
Heterogeneous Cross Domain Ranking in Latent Space

Bo Wang†∗ Jie Tang‡ Wei Fan] Songcan Chen† Zi Yang‡ Yanzhu Liu\?

†Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, China
‡Department of Computer Science and Technology, Tsinghua University, Beijing, China

]IBM T.J. Watson Research Center, New York, USA
\Institute of Computer Science and Technology, Peking University, China

{bowang, s.chen}@nuaa.edu.cn, {tangjie, yz}@keg.cs.tsinghua.edu.cn, weifan@us.ibm.com

ABSTRACT
Traditional ranking mainly focuses on one type of data source,
and effective modeling still relies on a sufficiently large num-
ber of labeled or supervised examples. However, in many
real-world applications, in particular with the rapid growth
of the Web 2.0, ranking over multiple interrelated (heteroge-
neous) domains becomes a common situation, where in some
domains we may have a large amount of training data while
in some other domains we can only collect very little. One
important question is: “if there is not sufficient supervision
in the domain of interest, how could one borrow labeled in-
formation from a related but heterogenous domain to build
an accurate model?”. This paper explores such an approach
by bridging two heterogeneous domains via the latent space.
We propose a regularized framework to simultaneously min-
imize two loss functions corresponding to two related but
different information sources, by mapping each domain onto
a “shared latent space”, capturing similar and transferable
concepts. We solve this problem by optimizing the convex
upper bound of the non-continuous loss function and derive
its generalization bound. Experimental results on three dif-
ferent genres of data sets demonstrate the effectiveness of
the proposed approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; H.2.8 [Database applications]: Data mining

General Terms
Algorithms, Experimentation

Keywords
Heterogeneous cross domain ranking, Transfer ranking, Learn-
ing to rank

∗This work was done when the first and the last authors are
visiting Tsinghua University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$5.00.

1. INTRODUCTION
Ranking over heterogeneous data sources is an important

challenge for many applications. For example, to predict the
users’ preference (rating score) based on product reviews,
one may have much training data (rated reviews) of existing
products, but little or no training data for a new product. In
social networks, we may have a large amount of training data
for movie recommendation, but very limited for recommend-
ing friends or web communities. Thus, one basic question
is how to make use of the labeled information from existing
(source) domain(s) to build an accurate ranking model for
the target domain.

Although, quite a few related studies have been conducted,
for example, transfer learning [4, 12], domain adaptation [5,
6], multi-task learning [2, 7], learning to rank [9, 15], there
are only a few theoretical studies on the heterogeneous cross-
domain (HCD) ranking problem. The major difference be-
tween the HCD ranking problem and learning to rank is
that HCD ranking needs to consider how to borrow the
preference order from the source domain (as the supervi-
sion information) to the target domain for learning a better
ranking model. The HCD ranking problem is also different
from transfer learning whose goal is to transfer the knowl-
edge from the source domain to the target domain to learn
a classification model. In HCD, the knowledge we desire
to transfer is the preference order between heterogeneous
objects from the source domain, instead of their accurate
ranking positions.

Motivating Application
Figure 1 (a) shows an example of academic search. The

objective is to learn functions that can rank different ob-
jects for a given query. In Figure 1 (b), the example query
is “data mining”. The training data (i.e. the labeled rank
levels of objects) in some domains, e.g. rank levels of con-
ferences, is relatively easy to obtain (e.g., from several on-
line resources2). However, obtaining the training data for
some other domains, e.g. papers and authors, would be not
obvious. Intuitively, we hope that an approach can take
advantage of the available supervision information (labeled
conferences) and the correlation between conferences and
papers/authors in the academic network to help learn the
ranking functions for papers and authors.

Summaries
The challenges of heterogeneous cross-domain (HCD) rank-

ing are as follows:

• Domain correlation. As types of objects in the HCD
ranking problem may be different (heterogeneous), the

write
write

cite

cite

cite

write

write

write

cite

Write

publish

publish

publish

publish

publish

publish

write

write

coauthor coauthor

Dr. Tang

Limin

Prof. Wang

Prof. Li

SVM...Association...

Tree CRF...

Semantic...EOS... Annotation...

IJCAI

ISWC

WWW

Pc member

(a) Academic network

KDD

SDM

ICDM

PAKDD

?

P. Yu

?

Principles of Data Mining

Data Mining: Concepts and

Techniques

?

Conferences

Papers

Authors

?

?

Query: “data mining”

(b) Heterogeneous transfer ranking

Figure 1: Example of heterogeneous cross-domain
ranking.

first challenge is how to capture the correlation be-
tween the source domain and the target domain.

• Transfer ranking. It is not only necessary to transfer
the knowledge from the source domain to the heteroge-
neous target domain, but it is also needed to preserve
the preference order with the learnt ranking model.

• Efficiency. In general, a ranking problem needs thou-
sands of (or millions of) training examples. It is im-
portant to develop the method that can scale well to
large data sets.

To address the above challenges, we propose a unified
cross-domain ranking model, named HCDRank, to simul-
taneously model the correlation between the source domain
and the target domain, as well as learning the ranking func-
tions. In particular, HCDRank uses a “latent feature space”
defined over both the source and target domains to measure
their correlation. Examples from both domains are mapped
onto the new feature space via a projection matrix, where
a common (sparse) feature space is discovered. HCDRank
adopts a regularization method to simultaneously minimize
two loss functions corresponding to the two domains, and su-
pervision from the source domain is transferred to the tar-
get domain via the discovered common feature space. An
efficient algorithm has been developed and a generalization
bound is discussed. Experimental results on three differ-
ent types of data sets show the proposed approach performs
better (+1.2% ∼ +6.1% in terms of MAP) than the compar-
ison baseline methods, in particular when the target domain
has a very small number of labeled examples. The proposed

Table 1: List of notations
Notation Description
XS ,XT instance space for two domains
YS ,YT rank level set for two domains
S unlabeled test set in target domain

LS ,LT labeled data in two domains
p, q cardinality of rank level set in two domains

nS , nT # queries in two domains
n # queries in test set

The following are important notations used in Section 3
fS , fT ranking functions for two domains
wS , wT weight vectors for two domains
α1, α2 weight vectors for two domains in latent space
n1, n2 # instance pairs in source and target domains
||W ||2,1 (2,1)-norm of matrix W

framework is general, to allow us to utilize many different
algorithms to learn the ranking function.

2. PROBLEM FORMULATION
The heterogenous cross-domain (HCD) ranking problem

can be formalized as follows. For clarity, Table 1 summarizes
the notations.
Input: Let XS ∈ Rd be the instance space of the source
domain in which d is the number of features and YS =
{rS1 , rS2 , · · · , rSp} denotes a set of rank levels where p is the
number of rank levels in the source domain. The rank levels
have: rS1 Â rS2 Â · · · Â rSp , where Â denotes the prefer-
ence relationship. The labeled data in the source domain
is denoted by LS = {(qk

S , ~xk
S , ~yk

S)}nS
k=1. That is, for query

qk
S , ~xk

S = {xk
Si
}Nk

S
i=1 is the related instance collection and ~yk

S

are the corresponding labels where xk
Si

∈ XS , yk
Si

∈ YS

and Nk
S is the total number of instances related to this

query. Further, for the target domain, let XT ∈ Rd be the
instance space and YT = {rT1 , rT2 , · · · , rTq} is the set of
rank levels. There are two parts of data in the target do-
main: S = {(qk, ~xk)}n

k=1 represents the unlabeled test data
in which xk

i ∈ XT and LT = {(qk
T , ~xk

T , ~yk
T)}nT

k=1 represents

the labeled data where xk
Ti
∈ XT and yk

Ti
∈ YT . Note that

the labeled data LT is not necessary, which implies we may
have no labeled target domain data.
Learning task: In the HCD ranking problem, the transfer
ranking task can be defined as: given limited number of
labeled data LT , a large number of unlabeled data S from
the target domain, and sufficiently labeled data LS from the
source domain, the goal is to learn a ranking function f∗T for
predicting the rank levels of unlabeled data in the target
domain.

There are several key issues: (1) the source and the target
domains may have different feature distributions or different
feature spaces (e.g., different types of objects); (2) the num-
ber of rank levels in the two domains can be different; (3)
the number of labeled training examples in different domains
may be very unbalanced (e.g., a thousand vs a few).

3. HCD RANKING

3.1 Basic Idea
In HCD ranking, we aim at transferring preference infor-

mation from an interrelated (heterogeneous) source domain
to the target domain. As the feature distributions and the
objects’ types may be different across domains, the first chal-

lenge we need to address is how to quantitatively measure
the correlation between the different domains, which reflects
what kind of information can be transferred across the do-
mains. On the other hand, our ultimate goal is to obtain a
higher ranking performance. Based on these considerations,
we have two main ideas: first we assume there is a common
(latent) space between the two domains. Examples (e.g., x)
from the two domains can be mapped onto the latent space
through a transformation function φ(x). Such a common la-
tent space provides a potential way to quantify the correla-
tion between the two domains. Second, in the target domain
we aim to learn a ranking model that can minimize the error
(loss) on the unlabeled test data while preserving the prefer-
ence orders in the labeled training data. When transferring
the supervision information from the source domain, we also
desire to preserve its original preference order, equivalently
minimizing the loss in the source domain. Therefore, we
propose a general framework (HCDRank), in which we use
a latent space to bridge the two domains (i.e., the source
domain and the target domain) and define two loss func-
tions respectively for the two domains. We further propose
an efficient algorithm to optimize the two loss functions and
learn the latent space simultaneously.

3.2 The General Framework: HCDRank
Given the labeled training data from the target domain

LT = {(qk
T , ~xk

T , ~yk
T)}nT

k=1, we aim to learn a ranking func-
tion fT which can correctly predict the preference relation-
ships between instances for each query qk

T , i.e. fT (xk
Ti

) >

fT (xk
Tj

) : ∀yk
Ti
Â yk

Tj
. For ranking, based on the learnt

ranking function fT , we can predict the rank level of a new
instance. To learn the ranking function, we can consider to
minimize the following loss function:

min
fT

O(fT ,LT) = R(fT ,LT) + ηE(fT)

=

nT∑

k=1

∑

yk
Ti
≺yk

Tj

I[fT (xk
Ti

) > fT (xk
Tj

)] + ηE(fT) (1)

where I[π] is the indicator function returning 1 when π is
true and 0 otherwise; R(fT ,LT) counts the number of mis-
ranked pairs in the target domain; η is a parameter that
controls the tradeoff between the empirical loss (the first
term R) and the penalty E (the second term) of the model
complexity.

When transferring the supervision information from the
source domain, we hope to preserve the preference order
between instances from the source domain. For bridging
instances from the two heterogeneous domains, we define

a transformation function φ : Rd → Rd′ to map instances
from both domains to a d′-dimensional common latent space.
Then we can define a general objective function for the HCD
ranking problem as follows:

min
fS ,fT ,φ

Rφ(fS ,LS) + CRφ(fT ,LT) + λJφ(fS , fT)

=
nS∑
k=1

∑
yk

Si
≺yk

Sj

I[fS(φ(xk
Si

)) > fS(φ(xk
Sj

))]

+ C
nT∑
k=1

∑
yk

Ti
≺yk

Tj

I[fT (φ(xk
Ti

)) > fT (φ(xk
Tj

))]

+ λJφ(fS , fT)

(2)

where Jφ(fS , fT) is a penalty for the complexity of the HCD
ranking model, λ is a tuning parameter that balances the

empirical losses and the penalty, and C is a parameter to
control the imbalance of labeled instances between the two
domains.

The problem now is to find the best parameters for fS , fT

and φ, that minimize the objective function (Eq. 2). In the
following section, we give an instantiation of the framework
and present a preferred solution.

3.3 The Proposed Solution
In HCDRank, we do not simply want to learn the ranking

function fT , fS for the two domains but also learn the trans-
formation function φ. In addition, it is desirable to leave out
features that are not important for transferring knowledge
across domains and result in a sparse solution.

Instantiation of the HCDRank framework. Without
loss of generality, fT is assumed to be a linear function in the
instance space: fT (x) = 〈wT , x〉, where wT are parameters
(feature weights) to be estimated from the training data and
〈·〉 indicates the inner product. By substituting it into Eq.
1 we have

O(fT ,LT) =

nT∑

k=1

∑

yk
Ti
≺yk

Tj

I[〈wT , (xk
Ti
− xk

Tj
)〉 > 0]+ ηE(fT) (3)

The loss function R(fT ,LT) is not continuous, so we just
use Ranking SVM hinge loss to upper bound the number
of mis-ranked pairs [8]. For easy explanation, we define the
following notations: for each query ~qk

T (k = 1, · · · , nT), given
an instance pair xa

Ti
, xb

Ti
from different rank levels and their

corresponding labels ya
Ti

, yb
Ti

, we create a new instance
(

xa
Ti
− xb

Ti
, zTi

=

{
+1 ya

Ti
Â yb

Ti

−1 ya
Ti
≺ yb

Ti

)
(4)

Then we can get a new training data set consisting of in-
stance pairs in the target domain L′T = {(xa

Ti
−xb

Ti
, zTi)}n2

i=1.
For the source domain, we can make the same assump-
tion and use the parallel notations wS and L′S = {(xa

Si
−

xb
Si

, zSi)}n1
i=1. Finally, we can rewrite the objective function

by optimizing the convex upper bound of the original loss
as:

min
wS ,wT ,φ

n1∑
i=1

[1− zSi
〈wS , (φ(xa

Si
)− φ(xb

Si
))〉]+

+C
n2∑
i=1

[1− zTi
〈wT , (φ(xa

Ti
)− φ(xb

Ti
))〉]+

+λJφ(wS , wT)

(5)

Now the problem is to define the transformation function
and the penalty of the model complexity.

Instantiation of the transformation function and the
penalty. We use a d×d matrix U to describe the correlation
between features. The inner product of examples are then
defined as x>i UU>xj using the matrix. Such parameteriza-
tion is equivalent to projecting every example x onto a latent
space spanned by φ : x → U>x. With the transformation
function, we can redefine the loss function, for example, by
replacing the first term in Eq. 5 with:

n1∑

i=1

[1− zSi
〈wS , U>(xa

Si
− xb

Si
)〉]+ (6)

As for the penalty Jφ(wS , wT) of the model complexity,
we define it as a regularization term, specifically, a (2,1)-
norm ‖W‖2,1, for the parameters of the source and the target

domains, where W = [wS , wT] is a d×2 matrix with the first
column corresponding to wS and the second wT . The (2, 1)-

norm of W is defined as ||W ||2,1 =
∑d

i=1 ||ai||2 where ai is
the i-th row of W. The 2-norm regularizer on each row of
W leads to a common feature set over the two domains and
the 1-norm regularizer leads to a sparse solution. The (2,1)-
norm regularizer thus offers a principled way to interpret
the correlation between the two domains and also introduce
useful sparsity effects. Finally, we can redefine the objective
function as:

min
wS ,wT ,U

n1∑
i=1

[1− zSi
〈wS , U>(xa

Si
− xb

Si
)〉]+

+C
n2∑
i=1

[1− zTi
〈wT , U>(xa

Ti
− xb

Ti
)〉]+ + λ‖W‖22,1

s.t. U>U = I

(7)

where U>U = I denotes an orthogonal constraint which
makes the projection matrix U unique.

Learning algorithm. Directly solving the objective func-
tion (involving solving parameters wS , wT , U in Eq. 7) is
intractable, as it is a non-convex problem. Fortunately, we
can derive an equivalently convex formulation of the objec-
tive function Eq. 7 as follows: (Derivation of the equivalence
is given in the appendix.)

min
M,D

n1∑
i=1

[1− zSi
〈α1, xa

Si
− xb

Si
〉]+

+C
n2∑
i=1

[1− zTi
〈α2, xa

Ti
− xb

Ti
〉]+ + λ

2∑
t=1

〈αt, D+αt〉
s.t. D º 0

trace(D) ≤ 1
range(M) ⊆ range(D)

(8)

where M = [α1, α2] = UW , D = UDiag(||ai||2
||W ||2,1

)U> and

the superscript “+” of D indicates the pseudoinverse of the
matrix D. X is a p × q matrix, range of X is the span of
columns of X which can be defined as range(X) = {x|Xz =
x, for some z ∈ Rq}. The trace constraint of D is imposed
because if D is set to ∞, the objective function will degener-
ate to only minimize the empirical loss. The range constraint
bounds the penalty term below and away from zero. The
equivalence has been previously used for multi-task feature
learning [2].

We can solve the equivalently convex problem with an
iterative minimization algorithm, as outlined in Algorithm
1, and detailed as follows:

Step 1. We use an iterative algorithm to optimize matrix
M and D. First, in lines 2-4, we keep D fixed, and learn
α1 and α2 (that is, matrix M) from the labeled training
data in two domains respectively. Second, in line 5, we up-
date matrix D by the learnt matrix M . We run the above
two steps iteratively until convergence or excess of the max-
imal iteration number. Then in lines 7 and 8, we apply
SVD decomposition [26] on the learnt intermedia matrix D,
i.e. D = UΣV >; then the matrix U is constructed by the
eigenvectors corresponding to the first and second biggest
eigenvalues of D.

Step 2. In line 9, we learn the weight vector of the target
domain from all the labeled data of two domains in the latent
space. In lines 10-12, we use the learnt w∗T to predict ranking
levels of new instances from the target domain.

Complexity. The size of the two matrices to be optimized
in HCDRank depends only on the feature number d, e.g.,

Algorithm 1: HCDRank for transfer ranking
Input: Training set: LS

⋃LT ; Test set: S
Output: Ranking function f∗T = 〈w∗T , x〉 and the

predicted preferences over test data: {yi}n
i=1

Initialization: D =
Id×d

d

Step 1: Latent Space Finding
1: while not reached maximal iteration number T do

2: α1 = argmin{
n1∑
i=1

[1− zSi
〈α, xa

Si
− xb

Si
〉]+ + λ〈α, D+α〉}

3: α2 = argmin{
n2∑
i=1

[1− zTi
〈α, xa

Ti
− xb

Ti
〉]+ + λ〈α, D+α〉}

4: M = [α1, α2]

5: set D =
(MM>)

1
2

trace(MM>)
1
2

6: end while

7: Apply SVD decomposition on D, D = UΣV >

8: Construct U by the eigenvectors corresponding to the
first and second biggest eigenvalues of D

Step 2: Learning in Latent Space

9: w∗T = argmin{
n1∑
i=1

[1− zSi
〈w, U>(xa

Si
− xb

Si
)〉]+

+ C
n2∑
i=1

[1− zTi
〈w, U>(xa

Ti
− xb

Ti
)〉]+ + λ||w||2}

10: for i = 1 to n do

11: yi = 〈w∗T , U>xi〉
12: end for

matrix D is d × d and W is d × 2, and the complexity for
SVD decomposition on matrix D is O(d3).

Let N = n1 +n2 be the total number of instance pairs for
training and s be the number of non-zero features. Using
the cutting-plane algorithm[20], linear Ranking SVM train-
ing has O(sN log(N)) time complexity. In our algorithm
HCDRank, let T be the maximal iteration number, then
the training of HCDRank has O((2T + 1) · sN log(N) + d3)
time complexity.

3.4 Generalization Bound
First, let a domain be defined by two terms: the dis-

tribution D on instance space X , and a ranking function
f : X → {r1, r2, · · · , rp}. Then source and target domains
are denoted by 〈DS , fS〉 and 〈DT , fT 〉 respectively. Let εS(h)
and εT (h) denote the source and target risks. Correspond-
ingly, ε̂S(h) and ε̂T (h) are the empirical risks.

An equivalent formulation for Eq. 7 is as follows:

min
wS ,wT ,U

n1∑
i=1

[1− zSi
〈wS , U>(xa

Si
− xb

Si
)〉]+

+C
n2∑
i=1

[1− zTi
〈wT , U>(xa

Ti
− xb

Ti
)〉]+

s.t. ||W ||2,1 ≤z
U>U = I

(9)

where z ≥ 0 and there is a one-to-one correspondence be-
tween λ and z [22].

In Eq. 9, the objective function is ε̂S(h) + Cε̂T (h) with
parameter C ∈ [0,∞). It is easy to prove that C is equiva-
lent to the ratio 1−θ

θ
with θ ∈ [0, 1]; that is, θ = 1

1+C
. Thus,

by replacing C with 1−θ
θ

and multiplying both sides of the
equation by θ, we can obtain the following equivalent ob-
jective function which is a convex combination of empirical
source and target risk:

ε̂θ(h) = θε̂T (h) + (1− θ)ε̂S(h) (10)

where θ = 1
1+C

. ε̂θ(h) and εθ(h) are the empirical and true
weighted risk respectively. Hereafter, we will analyze the
objective function in the formulation of Eq. 10.

Theorem 1. Let H be a hypothesis space of VC-dimension
d. Let US and UT be unlabeled samples of size m′ each,
drawn from DS and DT respectively, and d̂H4H is the em-
pirical distance between them. Let L = LS

⋃LT be the la-
beled samples of size m generated by drawing (1−β)m points
from DS and βm points from DT , labeling them according
to fS and fT respectively. For each ranking function h with
zero training risk, if ĥ ∈ H is the empirical minimizer of
ε̂θ(h) on L, then with probability of at least 1 − δ(over the
choice of the samples)[5, 15]

εT (ĥ) <
2

βm−1

(
d log

(
8e(βm−1)

d

)
log(32(βm− 1)) + log

(
8(βm−1)

δ

))

+2
√

θ2

β
+

(1−θ)2

1−β

√
d log(2m)−log δ

2m

+2(1− θ)

(
1
2
d̂H4H(US ,UT) + 4

√
2d log(2m′)+log(4

δ)
m′ + γ

)

where γ = minh∈H εS(h) + εT (h) and β = nT
nS+nT

.

The error bound is comprised of three components: the
first one is the upper bound for the target risk using only
the labeled data in the target domain; the second one cor-
responds to the difference between the true and empirical
weighted risks; the last one measures the distance between
target risk and weighted risk. Due to space limitation, de-
tails of the proof are given in the extended paper.

4. EXPERIMENTS
Our approach is general and can be applied to various data

sets. We perform our experiments on three different genres
of data sets: a homogeneous data set which consists of doc-
uments from different domains; a heterogeneous data set
which consists of three different types of objects; a hetero-
geneous task data set which consists of two different ranking
tasks.

4.1 Evaluation Measures, Baseline Methods
Evaluation measures. To quantitatively evaluate our method,
we use P@n(Precision@n), MAP (mean average precision)[3]
and NDCG (normalized discount cumulative gain) [17].

The precision of top n results for a query is measured by
precision at n which is defined as follows:

P@n =
#{relevant documents in top n results}

n

Average precision is defined based on the P@n to measure
the accuracy of ranking results for a given query.

AP =
∑
n

P@n · I[document n is relevant]

#{relevant documents}
MAP is then defined as the mean of all APs over test set

and measures the mean precision of ranking results over all
the queries. Different from MAP, NDCG gives high weights
to the top ranked relevant documents. The NDCG score at
position n is defined as follows:

N@n = Zn

n∑

j=1

2r(j) − 1

log(1 + j)

where r(j) is the rank of j-th document, and Zn is a nor-
malization factor.
Baseline methods. We compare the proposed ranking
model HCDRank with three methods as listed in Table 2.
Ranking SVM (RSVM) [15] is one of the state-of-the-art

Table 2: Three baseline methods.
RSVM RSVMt MTRSVM HCDRank

Training data LT LS
⋃LT LS

⋃LT LS
⋃LT

Test data S S S S

ranking algorithms for information retrieval. It is designed
for ranking in one domain only. For fair comparison, we
conduct two experiments with RSVM, one is to train the
ranking model on the target domain LT only and the other
(called RSVMt) is to train the ranking model by combin-
ing the source domain and the target domain LS

⋃LT . The
third comparison method is MTRSVM which is a multi-task
feature learning approach using ranking SVM hinge loss[2].

All the experiments are carried out on a PC running Win-
dows XP with Dual-Core AMD Athlon 64 X2 Processor(2
GHz) and 2 G RAM. We use SVMlight [19] with linear ker-
nel and default parameters to implement RSVM, RSVMt
and the preference learning step of MTRSVM. The proposed
ranking model HCDRank has been implemented using Mat-
lab 7.1 and the maximal iteration number T is set to five.
Also without special specification, we use the grid search to
choose parameter C from {2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 1, 2,
22, 23, 24, 25} and the results reported in this paper are all
averaged over 10 runs.

4.2 Results on Homogeneous Data
Data Set. We use LETOR 2.0 [23] as the homogeneous
data set, which is a data set for evaluating various algorithms
for learning to rank. LETOR 2.0 is comprised of three
sub data sets: TREC2003, TREC2004, and OHSUMED,
with respectively 50, 75, and 106 queries. A set of query-
document pairs are collected in each of the data sets. The
TREC data is a collection from a topic distillation task
which aims to find good entry points principally devoted
to a given topic. The OHSUMED data is a collection of
records from medical journals. In the OHSUMED data set,
there are three rank levels, i.e. relevant Â partially relevant
Â non-relevant, while in the TREC data set, there are two,
i.e. relevant Â non-relevant. In LETOR, all the features are
highly abstract. In TREC, there are 44 features divided into
four categories. In OHSUMED, there are 25 features falling
into three categories. Table 3 summarizes the features in the
LETOR data set. For example, for TREC data, there are
16 low-level content features (e.g. tf and idf), 13 high-level
content features (e.g. BM25 and language model for IR), 7
hyperlink features (e.g. PageRank and HITS) and 8 hybrid
features (e.g. hyperlink-based relevance propagation).
Feature definition. To adapt to the cross-domain ranking
scenario, we make slight revision to the LETOR data set.
After revision, the whole data set and three sub data sets are
correspondingly referred to as LETOR TR, TREC2003 TR,
TREC2004 TR and OHSUMED TR. Specifically, we split
each data set into two domains (source domain and target
domain), according to the feature types. Table 4 lists statis-
tics of the data sets in which the 3th column shows the
details for features used in each domains of every data set
by feature categories A-H in Table 3. We split features in
this way in order to simulate some real applications. For ex-
ample, the source domain of TREC2003 TR only contains
feature categories A and B with queries 1-25 which corre-
spond to features for document contents; while the target
domain of TREC2003 TR consists of feature categories B,

Table 3: Description of features in LETOR data set.
Data set Feature Categories Description #Features Feature IDs

TREC

A low-level content features 16 {2-5,9-12,28-35}
B part of high-level content features 6 {15,16,19,20,23,24}
C part of high-level content features 7 {1,17,18,21,22,25,26}
D hyperlink features 7 {6-8,14,36-38}
E hybrid features 8 {13,27,39-44}

OHSUMED
F low-level content features for title 10 {1-10}
G low-level content features for abstract 10 {11-20}
H high-level content features 5 {21-25}

Table 4: Data characteristics of LETOR TR data
set. #D/Q and #Dp/Q respectively denotes the av-

erage number of documents and the average number of

document-pairs corresponding to a query.
Data Set Query IDs Features #Doc #D/Q #Dp/Q
TREC2003 TR
SOURCE 25:{1-25} AB 24079 963 6450
TARGET 25:{26-50} BCDE 25092 1004 13761
TREC2004 TR
SOURCE 38:{1-107} AE 37154 978 5969
TARGET 37:{111-221} BCDE 37016 1000 5696
OHSUMED TR
SOURCE 56:{1-56} FH 8136 145 5726
TARGET 50:{57-106} GH 8004 160 5239

C, D, E with queries 26-50 which may correspond to features
in blogs. After this splitting, intuitively the features in two
domains are quite different. In all experiments, we use the
labeled related documents for queries from the source do-
main as the training data LS , and randomly sample 20%
of the queries and the related documents from the target
domain as the training data LT of the target domain (that
is, 5, 8 and 10 queries for TREC2003 TR, TREC2004 TR
and OHSUMED TR respectively), while all the other data
in the target domain are viewed as the unlabeled test set S.

For ease of implementation, in the experiments, we still
define each instance with a vector of 44 dimensions (TREC)
or 25 dimensions (OHSUMED). We set the values of features
that are not defined in a domain as zero. For example, in the
source domain of TREC2003 TR, only features of categories
A and B are set with their actual values, the values of others
(B, C, D, E) are set to zero. Similarly, in the target domain
of TREC2003 TR, only features of categories B, C, D and
E have their actual values and the others are set to zero.
Results and analysis. Figure 2 and Table 6 show the
results of the proposed and the comparison methods on the
LETOR TR data sets. Generally, our approach achieves
a higher performance and has a nice convergence property
(converging after several iterations in most experiments).
Specifically, we have the following observations:

1. Ranking accuracy. HCDRank performs much better
(by +5.6% and +6.1% respectively in terms of MAP)
than the comparison methods on both TREC2003 TR
and OHSUMED TR. On TREC2004 TR, HCDRank
results in a comparable performance with RSVMt.

2. Effect of difference. We measure the difference of
the source domain and the target domain in each data
set by the cosine-based similarity. The cosine similari-
ties of the three sub data sets are 0.01, 0.23, and 0.18.
We see that when the similarity is relatively high (0.23
on TREC2004 TR), simply combination of the train-
ing data from both domains for learning would result in

Table 5: Training time used on LETOR TR (S).
RSVM RSVMt MTRSVM HCDRank

TREC2003 TR 744 973 6180 6417
TREC2004 TR 83 1125 6810 7548
OHSUMED TR 647 820 7146 7477

a better ranking performance: RSVMt performs bet-
ter than MTRSVM and RSVM. When the similarities
are relatively low (0.01 on TREC2003 TR and 0.18 on
OHSUMED TR), such a brute combination will in-
troduce a lot of noise which hurts the performance:
RSVMt underperforms MTRSVM and RSVM. In both
situations, our approach can balance the difference and
consistently outperform the three methods.

3. Reason for performance. We conduct an analy-
sis of why HCDRank is effective on LETOR TR. An
important observation is that, in the ranking prob-
lem, many features are extracted from query-document
pairs, that is, the features already contain information
from both queries and documents. Thus a good com-
mon latent space means that if the new feature repre-
sentation in that space of query-document pair q1-d1

from the source domain is similar to that of query-
document pair q2-d2 from the target domain, then the
rank level of the two documents are also similar with
each other. For example, if d1 is relevant to q1, then
it is highly possible that d2 is also relevant to q2.

4. Training time. Finally, we compare the training time
of different approaches on the three data sets (listed in
Table 5). Generally, HCDRank needs relatively more
time in the training process. But we need note that
the proposed learning algorithm for HCDRank can be
easily parallelized (as has been done by [11]) and we
need only run the training process once on a data set.

4.3 Results on Heterogeneous Data
Data Set. The second data set is a heterogeneous academic
data set, which contains 14, 134 authors, 10, 716 papers, and
1, 434 conferences. The queries are 44 most frequent queried
keywords (e.g., “data mining”, “information retrieval”) col-
lected from the query log of the ArnetMiner1 system[25].
Specifically, to obtain the ground truth for experts, for each
query, the top 30 experts from Libra, Rexa and Arnetminer
are collected respectively and pooled into a single list by re-
moving the same or ambiguous ones [31]. Then, annotators
provided human judgments in terms of how many publica-
tions he/she has published, how many publications are re-
lated to the given query, how many top conference papers

1http://www.arnetminer.org

MAP N@1 N@3 N@5 N@10
0

0.05

0.1

0.15

0.2

0.25

0.3

RSVM
RSVMt
MTRSVM
HCDRank

MAP N@1 N@3 N@5 N@10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

RSVM
RSVMt
MTRSVM
HCDRank

MAP N@1 N@3 N@5 N@10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

RSVM
RSVMt
MTRSVM
HCDRank

(a)TREC2003 TR (b)TREC2004 TR (c)OHSUMED TR
Cosine Similarity=0.01 Cosine Similarity=0.23 Cosine Similarity=0.18

Figure 2: MAP and NDCG performances for LETOR TR.

Table 6: MAP and NDCG performances for
LETOR TR(Figure 2 in table form).

MAP N@1 N@3 N@5 N@10
TREC2003 TR

RSVM .1330 .2100 .2144 .2098 .1970
RSVMt .0986 .1100 .1631 .1489 .1368

MTRSVM .1100 .1850 .1730 .1703 .1656
HCDRank .1404 .2300 .2325 .2214 .2089
TREC2004 TR

RSVM .2526 .3000 .3019 .3153 .3251
RSVMt .2866 .4138 .3371 .3408 .3383

MTRSVM .2464 .2966 .2949 .3038 .3151
HCDRank .2795 .3552 .3571 .3508 .3586
OHSUMED TR

RSVM .3541 .3483 .3255 .3141 .3044
RSVMt .3171 .2600 .2465 .2446 .2402

MTRSVM .3411 .3208 .3015 .2989 .2868
HCDRank .3758 .3700 .3654 .3573 .3459

he/she has published, what distinguished awards he/she has
been awarded. There are four rank levels (3, 2, 1, and 0),
which respectively represent definite relevance Â relevance
Â marginal relevance Â not relevance. To obtain the ground
truth for conferences, the top 30 conferences from Libra
and ArnetMiner are collected and three online resources2

are mainly referenced for conference ranking.
In this experiment, we aim to answer the question: how

can heterogeneous data be bridged for better ranking? We
use the labeled data of one type of object (e.g., conferences)
as the source domain and another type of object (e.g., au-
thors) as the target domain. Thus, our goal is to transfer
the conference ranking information for ranking authors.
Feature definition. We use titles of all papers published
in a conference to form a conference “document”, and use
titles of all papers written by an author as the author’s
“document”. Thus we can define features for each object
as listed in Table 7. For each “document”, there are 10 low-
level content features (e.g. L1 is term frequency(tf), L5 is
inverse doc frequency(idf)) and 3 high-level content features
(e.g. H1 and H2 are the original and log values of BM25

2http://www.cs.ualberta.ca/~zaiane/htmldocs/
ConfRanking.html and http://www3.ntu.edu.
sg/home/ASSourav/crank.htm and http://www.
cs-conference-ranking.org/conferencerankings/
alltopics.html

Table 7: Feature definitions for expertise search.
Features Description
L1-L10 Low-level content features, refer to [23]
H1-H3 High-level content features, refer to [23]
S1 The number of years the conference has been held
S2 The total citation of one conference during recent 5

years
S3 The total citation of one conference during recent 10

years
S4 The number of years passed since his first paper
S5 The total citation of one expert
S6 The number of papers cited more than 5 times
S7 The number of papers cited more than 10 times

score, H3 is the value of language model for IR). S1-S3 are
special features for a conference which measure the number
of years held and the total number of citations. S4-S7 are
special features for an expert, for example, the year when
his first paper has been published and the citation numbers
of his all papers. Finally, we define 16 features (L1-L10,
H1-H3 and S1-S3) for conference and 17 features for expert
(L1-L10, H1-H3 and S4-S7).

We normalize the original feature vectors by query. Sup-

pose there are N (i) documents {d(i)
j }N(i)

j=1 with respect to

i-th query, then for a feature x
(i)
j of document d

(i)
j , after

normalization, it will become

x
(i)
j −mink {x(i)

k }
maxk {x(i)

k } −mink {x(i)
k }

, k = 1, · · · , N(i)

Results and analysis. In this experiment, we use all the
labeled conference data as the source domain, and the expert
data as the target domain. In the target domain, we use one
query with its corresponding documents as the labeled data
and the rest as the unlabeled test data. The results reported
below are averaged over all the queries. The parameter C is
empirically set to 1.

As for the baseline methods, besides RSVM,RSVMt and
MTRSVM, we also compare the performance of our ap-
proach with the results of two online academic search sys-
tems: Libra.msra.cn and Rexa.info, which are mainly based
on unsupervised learning algorithm, e.g., the language model
[30]. Table 8 shows the results of different approaches, the
main observations are as follows:

1. Ranking accuracy. Among all the approaches, our
approach HCDRank outperforms the five baselines.

Table 8: Performances of different approaches for
expert finding.

Approach MAP N@1 N@3 N@5 N@10
Libra .5823 .3393 .2942 .3054 .3799
Rexa .6218 .2560 .2705 .2759 .3602

RSVM .8084 .6071 .5839 .5854 .6385
RSVMt .8096 .5944 .6026 .5956 .6387

MTRSVM .8059 .5791 .5796 .5810 .6379
HCDRank .8195 .6250 .6257 .6152 .6615

The performances of RSVM and MTRSVM are compa-
rable. We can also see that all learning-to-rank meth-
ods outperform the two systems. This suggests that in
a specific domain, some supervised information would
be very useful for improving the ranking performance.

2. Feature analysis. Figure 3 shows the final weight
vectors learnt in this data set. We can see that the
final w∗T can exploit the data information from two
domains and adjust the weights learnt from single do-
main data to better predict preferences in the target
domain. This is the major reason why the proposed
method performs best. The right table in the figure
lists the top 10 features vital for knowledge transfer
in this academic data set by the descending order of
the absolute weight values. There are L2,L6,L9,L10
in low-level content features and H1-H3 in high-level
content features and S1,S2,S4 in self-defined features.

3. Reason for performance. The key reason is that
even in the heterogeneous network, there might be la-
tent dependencies between the objects, some common
features can still be extracted from the latent depen-
dencies. For example, in the expertise search, authors
and conferences are connected by the papers they have
published. The discovered latent dependencies can be
used to transfer supervised knowledge between the het-
erogeneous objects. Our approach can effectively dis-
cover the common latent space in the heterogeneous
network, thus can achieve better performance for ex-
pertise search.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

Feature IDs

W
ei

gh
t V

al
ue

s

w

S

w
T

w*
T

IDs Features Weights
14 S1 2.72
10 L10 -2.51
12 H2 2.50
13 H3 2.00
11 H1 -1.58
2 L2 1.51
17 S4 1.13
9 L9 1.05
15 S2 -0.99
6 L6 0.63

Figure 3: Feature correlation analysis in the source
and the target domains. The red colored weights
w∗

T are learnt by HCDRank; the blue and black ones
(wS and wT) are learnt from the two domains sep-
arately. The table lists top 10 features learnt from
the academic data set for HCD ranking.

4.4 Results on Heterogeneous Tasks
Data set. The third experiment is for heterogeneous tasks,
where we have two different ranking tasks: expert finding
and best supervisor finding. The goal of expert finding is
to find experts on a given topic (query), while best super-
visor finding is about finding who are the best supervisors
in a specific domain, which is useful for junior students to
find “good” supervisors in their interested fields. An expert
can be a good supervisor, but not necessarily, thus the two
tasks are related but different. The goal of this experiment
is to evaluate whether the proposed approach can transfer
knowledge to improve a different ranking task (best super-
visor finding) using training data of an existing related het-
erogeneous ranking task (expert finding). The demo for best
supervisor finding is now online available3.

The evaluation data set for best supervisor finding is cre-
ated by collecting the feedbacks from many researchers in
related domains. The data set for best supervisor finding
consists of 9 most frequent queries, and for each query, we
choose the top ranked 50 researchers by ArnetMiner.org and
another 50 researchers who start publishing papers only in
recent years (>2003, 91.6% of them are currently graduates
or postdoctoral researchers). We send to each of the re-
searchers an email, in which we list the top 50 researchers
for each query, and ask for feedback on whether each candi-
date is the best supervisor (“yes”) or not (“no”), or“not sure”.
Participants can also add other best supervisors. Based on
the feedbacks from the participants, we organized a list for
evaluating best supervisor finding. We rated each candidate
person by simply counting the number of “yes”(+1) and“no”
(-1) from the received feedback, and averaged the rates over
the number of the corresponding definite feedbacks (“yes”
and “no”). In this way, we created a relatively commonly
accepted best supervisor list for each query.
Feature definition. We define 21 common features for ex-
pert finding and best supervisor finding (as shown in Table
9). Features L1-L10 and H1-H3 are scores calculated using
language models, while features B1-B8 represent the exper-
tise scores of an author from different aspects. B5-B7 are
the same as S5-S7 in Table 7. In addition, we define another
32 special features for best supervisor finding. SumCo1-
SumCo8 represent the overall expertise of his/her coauthors,
and we average SumCo1-SumCo8 scores over the total num-
ber of his/her coauthors, denoted by AvgCo1-AvgCo8. Sim-
ilarly, we consider the summation and average of the ex-
pertise of only his/her advisees through features SumStu1-
SumStu8 and AvgStu1-AvgStu8. For SumStu1-SumStu8
and AvgStu1-AvgStu8, we need identify the adviser-advisee
relationship between researchers. Interested readers can re-
fer to [28] for details.
Results and analysis. In this experiment, for the source
domain data, we use all the labeled data from the expert
finding task, and for the target domain data, we uses two
sampled queries with their corresponding documents from
the best supervisor finding task as the labeled data, and the
rest as the unlabeled test data. Table 10 shows the perfor-
mance of best supervisor finding. We see that the proposed
method performs better than the baseline methods of using
RSVM, RSVMt, MTRSVM and the language model based
method [30]. Also we can see that all supervised learning-
to-rank methods can achieve higher ranking accuracy than

3http://bole.arnetminer.org

Table 9: Features for expert finding and best super-
visor finding.

Feature Description
L1-L10 Low-level language model features, refer to [23]
H1-H3 High-level language model features, refer to [23]

B1 The year he/she published his/her first paper
B2 The number of papers of an expert
B3 The number of papers in recent 2 years
B4 The number of papers in recent 5 years
B5 The number of citations of all his/her papers
B6 The number of papers cited more than 5 times
B7 The numebr of papers cited more than 10 times
B8 PageRank score in academic network

SumCo1-8 The sum of coauthors’ B1-B8 scores
AvgCo1-8 The average of coauthors’ B1-B8 scores
SumStu1-8 The sum of his/her advisees’ B1-B8 scores
AvgStu1-8 The average of his/her advisees’ B1-B8 scores

Table 10: Results of best supervisor finding.
Approach P@5 P@10 P@15 MAP N@5 N@10
RSVM .7714 .8429 .8285 .7756 .5545 .5947
RSVMt .8000 .8286 .8476 .7837 .5923 .5999
MTRSVM .8000 .8286 .8476 .7875 .6140 .6075
Language model .6250 .6875 .6500 .6726 .3343 .3809
HCDRank .8285 .7857 .8571 .7971 .6189 .6112

the unsupervised ranking method (language model).
Table 11 show the top 5 best supervisors/experts for two

example queries. From that, we can see the traditional ex-
pert finding algorithm is not appropriate for best supervisor
finding task.

5. RELATED WORK

5.1 Learning to Rank
Considerable work has been conducted for supervised learn-

ing to rank. The proposed approaches can be divided into
three categories: pointwise approach, pairwise approach and
listwise approach. The pointwise approach is aimed at pre-
dicting the rank level of an object. In pairwise approaches,
the ranking problem can be reduced to a classification prob-
lem by comparing the rank levels of each instance pairs.
Ranking SVM [15], RankBoost and RankNet [9] are three
state-of-the-art algorithms in this category. In listwise ap-
proaches, the idea is to directly optimize some information
retrieval measures [27, 29].

Regarding the unavailability of a large amount of train-
ing data, there is also some work on ranking using semi-
supervised learning and transductive learning. For exam-
ple, Duh and Kirchhoff propose a transductive framework
for semi-supervised ranking problem [13]. Amini et al. pro-
pose a semi-supervised rankboost algorithm [1]. Hoi and Jin
propose a semi-supervised ensemble ranking with a SVM-
like formulation [16]. Chen and Lu et al. propose a tree
based ranking adaptation algorithm, aiming to make use
of the training data from an existing domain [10]. Specif-
ically, they first learn a regression tree in one domain and
then adapted its structure to a new domain with only a few
training data. Up to our knowledge, this is the most similar
work to ours. However, our problem setting and the pro-
posed approach are different from theirs. We address the
ranking adaptation problem in the heterogeneous data and
our approach has a clear regularized formulation.

5.2 Transfer Learning

Table 11: Example lists of expert finding verse best
supervisor finding.

Best Supervisor Finding
Machine Learning Support Vector Machine
Geoffrey E. Hinton Bernhard Scholkopf
Sanjay Jain Vladimir Vapnik
Michael I. Jordan John Shawe-Taylor
Tom M. Mitchell Alex J. Smola
Avrim Blum Thomas Hofmann

Expert Finding
Machine Learning Support Vector Machine
Pat Langley Bernhard Scholkopf
Ivan Bratko Vladimir Vapnik
Thomas G. Dietterich Olvi L. Mangasarian
Carl H. Smith Chih-Jen Lin
Jaime G. Carbonell Thorsten Joachims

Another related work is transfer learning, which aims to
transfer knowledge from a source domain to a related tar-
get domain. Two fundamental issues in transfer learning
are “what to transfer” and “when to transfer”. Many ap-
proaches have been proposed by reweighting instances in
source domain for the use in target domain [12]. Gao et
al. propose a locally weighted ensemble framework which
can utilize different models for transferring labeled informa-
tion from multiple training domains [14]. Also many works
have been done based on new feature representation [18, 21].
For example, Argyriou et al. propose a method to learn a
shared low-dimensional representation for multiple related
tasks and the task functions simultaneously [2]. Raina et al.
propose to use a large amount of unlabeled data in source do-
main to improve the performance on target domain in which
there are only few labeled data. They don’t assume the two
domains share the class labels or distributions [24]. Blitzer et
al. proposed a structural correspondence learning approach
to induce correspondences among features from source and
target domains [6]. There are also other approaches which
transfer information by shared parameters [7] or relational
knowledge. Transfer learning techniques are widely used in
classification, regression, clustering and dimensionality re-
duction problems.

6. CONCLUSION AND FUTURE WORK
We formally define the problem of heterogeneous cross do-

main (HCD) ranking and address three challenges:(1) how
to formalize the problem in a unified and principled frame-
work even when objects’ types across domains are different;
(2) how to transfer the knowledge of heterogeneous objects
across domains; (3) how to preserve the preference relation-
ships between instances across heterogeneous data sources.
To address these, we propose a general regularized frame-
work to discover a latent space for two domains and mini-
mize two weighted ranking functions simultaneously in the
latent space. We solve this problem by optimizing the con-
vex upper bound of the non-continuous loss function and
derive its generalization bound. Experimental results on
three different genres of data sets show that the proposed ap-
proach performs better (+1.2% ∼ +6.1% in terms of MAP)
than the comparison baseline methods.

There are several directions for future work. It would be
interesting to develop new algorithms under the framework
and to reduce the computing complexity for online applica-
tion. Another issue is to extend the HCDRank framework

to combine structural information for ranking. On the Web,
there are many structural information such as hyperlinks
and social relationships. How to incorporate such informa-
tion into the HCDRank framework is an interesting problem.
Another potential issue is to apply the proposed approach
to other applications (e.g., recommendation, rating, and link
prediction) to further validate its effectiveness.

7. ACKNOWLEDGMENTS
Bo Wang and Songcan Chen are supported by NSFC

(60773061) and NSF of Jiangsu (BK2008381). Jie Tang is
supported by NSFC(60703059), National High-tech R&D
Program (No. 2009AA01Z138) and Chinese Young Faculty
Research Fund (No. 20070003093).

8. REFERENCES
[1] M.-R. Amini, T.-V. Truong, and C. Goutte. A boosting

algorithm for learning bipartite ranking functions with
partially labeled data. In SIGIR’08, pages 99–106, July
2008.

[2] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task
feature learning. In NIPS’06, pages 41–48, 2006.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. ACM Press, 1999.

[4] S. Bickel, M. Brückner, and T. Scheffer. Discriminative
learning for differing training and test distributions. In
ICML’07, pages 81–88, 2007.

[5] J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. Wortman. Learning bounds for domain adaptation. In
NIPS’07, pages 129–136, 2007.

[6] J. Blitzer, R. McDonald, and F. Pereira. Domain
adaptation with structural correspondence learning. In
EMNLP’06, pages 120–128, 2006.

[7] E. Bonilla, K. M. Chai, and ChrisWilliams. Multi-task
gaussian process prediction. In NIPS’08, pages 153–160,
2008.

[8] U. Brefeld and T. Scheffer. Auc maximizing support vector
learning. In Proceedings of ICML’05 workshop on ROC
Analysis in Machine Learning, 2005.

[9] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In ICML’05, pages 89–96, 2005.

[10] K. Chen, R. Lu, C. K. Wong, G. Sun, L. Heck, and
B. Tseng. Trada: tree based ranking function adaptation.
In CIKM’08, pages 1143–1152, 2008.

[11] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y.
Ng, and K. Olukotun. Map-reduce for machine learning on
multicore. In NIPS’06, pages 281–288, 2006.

[12] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Boosting for
transfer learning. In ICML’07, pages 193–200, 2007.

[13] K. Duh and K. Kirchhoff. Learning to rank with
partially-labeled data. In SIGIR’08, pages 251–258, July
2008.

[14] J. Gao, W. Fan, J. Jian, and J. Han. Knowledge transfer
via multiple model local structure mapping. In KDD’08,
pages 283–291, 2008.

[15] R. Herbrich, T. Graepel, and K. Obermayer. Large margin
rank boundaries for ordinal regression. MIT Press,
Cambridge, MA, 2000.

[16] S. C. Hoi and R. Jin. Semi-supervised ensemble ranking. In
AAAI’08, July 2008.

[17] K. Jarvelin and J. Kekalainen. Ir evaluation methods for
retrieving highly relevant documents. In SIGIR’00, pages
41–48, 2000.

[18] T. Jebara. Multi-task feature and kernel selection for svms.
In ICML’04, July 2004.

[19] T. Joachims. Learning to classify text using support vector
machines. Dissertation, 2002.

[20] T. Joachims. Training linear svms in linear time. In
KDD’06, pages 217–226, 2006.

[21] S.-I. Lee, V. Chatalbashev, D. Vickrey, and D. Koller.
Learning a meta-level prior for feature relevance from
multiple related tasks. In ICML’07, pages 489–496, July
2007.

[22] J. Liu, S. Ji, and J. Ye. Accelerated multi-task feature
learning. In UAI’09, June 2009.

[23] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor:
Benchmark dataset for research on learning to rank for
information retrieval. In LR4IR 2007, in conjunction with
SIGIR 2007, 2007.

[24] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng.
Self-taught learning: Transfer learning from unlabeled data.
In ICML’07, pages 759–766, June 2007.

[25] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su.
Arnetminer: Extraction and mining of academic social
networks. In KDD’08, pages 990–998, 2008.

[26] M. E. Wall, A. Rechtsteiner, and L. M. Rocha. Singular
value decomposition and principal component analysis,
pages 91–109. Kluwer: Norwell, MA, 2003.

[27] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In SIGIR’07, pages 391–398, 2007.

[28] Z. Yang, J. Tang, B. Wang, J. Guo, J. Li, and S. Chen.
Expert2bole: From expert finding to bole search. In
KDD’09, 2009.

[29] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A
support vector method for optimizing average precision. In
SIGIR’07, pages 271–278, 2007.

[30] C. Zhai and J. Lafferty. Model-based feedback in the
language modeling approach to information retrieval. In
CIKM’01, pages 403–410, 2001.

[31] J. Zhang, J. Tang, and J. Li. Expert finding in a social
network. In DASFAA’07, pages 1066–1069, 2007.

9. APPENDIX: DERIVATION OF THE EQUIV-
ALENT CONVEX FORMULATION

We give a brief proof on the equivalence between Eq. 7
and Eq. 8. We follow the same structure as the proof of
equation equivalence in [2]. For easy explanation, we denote
the objective functions in Eq. 7 and Eq. 8 as E(W, U) and
R(M, D) respectively.

Theorem 2. Problem of min{E(W, U) : U>U = I} is
equivalent to the problem min{R(M, D) : D º 0, trace(D) ≤
1, range(M) ⊆ range(D)}.

Proof. The correspondence between the two problems is

M = UW and D = UDiag(||ai||2
||W ||2,1

)U>. Let ai be the i-th

row of W, then ‖ai‖2 = ‖M>ui‖2. So

2∑
t=1

〈αt, D+αt〉 = trace(M>D+M)

= ‖W‖2,1 trace(M>UDiag(‖M>ui‖2)+U>M)

= ‖W‖2,1 trace(
d∑

i=1
(‖M>ui‖2)+M>uiu

>
i M)

= ‖W‖2,1

d∑
i=1

‖M>ui‖2
= ‖W‖22,1

Therefore, minM,D R(M, D) ≤ minW,U E(W, U).
On the other side, let D = UDiag(λi)U

>, then

2∑
t=1

〈αt, D+αt〉 = trace(M>UDiag(λ+
i)U>M)

= trace(Diag(λ+
i)WW>) ≥ ‖W‖22,1

Hence, minM,D R(M, D) ≥ minW,U E(W, U). Finally, we
get minM,D R(M, D) = minW,U E(W, U).

