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ABSTRACT
Retweeting is an important action (behavior) on Twitter, in-
dicating the behavior that users re-post microblogs of their
friends. While much work has been conducted for mining
textual content that users generate or analyzing the social
network structure, few publications systematically study the
underlying mechanism of the retweeting behaviors. In this
paper, we perform an interesting analysis for the problem
on Twitter. We have found that almost 25.5% of the tweets
posted by users are actually retweeted from friends’ blog
spaces. Our investigation unveils that for the retweet behav-
iors, some statistics still follows the power law distribution,
while some others violate the state-of-the-art distribution
for Web. Based on these important observations, we pro-
pose a factor graph model to predict users’ retweeting be-
haviors. Experimental results on the Twitter data set show
that our method can achieve a precision of 28.81% and recall
of 37.33% for prediction of the retweet behaviors.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining; J.4
[Computer Applications]: Social and Behavioral Sciences

General Terms
Algorithms, Experimentation

Keywords
Twitter, Retweet behavior, Social influence, Factor graph

1. INTRODUCTION
The rapidly developing Web-based social applications and

media, such as Facebook, Twitter, and Flickr, have attracted
much attention. Message forwarding (e.g., retweeting on
Twitter.com) is one of the most popular functions in many
existing social networks. In twitter, people can choose to
retweet messages on their blog space. In this way, the infor-
mation carried by the message can be quickly spread in the
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social network. A simple example is shown below, when a
user is viewing the message m:

RT @dahara︸ ︷︷ ︸
tm,2

RT @Three Ten︸ ︷︷ ︸
tm,1

Stunning Pictures of Strange . . .︸ ︷︷ ︸
cm

which indicates that a message was originally posted by
“Three Ten” and was retweeted by “dahara”, and now is
retweeted by the current user again. In general, a retweeted
message consists of trace and content. Contents that we re-
fer to can be extended to any forms as long as it can be
forwarded from users to others or shared by users with all
their friends, such as real blogs, photos and external links.

While much work has been conducted for mining textual
content that users generate or analyzing the social network
structure [4, 2, 5, 7], few publications systematically study
the underlying mechanism of the retweeting behaviors [1,
8]. Some specific messages posted by particular users are
more likely spread widely while others attract attention from
few users. It should be said that various reasons make the
message to be propagated, and it is interesting to investi-
gate why some messages can be spread widely in the social
network. Specifically, we analyze the retweeting behavior
for each individual user and message, and aim to under-
stand why some users tend to retweet messages, while others
not, and what factors are responsible for acts of retweeting
of messages. Accordingly, an interesting and fundamental
question is: can we predict the retweeting behaviors based
on users’ history behaviors and the (global or local) trend
on the Web?

2. PROBLEM DEFINITION
Based on the analysis of the factors that are attributed to

users’ decisions, messages, users, and the relations between
them will be formally defined in this section, and then we
formalize this problem.

To model the retweeting behavior, we collect a set of in-
stances that describe the scenario when ui receives a mes-
sage mij = {cj ,pij} at time tij . Variable cj denotes
the content of the original message mij . Vector pij =
{pij1, pij2, . . . , pijlij} denotes the trace of the message seen
by the user. Although the contents seen by different users
may be the same, the traces could be different among users.
pij1 ∈ U is the initial poster of the message, pijk ∈ U is the
k-th bearer of the message mij on the trace, and lij is the
length of the trace. The follower-followee relationships are
required to be satisfied between each consecutive user pair
on the trace.



The spreads of messages proceed in a cascading fashion
successively from the user who posts the message to some
of his/her followers, and subsequently to some followers’ fol-
lowers. Thus, each message in the input set of instances
has an ancestor message, by linking all the retweets with
their ancestors, we could obtain a set of retweet threads. in
other words, retweeting instances constitute a set of directed
retweeting trees embedded in the friendship network.

Definition 1. Retweeting Prediction Problem:
Given a social network G and a set M of tweets and retweet
behaviors in history, we aim to predict (1) if users will
retweet the tweet m to their friends after viewing it, (2) the
range of spread for a new tweet m written by user u.

The first subproblem (referred to as local prediction) aims
at predicting the behavior of users when a message posted
by one of their friends has already appeared on their time-
line, in other words, we assume that the user has a proba-
bility (> 0) in reading and retweeting the message. How-
ever in a more flexible conditions instead of being given
a complete scenario, more factors are responsible for their
retweeting/ignoring behaviors, especially the behaviors of
their friends are highly related with their behaviors, which
is depicted in the second problem (referred to as global pre-
diction).

3. MODELING RETWEET BEHAVIOR
In this section, we formalize our problem in a semi-

supervised learning framework. It is then tackled by a fac-
tor graph model [3, 6, 9] that incorporates the local predic-
tion problem with the global constraint. An approach based
on max-sum algorithm is applied to train the probabilistic
model.

3.1 Basic Idea
As we describe in Section 2, the positive instances (labeled

with yij = 1) constitute a set of retweeting trees, and by in-
tegrating the negative instances (labeled with yij = 0), we
augment the retweeting trees into a set of augmented retweet-
ing trees {Ad}d (ARTs). The root of each ART represents
the initial poster of the message, the interior nodes represent
the positive instances, corresponding to the retweeting be-
haviors, whereas the leaves represent the negative instances,
corresponding to the ignoring behaviors.
The problem can be formalized as a semi-supervised learn-

ing problem. We collect a set of labeled instances T consist-
ing of non-root nodes {⟨(ui, cj ,pij , tij), yij⟩}i,j of complete
ARTs, and a set of unlabeled instances S consisting of in-
stances from a series of incomplete ARTs. When we try to
estimate the propagation of a certain newly created mes-
sage, the content cj and the initial poster pij1 are known for
each user ui ∈ U , and we may assume the content does not
change during the propagation, however, the length of the
trace lij and all the other trace users pij1, . . . , pijlj are un-
known. Therefore, the content cj , the initial poster pij1 and
the elapsed time t of the instances in T are fixed, whereas we
could enumerate all the possible traces pij starting from pij1
and ending at some users {ui}i. Such a series of ARTs con-
stitute the solution space, and finally, the unknown labels
yij is determined.

3.2 Definition of Factors

We introduce a factor fij that ensures the extracted fea-
tures xij = (x1

ij , . . . , x
22
ij )

⊤ could represent the decision yij .
We also introduce a set of weight variables, denoted by
Λ = (λk)⊤k for each extracted feature. Each feature factor
fk
ij is defined as a regularized sum-of-square error function
as follows:

fij(Λ) = exp

[
−

(
yij − Λ⊤xij

)2
− βΛ⊤Λ

]
(1)

where β is the regularization coefficient that controls the rel-
ative importance of the data-dependent error and the regu-
larization term Λ⊤Λ.

For unlabeled instances, we could define a feature factor
gij(yij ,Λ) similarly as for the labeled instances. Since the
calculation for the features depends on the choice of trace
pij , and subsequently the factor should incorporate the un-
known variable, i.e.,

gij(yij ,Λ,pij) = exp

[
−

(
yij − Λ⊤xij(pij)

)2
− βΛ⊤Λ

]
(2)

From the perspective of validity of retweeting trees, we in-
troduce a constraint factor for each unlabeled instance, and
it is also defined in terms of yij , which verifies the validity
of each propagation path from the initial poster pij1 to the
current user ui. Equivalently, the constraint can be defined
for each consecutive bearers, e.g., ui and the preceding user
pijlj (denoted as uiI ) for the message mij instead of the
current user ui and the whole trace pij , and formally,

hij(yij , yiIj) =

{
0 if yij ∧ ¬yiIj
1 otherwise

(3)

To make the constraint satisfied, we could alter the val-
ues of the decision variables yij in two different ways: by
setting yij = 0 or setting yiIj = 1. Both approaches bring
effects differently on other factors, the gains and losses of
both approaches are evaluated in the optimization of the
global objective by our algorithm.

In sum, the solution for problem that defined in Section
2 is tackled by solving the optimization objective, i.e., the
normalized product of Eq. 1, 2, 3.

max
Θ

1

Z
fij(Λ)

∏
(i,j)∈T

[
gij(yij ,Λ,pij) · hij(yij , yiIj)

]
(4)

where Z is a normalization factor, Θ is the set of variables,
which includes {yij}(i,j)∈S , Λ, {uiI}(i,j)∈S . {pij}(i,j)∈S

could be determined by {uiI}(i,j)∈S .
We derive an iterative algorithm for the above objective

function based on the loopy max-sum algorithm. Details are
omitted due to space limitation.

4. EXPERIMENT
In this section, we first statistically study the retweeting

data, and then define features for modeling retweet behav-
iors. We conduct experiments on the Twitter dataset for
retweet prediction and spread prediction.

4.1 Observation
In this section, we demonstrate a statistical analysis on

some specific features that motivate users to retweet instead
of acts of ignoring messages, and conclude notable results.
Retweeting activity of users For each retweet, we count
the total number of retweets from each retweeter within the
period of time and sort them in descending order with fixed
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(a) Cumulative distribution
of retweeting activity
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(b) The activity of retweet-
ing vs. otherwise tweeting

0 0.5 1 1.5 2 2.5 3

x 10
5

0

1

2

3
x 10

5

The mean of frequencies(µ)

T
he

 σ
 o

f t
he

 fr
eq

ue
nc

ie
s

 

 
The retweet

(c) The mean of frequencies
vs. the standard derivation
of the frequencies
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(d) The distribution of in-
tervals belonging to the
long/short-term intervals
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(e) The mean of short-term
intervals vs that of longer-
term intervals
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Figure 1: Retweeting activity of user

unit interval. From Figure 1(a), we can see that most of the
users retweet at a low frequency (and the average number of
retweets of a user within 7 days is 197) and only a few users
are retweet-aholic. A portion of 3.13% of the retweets are
posted by users who retweet more than 1,000 times. It sat-
isfies the long tail theory, i.e., the activity behavior of each
individual user cannot be inferred from the global retweet-
ing behavior, which motivates us to further analyze what
factors are actually attributed to the diversity of activity in
retweeting.
The activity of retweeting vs. tweeting. To conclude
the users’ activities of retweets from their local behaviors,
e.g., the tweeting behavior, we may first ask whether it is
highly related with their behaviors of writing tweets. Thus
in Figure 1(b), we plot the number of the retweets against
the number of the non-retweets (including normal tweets and
replies) for each user in pink, with a 50-point moving average
indicated in blue. We see that many users rarely retweet
messages but post many other kinds of tweets, corresponding
to the segment on the curve above the diagonal line when the
number of retweets < 200, and many other retweet-aholics
post much fewer tweets than retweets.
Analyze users’ regularity of retweeting. For each user
who retweets more than twice in the period, we make statis-
tics of the distribution of time periods between two consec-
utive tweets, and the result is shown in Figure 1(c). The x-
coordinate of a point describes the mean of the user’s tweet-
ing intervals, and the y-coordinate describes the standard
deviation. The high overlap of the fitted line with the diag-
onal line indicates that the regularity is scale-invariant, i.e.,
when users become more tweet-aholic, the standard deriva-
tions of the intervals increase in the same proportion.
In fact, there may be two types of intervals that con-
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Figure 2: Importance of
content
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Figure 3: Interest of
user

tribute to the deviation: some are the actual tweeting in-
tervals between two tweeting behaviors, and the others are
long-term pauses between periods of intensive tweeting ac-
tions, (e.g., due to daily sleeping routines). These pauses
take up a small portion of the intervals, but contribute
significantly to the calculation of standard deviation, and
further distort the accuracy of discovered patterns of reg-
ularity. We simply assume this phenomenon is generated
from a mixture of two Gaussian distributions. For each
user, we plot the number of users’ tweeting intervals that
belong to the short-term intervals/longer-term intervals in
Figure 1(d) in x-logarithmic scale with fitted Beta distribu-
tions of the marginal probabilities over them in blue, two
means in Figure 1(e). We can see that the average curve
consists of two segments. The first segment ends when the
short-term interval reaches half an hour (corresponding to
tweet-aholics), which is almost the duration of off-Internet
for normal users, whereas the long-term intervals are pro-
longed with the tweeting frequency decreasing. We also plot
the mean against the SD of both kinds in Figure 1(f). We
can see that the mean regularities for both short-term and
long-term intervals for users to tweet could be bounded.
Importance of content. The importance of content can
be estimated from the frequencies of the terms used by all
the messages of all the users within this period of time. It
is motivated by the fact that a hot topic is discussed by a
relative majority of the community and the topics of special
interests are known by few users. Hence, to describe the
importance of content, we calculate the sum of tf-idf values
of keywords in the content of the original message, i.e.,

tf-idf(m) =
∑
t

n(t,m) · log
|M |

n(t,M)
(5)

where n(t,m) is the number of occurrences of the term t in
message m, n(t,M) is the number of occurrences of the term
t in the whole message collection M , and |M | is the total
number of messages. It is compared with the importances
(tf-idf values) of the ignored tweets. The result is shown in
Figure 2 in x-logarithmic scale.

Note that the same original message may be retweeted by
some of their followers, and ignored by some others. The
content of the message is taken into account in both situa-
tions (retweeting and ignoring). From Figure 2, we can see
that if tf-idf value is greater than 0.25, the messages will
more likely be retweeted than those with importance scores
less than 0.25. We can also see that in all the cases the
length of trace is shorter than six, the importance of con-
tent exhibits almost the same. Since the total number of
messages with trace length greater than six is limited, there
is little statistical significance.
Interest of user. To jointly consider the mutual correla-
tion between the user and the content of the message, we
estimate how much the user is interested in the content of



the message. The Jaccard distance is applied to calculate
the similarity between the user u (represented by the bag of
terms used in all his tweets) and the original message m as

follows: |u∩m|
|u∪m| . A higher overlap of the two sets of terms im-

plies that a higher probability that the user is interested in
the content of message. The distribution of all the similarity
scores is shown in Figure 3 in x-logarithmic scale.
We can see from the figure that if the users are interested

in the message (the Jaccard distance is greater than 10−2),
there is a higher probability for them to retweet it. If there
are rarely common terms, then there is still a relatively high
probability to retweet. Comparatively, if Jaccard distance is
among 10−4 and 10−3, users are more likely to ignore them.
In fact, the average similarity of an arbitrary tweet and an
arbitrary user lies in the same interval.

4.2 Settings
Feature Description. As we have shown in Section 4.1,
the delay periods are located around two different means
(corresponding to short-term period tshorti and long-term

tlongi period). To predict the willingness of retweeting at
time tij , delay(ui, tij) is defined as

delay(ui, tij)

= exp
(
−nshort

i (tij − tshorti )2 − nlong
i (tij − tlongi )2

) (6)

where nshort and nlong are the prior probabilities calculated
with EM algorithm of Gaussian mixture model. Intuitively,
we could expect that the user ui with higher probability re-
sponses to retweet at two different latencies corresponding
to tshorti and tlongi . We define 22 features in the training pro-
cess extracted from the users’ history preferences, messages’
contents, information of the trace, and the time delay and
as the basis for the further prediction. Details are omitted
due to space limitation.
Dataset. In the task of predicting the pair-wise retweeting
behavior, we split the datasets on the level of ARTs, instead
of instances, into training set and testing set. To evaluate
the propagation of messages, we choose a sub dataset from
that used in predicting the pair-wise retweeting behavior.
Measures and Baselines. For evaluating the prediction of
pair-wise retweeting behavior, precision and recall are used
to evaluate the performance. For evaluating the prediction
of propagation spread of messages, it can be considered as
a “retweeter retrieval” task, and both concepts in IR scenar-
ios are applied. We apply two state-of-the-art methods in
classification tasks, linear SVM and L1-regularized logistic
regression (LogReg) for labeling the instances.

4.3 Results of Prediction
By employing the method proposed in Section 3 and the

results are shown in Table 4.3. We can see that the proposed
method does not outperform the baseline methods for the
pair-wise classification task. In fact, as a task that only
cares the isolated features of instances, it has been demon-
strated that SVM and LogReg are more capable of repre-
senting the characteristics of the distribution of samples in
feature space, and tend to be more discriminable for unseen
data. The discriminability of our approach is only based on
the factor f , which is the least sum-of-square errors.
For the task of predicting the spread of messages, we it-

eratively run the SVM classifier and the LogReg classifier
for determining the behavior of a user that is consecutive to

Table 1: Results of prediction
Method Precision Recall F-measure

Pair-wise
behavior

Our approach 0.8003 0.6242 0.7014
SVM 0.8437 0.7358 0.8141

LogReg 0.8115 0.7131 0.7899

Message
spread

Our approach 0.2881 0.3733 0.3252
SVM 0.0144 0.6084 0.0281

LogReg 0.0052 0.3047 0.0102

the initial poster or a “retweeter” that has been predicted to
retweet in a cascade fashion. Different from the baseline
methods, our method considers the entire graph as a whole,
and the behaviors of users will be automatically judged by
not only their followees, but also followers, who still pro-
vide valuable information for the consistency of the com-
plete propagation. Our method can achieve a performance
of 0.2881 in terms of precision on average, whereas both
SVM and LogReg fail to predict the range of propagation of
messages, with precisions of 0.0144 and 0.0052 respectively.
Our method outperforms LogReg but fails for SVM in terms
of recall, which is because the recall is the arithmetic aver-
age for all the instances, and our method predicts that the
message of some “short” ARTs will not be propagated.

5. CONCLUSION
In this paper, we perform an interesting analysis for the

retweet problem on Twitter, and discover some interesting
phenomena. Specifically, we analyze how the retweet be-
havior is influenced by factors: user, message, time, etc.
Based on these important observations, we propose a semi-
supervised framework on a factor graph model to predict
users’ retweet behaviors. Experimental results on a data set
show that our method can achieve an precision of 28.81%
and recall of 37.33% for prediction of the retweet behaviors
in completely actual scenarios.
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