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Abstract

Social influence, the phenomenon that the actions of a
user can induce her/his friends to behave in a similar way,
plays a key role in many (online) social systems. For exam-
ple, a company wants to market a new product through the
effect of “word of mouth” in the social network. It wishes
to find and convince a small number of influential users to
adopt the product, and the goal is to trigger a large cascade
of further adoptions. Fundamentally, we need to answer the
following question: how to quantify the influence between
two users in a large social network?

To address this question, we propose a pairwise factor
graph (PFG) model to model the social influence in social
networks. An efficient algorithm is designed to learn the
model and make inference. We further propose a dynamic
factor graph (DFG) model to incorporate the time informa-
tion. Experimental results on three different genres of data
sets show that the proposed approaches can efficiently infer
the dynamic social influence. The results are applied to the
influence maximization problem, which aims to find a small
subset of nodes (users) in a social network that could max-
imize the spread of influence. Experiments show that the
proposed approach can facilitate the application.

1 Introduction

With the success of many large-scale online social net-
works, such as Facebook and Twitter, the social networks
are playing a very important role as a medium for the spread
of information, ideas, and influences. In social networks,
with the power of “word of mouth”, a new idea or innova-
tion can influence a large population in a very short period,
but may also die out quickly. To understand the underly-
ing dynamics of the social networks, it is very important to
know how people influence with each other.

Social influence analysis has attracted a lot of interests
from both the sociology and the data mining research com-
munities. For example, Domingos and Richardson [7, 14]
first propose the the influence maximization problem, in

which the goal is to find a few “influential” members of the
network. Kempe et al. [10] formalize the problem in dis-
crete optimization and propose three cascade models for in-
fluence propagation. However, in these works, the influence
between individual users is supposed to be available, which
is not the case in most applications. Some other works study
the relationships between social influences and correlation
[1] or similarity [6]. However, they only present qualitative
findings about social influences, but do not provide a quan-
titative measure of the influential strength. Tang et al. [17]
presents a method to measure the influential strength. It
formalizes the problem of social influence analysis as iden-
tifying which user has the highest probability to influence
another user in the social network. Goyal et al. [9] learns
the influence propagation probaility from action log data,
which are often not publicly available. Also, similar be-
haviors do not always indicate friendship [13], although the
network structure can be inferred with some assumptions of
the information diffusion model [15]. When action data are
unavailable or insufficient, it remains a question how to in-
fer arbitrary pairwise influence varying with time, given the
dynamic topological network structures.
Motivating Application

To clearly motivate this work, we demonstrate with an
example of coauthor network. In Figure 1, the left figure
shows an example of coauthor network at different time
windows t, t+1, and t+2, in which the networks (structures
and contents) change along with the time. The dynamic so-
cial influence analysis takes the social networks at different
time windows as input and outputs the dynamic social influ-
ential strengths between individual users (as shown in the
middle figure, where the social network is the accumulation
of the networks at different time windows). For each social
relationship, e.g., the relationship between Frank and Carol,
the analysis generates two directed edges, each associated
with a vector of influence scores µµµ = {µt, µt+1, µt+2}.
With the generated dynamic social influence scores, we
can consider many important applications such as influ-
ence maximization, expert finding, and social recommen-
dation. The right figure gives an example of application to
influence maximization, where the goal is to identify the
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Figure 1: Example of dynamic social influence analysis on the co-author network.

most influential users. Based on the computed social in-
fluences, one can use algorithms developped by previous
researchers([10, 4]) to find the subset of users (e.g., George
and Frank) who could maximize the spread of influence.
The problem to study in this paper is how to efficiently and
effectively model the dynamic social influence for real large
networks.
Contributions

The problem of dynamic social influence analysis is
quite different from existing works on social network analy-
sis. First, we mainly use the topological structures to model
the pairwise influence, so as to analyze the influence when
the action log data are unavailable or uneffective. Second,
we notice that social influences are highly time-dependent.
The influence of a user on another depends on their interac-
tions in previous time windows.

In this paper, we formulate and tackle the problem of
dynamic social influence analysis, and present a pairwise
factor graph (PFG) model to model the pairwise influence.
Specifically, the influence between two users is modeled as
a marginal probability of two hidden variables in the fac-
tor graph model. An efficient learning algorithm is pro-
posed. Next, we propose a time-dependent factor graph
(DFG) model to further incorporate the time information,
which is described as a factor function across time windows.
Thus influence is propagated across social networks of dif-
ferent time windows.

2 Problem Formulation

In this section, we present the problem formulation and
define notations used throughout this paper.

In general, the input of dynamic social influence anal-
ysis is a serial of time-dependent social networks {Gt} =
{(V t, Et)}, where V t is a set of nodes (users, entities) ap-
pearing within the time window t and Et is the set of di-
rected/undirected edges. Each edge etij ∈ Et is associated
with a weight/similarity wt

ij , which can be defined in dif-

ferent ways, depending on the specific application. In the
following of this section, we first introduce some terminol-
ogy, and then define the dynamic social influence analysis
problem.

Pairwise social influence: Pairwise social influence
from user vi to vj denoted as µij is a numerical weight asso-
ciated with the edge eij . In most cases, the social influence
score is asymmetric, i.e., µij ̸= µji.

Dynamic social influence: Dynamic social influences
from user vi to vj is defined as a vector of numerical weights
µµµij associated with the edge eij . The t-th component µt

ij ∈
µµµij is the social influence of user vi on vj at time t. The
dynamic social influence is also asymmetric.

Based on the above concepts, we can define the tasks of
dynamic social influence analysis. Given a serial of time-
dependent social networks {Gt} = {(V t, Et)}, the ex-
pected output of dynamic social influence is the dynamic
social influence scores for each social tie.

Problem: Dynamic social influence analysis. Given T
time-dependent social networks {Gt} = {(V t, Et)}Tt=1,
where V t is the set of users appearing at the time-window
t and Et is the set of directed/undirected edges between
these users, and each edge etij ∈ Et is associated with a
weight/similarity wt

ij , how to find the dynamic social influ-
ence network G′ = (V,E,Ω)? Here the nodes and edges
of G′ are the accumulation of the time-dependent networks,
i.e., V = V 1 ∪V 2 · · · ∪V T and E = E1 ∪E2 · · ·ET , Ω is
the set of dynamic social influences, i.e., {µµµij}.

The obtained dynamic social influence scores can be ap-
plied to many applications. As a case study, we apply it to
a state-of-the-art problem in social network analysis: influ-
ence maximization [7, 14, 10].

Application: Influence maximization. Given a social net-
work with the social influence on each social relationship,
i.e. G′ = (V,E,Ω), how to find a small subset of nodes
(seed nodes) from the network that could maximize the
spread of influence.



The problem of influence maximization has been proven
to be a NP-hard problem [10]. A greedy approximation al-
gorithm can guarantee that the influence spread is no worse
than (1 − 1/e) of the optimal influence spread. One major
problem of the greedy algorithm is its low efficiency. Chen
et al. have developped new heuristics [5, 4] to accelerate the
greedy algorithm. The dynamic social influences learnt by
our method can provide the input of these algorithms.

3 Our Approach

Based on the input weighted network, we formalize the
social influence problem in a factor graph model. Our main
idea is to use a marginal probability to define the pair-
wise influence between users. Other social information, i.e.,
users’ attribute information, social similarities/weights, and
network structures are captured via different types of fac-
tor functions, which form the basic components of the fac-
tor graph model. By learning and inferring with the factor
graph model, we can obtain all the marginal probabilities.
For ease of explanation, we first describe the pairwise factor
graph (PFG) model without considering the time informa-
tion, which will be further discussed in Section 3.3.

3.1 Pairwise Factor Graph (PFG) Model

Now we formally define the proposed PFG model.

Variables The PFG model has the following components:
a set of observed variables V = {vi}Ni=1, which corre-
sponds to the N users in the input network, and a set of
hidden variables Y = {yi}Ni=1, representing which node
the user vi randomly chooses to follow when selecting an
activity. vi can follow the activity of his neighbors when
yi ∈ NB(i), or create an activity himself when yi = i. So
yi ∈ SC(i) = NB(i)∪{i}, where NB(i) is the indices set
of neighboring nodes of vi. vi will follow an action from vyi

with the probability P (yi|V ). So we use P (yi|V ) to reflect
the influence of vyi on vi.

This activity selection scheme is similar with that in [6].
But we differentiate neighbors’ influence explicitly via the
activity selection probability rather than presume P (yi|V ) a
uniform distribution. We assume the influence does not vary
with time in PFG model. And we will address the dynamic
change of influence in next section.

Figure 2 shows a simple example of an PFG. The ob-
served data consist of four users {v1, . . . , v4}, which have
corresponding hidden variables Y = {y1, . . . , y4}. The
edges between the hidden nodes indicate the four social re-
lationships in the original network (a.k.a. the edges of the
input network).

Factor functions We define two types of factor functions to
capture the social information.

• Node factor function g(yi|V ) is a factor function de-
fined on node (user) vi. It is used to describe the local
(user-specific) information.

• Edge factor function f(yi, yj |V ) is a factor function
defined on the edge of the input network. It can be
used to describe the dependencies between users.

Generally, the two factor functions can be defined in var-
ious ways. In this work, we define the node factor function
g as:

g(yi|V ) =


wiyi∑

j∈NB(i)(wij+wji)
yi ̸= i∑

j∈NB(i) wji∑
j∈NB(i)(wij+wji)

yi = i
(1)

The node factor function g reflects the likelihood that one
user is directly influenced by another solely regarding the
weight of the edge connecting both. The edge weight can
be defined based on similarity or interaction, determined by
the application. It reflects the intuition that if vi has a high
similarity or interaction with vyi , then vyi may have a high
influence on node vi. One can also extend the function g by
defining the weight according to other node-specific infor-
mation such as social roles, personal attributes, and ascribed
relationships.

The edge factor function f is used to describe the depen-
dencies between users, for example, how likely two friends
are influenced by the same user. Formally, the edge factor
function is defined as follows:

f(yi, yj |V ) =

{
u

|SC(i)∩SC(j)| yi = yj
1−u

|SC(i)||SC(j)|−|SC(i)∩SC(j)| yi ̸= yj
(2)

where u is a propagation weight, ranging in [0, 1], indicat-
ing the probability of two connected users influenced by
the same user. Intuitively, u characterizes the preference
of the model for social propagation (indirect influence). If
set u = 0, then there is strong resistence towards social
propagation. Setting u = 1 results in a model of thorough
propagation.

For the definitions above we notice that the node
factor function relies on the neighboring information
of one node, while the edge factor function relies on
that of two linked nodes. This is formally indicated
by g(yi|V ) = g(yi|{vk}k∈SC(i)) and f(yi, yj |V ) =
f(yi, yj |{vk}k∈NB(i)∪NB(j)).

Theoretically, one can incorporate any types of features
into the PFG model. For example, one can even define some
useful constraints like: the old men will hardly influence the
young generation (users with age< 18) on the actions of
buying fashion clothes. One can also define more complex
features over triangle (three user) or quadrangle (four user).

Probabilistic influence A factor graph model is constructed
based on the above defined components. Then for a social
relationship eij , the influence of vj on vi can be defined as
a marginal probability:
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Figure 2: Graphical representation of the pairwise fac-
tor graph. {v1, . . . , v4} are observable nodes in the social
network; {y1, . . . , y4} are hidden variables defined on all
nodes; g(.) represents a feature function defined on a node
and f(.) represents a feature function defined on a social
relationship.

P (yi = j|V ) =
∑

∼{yi}

P (y1, . . . , yi = j, . . . , yN |v1, . . . , vN )

(3)
with

P (y1, . . . , yN |v1, . . . , vN ) =
1

Z

∏
vi∈V

g(yi|V )
∏

eij∈E

f(yi, yj |V )

(4)
where P (y1, . . . , yN |v1, . . . , vN ) is the joint probability of
all hidden variables in the PFG model , and Z is a normal-
izing factor.

In this way, the problem of influence analysis is formal-
ized as calculating the marginal probabilities conditioned on
the observed graph {P (yi = j|V )}j∈SC(i) for each node
vi. Since V are observable nodes, P (yi) is proportional
to P (yi|V ). So from now on we omit the observed vari-
ables V for notation convenience. The marginal probability
P (yi = j) characterizes the influence score of vj on vi.
One parameter configuration is shown in Figure 2. For ex-
ample, the probabilities {P (y1 = j)}j=1,2,3 suggests that
node v2 has the largest influence on v1. Also we can see v2
has a high self-influence.

3.2 Model Learning and Inference

To infer the social influences, we need to approximate all
marginal probabilities {P (yi = j)}.

The joint probability function can be represented as a
factor graph model because it is a product of factor func-
tions g and f . Factor graph is a bipartite graph comprised
of two kinds of nodes: variables and functions. To differ-
entiate the function nodes on the graph, we denote gi for
the g function defined on yi and fij for f defined on yi, yj .
When a variable appears in the definition of a function, there

is one edge between the variable node, in our case yi, and
the function node, in our case fi∗, f∗i or gi.

In sum-product algorithm [12], messages are passed be-
tween neighboring variable node and function node. Mes-
sage passing is initiated at the leaves. Each node yi remains
idle until messages have arrived on all but one of the edges
incident on the node yi. Once these messages have arrived,
node yi is able to compute a message to be sent onto the
one remaining edge to its neighbor. After sending out a
message, node yi returns to the idle state, waiting for a “re-
turn message” to arrive from the edge. Once this message
has arrived, the node is able to compute and send messages
to each of neighborhood nodes. The calculation terminates
when two messages have passed on every edge. At each
variable node, the product of all incoming messages is its
marginal probability.

However, traditional sum-product algorithm cannot be
directly applied to PFG because it may contain cycles.
Some nodes will always stay idle if we use the same mes-
sage passing scheme. One solution is a procedure known as
junction tree algorithm [2] for exact inference. The junction
tree is a tree-structured undirected graph generated from ar-
bitrary triangulated dependency graph, and can be solved by
sum-product. Nevertheless, the computational cost of the
algorithm is determined by the number of variables in the
largest clique and will grow exponentially with this num-
ber in the case of discrete variables. To reduce the compu-
tational cost, we can do approximate inference instead of
exact inference. A widely used method loopy belief propa-
gation (LBP) [8] simply applies the sum-product algorithm
in a cycle-containing graph. It passes message iteratively
with flooding schedule.

New SIP Inference and Learning Algorithm The mes-
sage passing method above has two disadvantages: 1) the
sum-product algorithm requires that each node need wait
for all(-but-one) message to arrive; 2) the messages sent be-
tween nodes does not directly reflect the influence between
users, hence the internal messages are not necessary for in-
fluence analysis after the iteration.

To deal with these problems, we propose a social influ-
ence propagation (SIP) algorithm, in which we utilize the
particular structure of our graphical model to simplify the
message passing process, and introduce a three-dimensional
influence message Λ to replace the original message m, and
thus convert the message passing update rules into a new
update rule of Λ. We let Λijk = mfij→yj (k). Thus the
messages passed from yi to yj through fij are now recorded
in {Λijk, k ∈ SC(j)}. The introduced variables Λ have the
following explanation. Message Λijk reflects, from the per-
spective of node vj , considering his/her relationship with
vi, how likely node vj think he/she is influenced by node
vk. Λijk only exists when vi is a neighbor of vj and vk is
either vj’s neighbor or vj itself. In each iteration, every ele-
ment Λijk is updated (in arbitrary order) with the following
update rule.



Input: G = (V,E)
Output: G′ = (V,E,Ω)

Calculate the node feature function g(vi, yi);
Calculate bij according to Eq. 8;
Initialize all ΛΛΛijk ← 0;
repeat

foreach edge (i, j) do
foreach neighboring node k ∈ SC(j) do

Update Λijk according to Eq. 5;
end

end
until convergence;
foreach node vj do

foreach k ∈ SC(j) do
Compute µkj according to Eq. 7

end
end

Generate G′ = (V,E,R) according to {µij}

Algorithm 1: The new SIP inference algorithm.

Λijk =
1

Zi

∑
l∈SC(i)

fij(l, k)bil
∏

s∈NB(i)\{j}

Λsil

=
∑

l∈SC(i)

fij(l, k)
µli

Λjil
(5)

where µji = P (yi = j) is the probabilistic influence of
node vj on node vi, and can be decomposed as the product
of messages towards vi about yi = j,

µji =
1

Zi
bij

∏
s∈NB(i)

Λsij (6)

=
bij

∏
s∈NB(i) Λsij∑

k∈SC(i) bik
∏

s∈NB(i) Λsik
(7)

Here Zi is a normalization factor; bij is a normalized
node feature function defined as follows.

bij =
gi(yi = j)∑

k∈SC(i) gi(yi = k)
(8)

The normalization is needed in generic case, although our
definition of gi already ensures

∑
k∈SC(i) gi(yi = k) = 1.

Now we do not need to calculate the actual messages
sent between variables and functions on the factor graph.
Instead, we only need to update Λ according to Eq. 5. The
order-independent property of the new update rule offers
the basis of parallelization. The algorithm is summarized in
Algorithm 1.

The weight u of social propagation can be assigned ac-
cording to the network property. In this work we use an
alternate optimization algorithm (a.k.a. EM, as summarized
in Algorithm 2) to maximize the joint probability (4). This
algorithm can learn the the parameter u, as well as the ”rep-
resentative” vyi for every node vi.

3.3 Dynamic Factor Graph (DFG) Model

Now we describe how to incorporate the time infor-
mation into the PFG model, which results in the DFG
model. Given T time-specific social networks {Gt} =

Input: G = (V,E,W )
Output: u,R = {yi}
Initialize u = 0.5;
repeat

E-step: begin
Execute SIP on G, but replacing the sum with max in the update
rule;
foreach node vj do

Compute yj ← argmaxi∈SC(j) µij

end
R← {y1, . . . , yN};

end
M-step: optimize the log likelihood of Eq. 4, with the following
gradient: ∂L

∂u = F (Y = R)− Ep(Y |u)F (Y ), where
F (Y ) =

∑
vi∈V log g(yi) +

∑
eij∈E log f(yi, yj).

until convergence;

Algorithm 2: The EM algorithm to learn u and repre-
sentative indices {yi}.
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Figure 3: Graphical representation of the dynamic factor
graph.
{(V t, Et)}Tt=1, DFG models the networks as a sequence of
time-dependent factor graphs. At each time window, the
factor graph has a similar structure with the PFG model.
In addition, each factor graph also depends on the factor
graph of the previous time window. Thus the sequence of
time-dependent factor graphs forms a Markov chain. Factor
functions are defined between the variables of two consec-
utive time-dependent factor graphs. A forward-backward
message passing process is then designed to capture the de-
pendencies between networks of two time windows. Fig-
ure 3 shows the graphical representation of the DFG model.

To formally define the DFG model, we add a superscript
t to the variables (vi, yi, Λijk, and µij) in PFG. Within the
factor graph of each time window, the factor functions (node
factor function and edge factor function) are defined simi-
larly to the PFG model. Between two consecutive time-
dependent factor graphs, we define a bridge factor function
between yti and yt+1

i . In this way, the influence µt
ji (or

P (yti = j)) of user vj on vi not only is determined by their
local and network structure information at time t, but also
depends on their historic influence. Specifically, the bridge
factor function as:

h(ytj , y
t+1
j ) =

{
q

|SC(j)| ytj = yt+1
j

1−q
|SC(j)|(|SC(j)|−1) ytj ̸= yt+1

j

(9)

where q ∈ [0, 1] is a weight, indicating the probability of
one user’s influence on another preserves with time chang-



ing. The weight q captures the time-dependencies for the
dynamic social influence analysis. It can be learned in a
similar way as Algorithm 2.

Now the time-dependent probabilistic influence P (yti =
j, vti) is similar to Eq. 3, except that the joint probability is
replaced with:

P (yt
1, . . . , y

t
N , v1, . . . , vN ) =∏

vt
i∈V t

g(yt
i , v

t
i)

∏
eij∈Et

f(yt
i , y

t
j)

∏
vt
i∈V

h(yt−1
i , yt

i) (10)

We generalize SIP learning algorithm to solve the learn-
ing problem for the DFG model. By introducing two new
variables α and β, respectively representing the forward and
backward messages passed between two time-windows, we
can obtain the following update rules:

Λt
ijk =

1

Zt
i

∑
l∈SC(i)

fij(l, k)b
t
il

∏
s∈NB(i)\{j}

Λt
sil (11)

∑
k′∈SC(i)

h(k′, k)αt−1
k′i

∑
k′′∈SC(i)

h(k′′, k)βt+1
k′′i

αt
ki =

1

Zt
i

∑
l∈SC(i)

h(l, k)αt−1
li btil

∏
s∈NB(i)

Λt
sil (12)

βt
ki =

1

Zt
i

∑
l∈SC(i)

h(l, k)βt+1
li btil

∏
s∈NB(i)

Λt
sil (13)

Zt
j =

∑
l∈SC(j)

αt−1
lj βt+1

lj bjl
∏

i∈NB(j)

Λt
ijl (14)

Thus the probabilistic influence can be calculated by

µt
kj =

1

Zt
j

αt−1
kj βt+1

kj bjk
∏

i∈NB(j)

Λt
ijk (15)

where αt−1
kj is the message from the previous time window

and βt+1
kj is the message from the next time window. Above

is the solution when influence scores in all time windows
are calculated together. Given that the influence is evolving
forward with time, which means {µt

ij} should be generated
without information about {µt+1

ij }, we can constraint the
message passing process by only allowing forward message
α and discarding β. Then it turns out we can compute the
influence time by time, with a forward version of SIP.

Both the forward-backward and forward version of the
SIP algorithm inherit the nice property of “local” update,
which makes the algorithm easy to be parallelized.

4 Experimental Results

In this section, we present various experiments to eval-
uate the efficiency and effectiveness of the proposed ap-
proach.

4.1 Experiment Setup

We perform experiments on three real-world data sets:
two of them are coauthor network (Coauthor) and ci-
tation network (Citation) extracted from an online aca-

Table 1: Scalability performance on real data sets.

Data Set #Node #Edge Density SIP JuncT
Citation 127K 374K 10−5 20m N/A
Coauthor 61K 152K 10−3 336s 2.06h

Film 34K 142K 10−2 208s 52.9m

demic search system Arnetminer1; the third (called Film)
is crawled from Wikipedia under the category of “English-
language films”2, , comprised of films, directors, actors, and
writers. We use them to evaluate the efficiency of our ap-
proach and how the learned dynamic social influences can
help other social networking application.

We makes use of the topic information on each node to
define the weight/similarity for every edge. Specifically,
each node is associated with a vector θv ∈ RT of T -
dimensional topic distribution

∑
z θvz = 1. Each element

θvz is the probability (importance) of the node on topic z.
Thus the weight between users is defined as wij = αijθ

z
j ,

where mij is the number of interaction times (e.g., coau-
thored papers) by vi and vj . The topic information is ex-
tracted using a statistical topic model [3].

We set the maximum number of iterations as 500 and
the convergence threshold for the variation of µ to 1e − 3.
The algorithm can quickly converge after 60-100 iterations
in most of the times.

Table 1 lists the CPU time required for estimating the
social influence on the three data sets. The new algo-
rithm (SIP) is much faster (> 10 times faster) than the sum-
product + junction tree algorithm. When the social network
is large, e.g., the citation network, the junction tree does not
work due to memory limitation.

4.2 Case Study

We present several case studies from the Coauthor data
set to demonstrate the effectiveness of the proposed ap-
proaches.
Pairwise influence Table 2 shows an example of pairwise
influences generated by our approach. The influence results
show some interesting patterns. For example, some junior
researcher (e.g., Chao Liu) may be mainly influenced by his
advisor; while the established researcher (e.g., Jiawei Han)
may be mainly influenced by his own opinion, but will also
be influenced by some rising star (e.g., Xifeng Yan). This
kind of result can help identifying relationship or differen-
tiating social roles.
Most influential users Table 3 lists the most influential re-
searchers in the data mining field in 2009. Each researcher
is scored by accumulating their influences on the other re-
searchers. We see that the most influential researchers are
consistent with their expertise (not all researchers are in-
cluded in our data set).

1http://arnetminer.org
2http://en.wikipedia.org/wiki/Category:

English-language_films



Table 2: Influence between Jiawei Han and his coauthors.
The number, e.g., from one coauthor to Jiawei Han, indi-
cates the percentage of the influence in the total influences
of all coauthors on Jiawei Han.

Coauthor Jiawei Han on Coauthor Coauthor on Jiawei Han
David Clutter 99.85% 0.07%
Hwanjo Yu 91.66% 0.87%
Chao Liu 86.67% 0.63%

Xifeng Yan 79.00% 3.28%
Micheline Kamber 78.70% 0.45%
Krzysztof Koperski 76.71% 1.30%

Yongjian Fu 72.81% 1.49%
Bin He 70.79% 0.15%

Table 3: Example of the most influential users on the “data
mining” topic discovered from the Coauthor data set.

Jiawei Han, Heikki Mannila, Christos Faloutsos, Philip S. Yu, Hans-
Peter Kriegel, Vipin Kumar, Dimitrios Gunopulos, C. Lee Giles, Ming-
Syan Chen, Shusaku Tsumoto, Michael R. Berthold, Chengqi Zhang,
Wei Wang, Ronen Feldman

Dynamic influences We further conduct a dynamic influ-
ence analysis. We use Dr. Jian Pei as the example to ana-
lyze how the influences of Dr. Pei on or by his coauthors
change during 2000 and 2009. Table 4 shows the dynamic
analysis result. We see that the influence evolution uncov-
ers the growing up of Dr. Pei. For example in 2000, Dr.
Pei is mainly influenced by Prof. Han, while he only has
limited influence on Prof. Han. After 2004, Dr. Pei starts
influencing some other researchers (e.g., Chun Tang and
Shiwei Tang). While in 2008, Dr. Pei already becomes a
mature researcher and has many strong influences on other
researchers.

4.3 Applications

The dynamic social influence analysis can benefit many
applications. We use the influence maximization problem
as an example to demonstrate.

The influence maximization problem is to find a small
subset of nodes (seed nodes) in a social network that could
maximize the spread of influence [7, 14, 10]. In most pre-
vious work, different algorithms are evaluated under simple
assumptions about pairwise influence. Now the output of
our social influence analysis can be used as the input of the
influence maximization problem, and we can test whether
existing optimization algorithms perform as well as they do
under the naive assumptions.

Figure 4a shows the solution found by several state-of-
the-art algorithms when we define the spread probability
from vi to vj simply as 1

dj
(referred as WC model), where

dj is the in-degree of vj . Beyond Greedy algorithm, we
also test SP1M [11], using a simplified ICM model and
MIA [4], a heuristic algorithm for general ICM. Baseline
algorithms include: 1) Random, randomly picking seeds,
2)PageRank, selecting nodes with top PageRank score and
3)DegreeDiscountIC, a heuristic algorithm with good per-

Table 4: Dynamic influence analysis for Dr. Jian Pei during
2000-2009. Due to space limitation, we only list coauthors
who most influence on/by Dr. Pei in each time window.

Year Pairwise Influence

2000
-
2001

Influence
on Dr. Pei Jiawei Han (0.4961)

Influenced
by Dr. Pei Jiawei Han (0.0082)

2002
-
2003

Influence
on Dr. Pei

Jiawei Han (0.4045), Ke Wang (0.0418), Jianyong Wang
(0.019), Xifeng Yan (0.007), Shiwei Tang (0.0052)

Influenced
by Dr. Pei

Shiwei Tang (0.436), Hasan M.Jamil (0.4289), Xifeng Yan
(0.2192), Jianyong Wang (0.1667), Ke Wang (0.0687)

2004
-
2005

Influence
on Dr. Pei

Jiawei Han (0.2364), Ke Wang (0.0328), Wei Wang (0.0294),
Jianyong Wang (0.0248), Philip S. Yu (0.0156)

Influenced
by Dr. Pei

Chun Tang (0.5929), Shiwei Tang (0.5426), Hasan M.Jamil
(0.3318), Jianyong Wang (0.1609), Xifeng Yan (0.1458), Yan
Huang (0.1054)

2006
-
2007

Influence
on Dr. Pei

Jiawei Han (0.1201), Ke Wang (0.0351), Wei Wang (0.0226),
Jianyong Wang (0.018), Ada Wai-Chee Fu (0.0125)

Influenced
by Jian Pei

Chun Tang (0.6095), Shiwei Tang (0.6067), Byung-Won On
(0.4599), Hasan M.Jamil (0.3433), Jaewoo Kang (0.3386)

2008
-
2009

Influence
on Dr. Pei

Jiawei Han (0.2202), Ke Wang (0.0234), Ada Wai-Chee Fu
(0.0208), Wei Wang (0.011), Jianyong Wang (0.0095)

Influenced
by Dr. Pei

ZhaoHui Tang (0.654), Chun Tang (0.6494), Shiwei
Tang (0.5923), Zhengzheng Xing (0.5549), Hasan M.Jamil
(0.3333), Jaewoo Kang (0.3057)

(a) weight←WC (b) weight← PFG

Figure 4: Influence spread by different algorithms.

formance in UICM[5]. Greedy algorithm provides best re-
sults as known. In WC model, SP1M and MIA perfectly
match Greedy. DegreeDiscountIC has nearly matching per-
formance (96.1%). They all beat the other 2 baselines. WC
model presumes equal influence from all neighbors, while
PFG does not. When we replace the weights of WC with
PFG influence score, as shown in Figure 4b, SP1M and
MIA still match Greedy optimum, while DegreeDiscountIC
degrades its performance to 80% of PageRank performance,
which is already worse than Greedy by 14.4%. Therefore,
by applying our influence results, we find that SP1M and
MIA are much better approximation than DegreeDiscoun-
tIC if the assumption of identical influence does not hold.
PageRank is no better than DegreeDiscountIC in WC model
but it is relatively stable in different models. These results
imply that we can better distinguish the power of differ-
ent algorithms with the influence mined from real data than
with the simplified hypothetical influence.

Table 5 presents the discovered seed nodes by three dif-
ferent schemes to set the cascade influence scores. For each
set of seed nodes, we calculate the density measure in net-
work science, dividing the sum of coauthor papers by the
number of different pairs between seeds, i.e. 10×9

2 = 45 in
our case. The larger is the density, the more redundancy the
seed nodes have in the network. To maximize the influence



Table 5: Discovered seed nodes in influence maximiza-
tion by the greedy algorithm with different influence set-
ting. Unique: influence=unique probability (0.01); WC: influ-
ence=inverse of in-degree; PFG: influence = result of PFG.

No. Unique WC PFG
1 Philip S. Yu Philip S. Yu Jiawei Han
2 Jiawei Han Jiawei Han Qiang Yang
3 Christos Faloutsos Wei Wang Christos Faloutsos
4 Qiang Yang Christos Faloutsos Heikki Mannila
5 Heikki Mannila Heikki Mannila Vipin Kumar
6 Wei Wang C. Lee Giles C. Lee Giles
7 Jian Pei Shusaku Tsumoto Saso Dzeroski
8 Vipin Kumar Jian Pei Graham J. Williams
9 Bing Liu Bing Liu Myra Spiliopoulou

10 C. Lee Giles Joost N. Kok Eamonn J. Keogh
Density 0.4222 0.2444 0.1778

spread, it is desirable to minimize the density. We see that
our approach clearly outperforms the other methods. It can
be observed that Philip S. Yu and Jian Pei are not selected as
a top-10 seed in PFG model due to the large overlap of the
nodes influenced by them and by other seeds. In UICM and
WC model, influence from neighbors to the node are inde-
pendent, while in PFG, the correlation of influence between
neighbors is captured.

5 Related Work

Much effort has been made for social network analysis
(e.g., [18]). As for social influence analysis, methods to
qualitatively measure the existence of influence were pro-
posed in [1, 16]. Crandall et al. [6] studied the correlation
between social similarity and influence. Tang et al. [17]
presented a method for measuring the influential strength.
Action logs were used to learn the influence propagation
probability [9] and the network structure [15]. To the best
of our knowledge, no previous work has been conducted for
quantitatively measuring the dynamic social influence with-
out action log data.

Another line of related work is influence maximization.
Domingos and Richardson [7, 14] first proposed the the in-
fluence maximization problem, in which the goal is to find a
few “influential” members of the network. Kempe et al. [10]
formalized the problem in discrete optimization and pro-
pose three cascade models for influence propagation. Chen
et al. [5, 4] further proposed a heuristics-based method to
improve the efficiency of influence maximization.

6 Conclusion

In this paper, we study the problem of dynamic so-
cial influence analysis. We propose a Pairwise Factor
Graph (PFG) model to formalize the problem in probabilis-
tic model, and we extend it by incorporating the time infor-
mation, which results in the Dynamic Factor Graph (DFG)
model. Experimental results on three different types of data
sets demonstrate that the proposed approach can effectively

discover the dynamic social influences. We apply the in-
ferred social influence to help influence maximization. Par-
allelization of our algorithm can be done in future work to
scalue it up further.
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