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ABSTRACT
In this paper, we study a novel problem Collective Active
Learning, in which we aim to select a batch set of “infor-
mative” instances from a networking data set to query the
user in order to improve the accuracy of the learned clas-
sification model. We perform a theoretical investigation of
the problem and present three criteria (i.e., minimum re-
dundancy, maximum uncertainty and maximum impact) to
quantify the informativeness of a set of selected instances.
We define an objective function based on the three criteria
and present an efficient algorithm to optimize the objective
function with a bounded approximation rate. Experimental
results on a real-world data sets demonstrate the effective-
ness of our proposed approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Text Mining;
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
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1. INTRODUCTION
Machine learning algorithms suffer from insufficiently la-

beled training data. The goal of active learning is, as usual
to construct an accurate classifier, but also to minimize the
number of labeled instances by actively selecting a few num-
ber of instances to query the user. Traditionally, this prob-
lem is usually addressed in a single mode, i.e., the active
learning algorithm queries the user k times, with each time
querying one instance for its label. Following this thread,
considerable research has been conducted on how to select
the best example to query in each time [7, 11].
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Recently, there has seen a new direction of machine learn-
ing field, that is how to learn an accurate model to clas-
sify networking/graphical data, e.g., the linked Web pages.
Quite a few models have been proposed such as Conditional
Random Fields [2], Continuous Bayesian network [6], Collec-
tive Learning [1], and Semi-supervised Learning over graphs
[10]. A few works also try to combine the networking in-
formation under single mode active learning framework [3,
8, 11]. However, two important issues have been largely
ignored by most existing works. First, almost all learning
algorithms for the networking data are computationally in-
tensive. Suppose a machine needs to query the user k times,
when the user inputs a label for the queried instance, she/he
may have to wait for a very long time for the next query,
which is obviously undesirable. Second, these methods are
in a single mode, the selected instances in different iterations
may have a undesirable information overlap.

Ideally, we hope that an algorithm can actively select a
set of instances with minimal redundancy to query the users
in a batch mode, which we refer to as the collective active
learning (CAL) problem for networking data. The problem
posts several unique challenges. First, as the optimization
problem of selecting the most informative instances is NP-
hard, it is unclear how to formulate the problem in a princi-
pled framework. Second, to design criteria to quantitatively
measure the informativeness of the data is not an easy task.
Third, the active learning algorithm should be efficient, in
particular considering the rapidly increasing scale of the net-
working data on the Web.

To this end, we formally formulate the problem and pro-
pose a general framework for collective active learning. Specif-
ically, we propose three criteria to respectively capture the
maximum uncertainty, maximum impact, and minimum re-
dundancy (which will be explained in section 3.1). We design
an objective function based on the criteria and further pro-
pose an efficient algorithm to solve the objective function. A
theoretical analysis for the approximation rate of the algo-
rithm is presented. We conduct experiments on a real-world
data set to validate the effectiveness and efficiency of the
proposed approach. Experimental results show that our ap-
proach clearly outperforms (+6%) the baseline methods of
single mode active learning and batch mode active learning
on linked data sets.

2. PRELIMINARIES
The collective active learning problem can be defined as

follows: given an (un)directed graph G = (V,E), where V
indicates a set of data points and E ⊂ V × V represents a



set of edges between the data points. For example, in a so-
cial network, the edge can represent the friendship between
users; while in the citation network, the edge presents the
citation relationship between papers. Suppose there are n
unlabeled data U = {x1,x2, · · · ,xn}, where U ⊂ V and
l labeled data L = {(xn+1, yn+1), · · · , (xn+l, yn+l)}, where
L ⊂ V . In most circumstances, we have l ≪ n. Further let
xi denote the observation vector, e.g., it can be the feature
vector in most applications. Without loss of the general-
ity, we associate each data point with a binary classification
label, yi ∈ {0, 1}.
A general classification problem is to learn a mapping

function f from the labeled data points L to predict the
labels of the unlabeled data points U . However, as label-
ing is always tedious and time consuming, the labeled data
points are usually insufficient. The problem of collective ac-
tive learning is to select k ≪ n unlabeled data points, i.e.,
S ∈ U with |S| = k, to query their labels, in order to improve
the prediction accuracy of the learned function f . The goal
is to maximize the improvement on the accuracy by query-
ing the k data points. Formally, we can define the following
objective function:

Q : 2U → R, in (U ,L, G)

And the goal is to select S to maximize the function Q:

S = argmax
S⊆U,|S|≤k

{Q(S)}

In this way, the collective active learning problem can be
also considered as a set function optimization problem. The
following task is how to instantiate the objective function
Q(S) and how to efficiently solve the function Q(S).

Three Criteria In our collective active learning problem,
one key challenge is how to measure the informativeness of
a set of selected instances. In this work, we propose three
criteria to measure the informativeness of instances.

• Maximum Uncertainty: We are more willing to choose
samples which tend to be more uncertain. One intu-
itive method for binary classification is to choose the
instances whose posterior probabilities of being posi-
tive is nearest to 0.5.

• Maximum Impact: Selected samples should have the
maximum impact on the unknown instances. If a sam-
ple is isolated in the sample space, for example, an out-
lier, it should be given a low priority to be selected.
Note the impact is two-fold: the similarity between
the two feature vectors and the connecting edges both
imply “impact” information.

• Minimum Redundancy: The samples in the selected set
should be diversely distributed over the space. In other
words, it minimizes the information overlap between
the selected samples.

3. THE PROPOSED APPROACH

3.1 Objective Function
Based on the defined criteria, we give an instantiation

of the objective function. This is just a possible meethod,
but not the only way to instantiate the objective function.

Basically, the objective function is defined as a linear com-
bination of the two terms, i.e., C(S) and H(S):

Q(S) = αC(S) + (1− α)H(S), 0 ≤ α ≤ 1 (1)

where H(S) corresponds to the maximum uncertainty and
C(S) corresponds to the maximum impact.

Maximum Uncertainty We use entropy to measure the
uncertainty of selected samples. Joint entropy is very hard
to compute, so we use the summation of entropies over single
data points. In summary, the maximum uncertainty part is
defined as the H(S) function in Q(S):

H(S) =
∑
i∈S

H(i) =
∑
i∈S

fi log
1

fi
+ (1− fi) log

1

1− fi
(2)

Maximum Impact The motivation of our maximum im-
pact measurement comes from the classical nearest neigh-
borhood classifier. The classifier classifies data point xi into
the same class with labeled data point xj which has the
highest impact on xi:

Class(xi) = yj , j = argmax
j∈L

wij

From the view of Nearest Neighbor classifier, the clas-
sification result is more guaranteed if the impact is higher.
That gives a direct motivation on the maximum impact mea-
surement: to maximize the impact on a single unlabeled
data point xi, we can choose the data points with the max-
imum impact over xi from the candidates. So we can have
a weighted function of summations over all these maximum
values to measure the impact:

C(S) =
∑
i∈U

si max
j∈L∪S

wij (3)

where si serves as a weight factor when counting the impact
over points in the unlabeled data set. It has no problem to
choose si = 1 for all unlabeled data points, but there may
be better choices. We suggest to use entropy as the weight.
Specifically,

si = H(i) = fi log
1

fi
+ (1− fi) log

1

1− fi

The point is that the use of entropy information here does
not overlap with the entropy in H(S): different examples are
checked by C(S) and H(S) in terms of entropy. To achieve
a higher flexibility, we can introduce a balancing factor β to
give a strengthened definition of C(S) as(for i = j, wij = 1):

C(S) =
∑
i∈U

(H(i))β
(

max
j∈L∪S

wij

)1−β

(4)

Minimum Redundancy In equation 1, we do not have
a term explicitly demonstrating the redundancy over the
selected set. In this section, we’ll prove that the minimum
redundancy criterion has already been implicitly satisfied in
the definition of Q(S).

The following is an explanation why maximizing Q(S) will
also minimize the diversity. Specifically, C(S) is closely re-
lated to redundancy. Given a data point i ∈ U − S, let us
define the dominant point dp(i) as

dp(i) = max
j∈S∪L

wij (5)



The maximization of Q(S) will cause the dominant points
get diversely distributed. If two dominant points in S are
very close to each other, it is likely that they may have sim-
ilar impact on other points, thus removing one of them will
not let C(S) decrease much. In other words, if we already
have vertex i in the selected set S, we’ll not choose another
vertex j similar to i in the future, because the improvement
on Q(S) is little.

3.2 Combine Link Information in W

It is flexible in our framework that link information is nat-
urally integrated into the definition of similarity matrix, by
extending it using a similar method as page rank. That is
reasonable because edges indicate the similarity and impact
between the two ends. It is introduced that the similarity
matrix W is used as transformation probability matrix in
random walk[11]. Page rank is a way to introduce the graph
structure into the transformation matrix. Generally speak-
ing, under the page rank model, a particle may transit in
one of the following cases:

• It may transit by edges. The particle will transit with
equal or weighted probability to each of the neighbor-
ing vertices.

• It may randomly jump to any vertex. The probability
is proportional to similarity in feature space.

Suppose there’s a well defined similarity matrix W which
measures the impact solely in feature vector space, now we
want to integrate link information into it, to get a new def-

inition Ŵ .

ŵij = ϵ
1

di
I(i, j) + (1− ϵ)

wij∑
k wik

where 0 ≤ ϵ ≤ 1, I(i, j) is an indicator function whether
there is an edge between point i and j:

I(i, j) =

{
1 (i, j) ∈ E
0 (i, j) /∈ E

and di is the degree of i, di =
∑

(i,j)∈E 1.

3.3 EFFICIENT ALGORITHM
It can be proved that our algorithm is montonic submod-

ular. There have been many works on finding good approx-
imation algorithms for monotone submodular function opti-
mization. For simplicity and efficiency, we’ll use the greedy
algorithm [5]. Algorithm 1 shows a structure of this algo-
rithm. The outline of the algorithm is repeatedly enlarging
set S by a new point v, such that Q(S∪{v})−Q(S) is max-
imized. This algorithm have a guaranteed approximation
rate 1− 1

e
.

Algorithm 1 Maximize Q(S)

Input: U , L, G, x, y, k
Output: S, |S| = k
1: Calculate probability vector f
2: for v ∈ U calculate H(v)
3: initialize S ← ∅
4: while |S| < k do
5: for v ∈ U − S calculate C(v) = C(S ∪ {v})− C(v)
6: find v ∈ U − S to maximize αC(v) + (1− α)H(v)
7: update S ← S ∪ {v}
8: end while

4. EXPERIMENTS

4.1 Data Set
The experiments are performed in text categorization data

sets with citation information. We test the proposed method
on the following three data sets, which are the most widely
used data sets for text classification with link information:

Cora Data Set [9] contains 2708 scientific publications,
and they are classified into seven fields, which are Case
Based, Genetic Algorithms, Neural Networks, Probabilistic
Methods, Reinforcement Learning, Rule Learning, and The-
ory. After stemming and removing stop words, we are left
with a vocabulary size of 1433 unique words, all of which
appear at least 10 times in the documents. There are 5429
citations between the documents. We construct a binary
classification problem by combining the first 4 classes into a
category, and the others as another category.

Citeseer Data Set [9] contains 3312 publications, la-
beled into 6 classes: Agents, AI, DB, IR, ML, and HCI.
There are 3703 unique words after processing, and the num-
ber of citations is 4732. In the same way as in Cora data
set, we construct it into the binary classification by grouping
some classes into a category.

WebKB Data Set [9] contains web pages from four
computer science departments, categorized into five topics:
course, faculty, student, project, and staff. The webKB data
set contains 877 data points and 1703 unique words. There
are 2868 total links between these pages. We construct it to
binary classification by letting class “course” and “project”
be one class and the others be another class.

4.2 Baselines
For the linked data set, we use the following methods as

baselines:
Random selects the samples set randomly, giving each

unlabeled point equal probability to be selected.
Most uncertainty selects the set with the largest en-

tropy. Specifically, it is the function when α = 0.
Active Learning using Gaussian Fields is an ap-

proach suggested by [11] based on a semi-supervised learning
framework using Gaussian fields and harmonic functions. It
is single-mode, so we run this algorithm k times to select a
set of size k. Note that in this framework, the link informa-
tion can be similarly introduced using the proposed method.
We will utilize the link information in the tests.

Hybrid is suggested by [3]. It asks for uncertainty ap-
proach and two graphical metrics (betweenness and cluster-
finding) to find a selected set, and using empirical risk to
pick the best set among the union of the data points se-
lected by the three strategies.

k-means is suggested by [8]. In the article some active in-
ference methods are compared with each other and k-means
is found to be the best one among them. Here we employ
the same strategy for active learning, that is, we find ver-
tices using k-means as the labeled set and then train the
classifier.

For the purpose of simplicity, we will use Random, MU,
GF, Hybrid, K-M short for the methods above respec-
tively. We refer to our model as CAL (Collective Active
Learning).

4.3 Results
We set the α parameter to be 0.5, meaning each criterion
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(a) Accuracy in Cora Data Set
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(b) Accuracy in Citeseer Data Set
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(c) Accuracy in WebKB Data Set

Figure 1: Tests on Three Data Sets with Links

are roughly equally balanced in our experiment. For the
cora data set, we randomly pick 5 points as the initially
labeled set L; for the other two data sets, this number is 10
due to the size of the data set and the learning difficulty.
For the same reason, we define the batch size k = 5, 10, 5
for Cora, Citeseer and WebKB data sets respectively. For
each data set, the batch mode active learning and collective
active learning methods first select k samples based on L,
and then repeatedly select k samples based on the union
of initialized labeled and selected samples; the single mode
active learning iteratively select k samples, and repeatedly
select and update the model as the batch mode methods
do. After the selecting process, we learned the prediction
based on the samples selected by different active learning
methods using the same semi-supervised learning method
for fair. Here we use the famous NetKit-SRL toolkit[4] for
learning in networked data set. For each data set, we run
the experiment 30 times with different initially labeled sets,
and both the average and variance of the accuracy is used
for final evaluation.
Figure 1 shows the results on each of the data set. Due

to space limitations, we only draw the variance of proposed
method in the figure. We can show from the results that
maximum entropy does not have a good performance over
all the data sets. For all the three data sets, our method
outperforms the strategies based on graph metrics: the hy-
brid method and the k-means method. The Gaussian ran-
dom field based method’s performance in the three results
was somewhat erratic: it does not perform well in Cora and
Citeseer data set but in the webKB data set, the accuracy of
it is very near to the proposed method. In webKB data set,
the gap between random selection and these methods are
not as high as other data sets. It is probably because it is
not so easy in this web-linked data set to perform collective
active learning. Also, from the view of variance, our meth-
ods have average variances of 0.005, 0.009, 0.01 on the Cora,
Citesser and WebKB data set, which are much smaller than
the other methods. Generally speaking, from the experi-
ment results of the three linked data set, we can conclude
that our method is the best, or at least close to the best.

5. CONCLUSION
In this paper, we present a novel framework for collective

active learning, which utilize both link and content infor-
mation. An objective function is defined based on three

proposed criteria. Experiments on a real-world data set
shows that our approach outperforms other state-of-the-art
methods in both linked and regular data sets. Although our
model concentrates on the binary classification problem, it
can be easily extended to the multi-class classification prob-
lem.
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