steps of 250 or 500, evaluation ratio of 0.02 or 0.04, and all the available
prompt patterns. Therefore, each task has 8N hyper-parameter combinations, where N is the number of available
prompt patterns, i.e., 6 for BoolQ and RTE, 3 for WiC, and 2 for COPA. The y-axis is the score of each task given
a certain hyper-parameter combination.

which have demonstrate promising results on both
models in Table 5. Several key points for their
success are especially discussed.

1. For semi-supervised methods such as iPET
and Noisy Student, it is time-consuming when
searching over a large hyper-parameter space
for each generation. We directly use the
searched best hyper-parameters for PET in
each generation. From Table 5, we can see
that their results show advantages over PET
(by more than 1 points). It suggests that best
hyper-parameters can be transferred to such

methods, to reduce the cost of time and com-
putational resources. If we search for each
generation, results might be even better.

2. Comparing the single-split labeling strategy,
the cross-split labeling strategy works better.
As the results show, both iPET (cross) and
Noisy (cross) outperform iPET (single) and
Noisy (single) in most tasks on both models.

3. Another simple and effective technique is
our proposed ensemble labeling strategies.
(Schick and Schütze, 2021b) utilizes the en-
semble results over all patterns to label unla-



Table 14: Hyper-parameter Space for Re-Evaluation

Method Hyper-Parameter Value

CLS
Learning Rate (DeBERTa) {1e− 5, 5e− 6}
Learning Rate (ALBERT) {1e− 5, 2e− 5}
Maximum Training Step {2500, 5000}

PET/
ADAPET

Learning Rate (DeBERTa) {5e− 6, 1e− 5}
Learning Rate (ALBERT) {1e− 5, 2e− 5}
Maximum Training Step {250, 500}

Evaluation Frequency {0.02, 0.04}

P-tuning

Learning Rate (DeBERTa) {5e− 6, 1e− 5}
Learning Rate (ALBERT) {1e− 5, 2e− 5}
Maximum Training Step {250, 500}

Evaluation Frequency {0.02, 0.04}
Warmup Ratio {0.0, 0.1}

Prompt Encoder Type {mlp, lstm}

iPET/
Noisy

Unlabeled Data Number 500
Increasing Factor 3.0

Sample Ratio (single-split) 1.0
Sample Ratio (cross-split) 2/3
Dropout Rate for Noisy 0.05

Table 15: The performance results of iPET on both WiC
and RTE at every generation (g1, g2, and g3). Each experi-
ment uses either ensemble over all patterns (Multi-Patterns)
or ensemble over the only best pattern (Best-Pattern).

task method g1 g2 g3

WiC Multi-Patterns 60.11 ±5.64 60.19 ±4.12 59.66 ±4.27

Best-Pattern 64.21 ±2.58 64.18 ±4.61 63.37 ±6.29

RTE Multi-Patterns 65.08 ±10.07 69.20 ±7.13 71.46 ±5.59

Best-Pattern 79.39 ±2.75 81.95 ±1.04 83.12 ±1.42

beled data, since it is hard to select patterns.
Under the Multi-Splits strategy, self-training
methods can recognize the best pattern, and
only ensemble trained models for the best pat-
tern when labeling unlabeled data. Table 15
shows the results of iPET on WiC and RTE
tasks, respectively ensemble over multiple pat-
terns or ensemble over the only best pattern.
We can see that results of ensemble with the
best pattern significantly outperform results of
ensemble with all patterns at every generation.


