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ABSTRACT
In most of the cases, scientists depend on previous literature which
is relevant to their research fields for developing new ideas. How-
ever, it is not wise, nor possible, to track all existed publications
because the volume of literature collection grows extremely fast.
Therefore, researchers generally follow, or cite merely a small pro-
portion of publications which they are interested in. For such a
large collection, it is rather interesting to forecast which kind of lit-
erature is more likely to attract scientists’ response. In this paper,
we use the citations as a measurement for the popularity among
researchers and study the interesting problem of Citation Count
Prediction (CCP) to examine the characteristics for popularity. Es-
timation of possible popularity is of great significance and is quite
challenging. We have utilized several features of fundamental char-
acteristics for those papers that are highly cited and have predicted
the popularity degree of each literature in the future. We have im-
plemented a system which takes a series of features of a particular
publication as input and produces as output the estimated citation
counts of that article after a given time period. We consider several
regression models to formulate the learning process and evaluate
their performance based on the coefficient of determination (R2).
Experimental results on a real-large data set show that the best pre-
dictive model achieves a mean average predictive performance of
0.740 measured in R2, which significantly outperforms several al-
ternative algorithms.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Analysis and
Indexing; I.2 [Artificial Intelligence]: Natural Language Process-
ing—Text analysis
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1. INTRODUCTION
The rapid evolution of scientific research has been creating a

huge volume of publications every year, and is expected to remain
in this situation within the foreseeable future. Figure 1 shows statis-
tics on a large literature database in Computer Science.1 Figure
1.(a) visualizes the explosive increase on the volume of publica-
tions in the past years, in particular recent years. For example, the
number of publications in 2009 almost triples than that of 10 year
before. Effective scientific research requires keeping up with pre-
vious literature, but it is not wise, nor possible, for researchers to
track all existed publications because the volume of literature col-
lection grows extremely fast as mentioned. Therefore, researchers
generally follow, or cite merely a small proportion of publications
which they are interested in. An interesting phenomenon is that
some of research papers are more likely to attract scientists’ re-
sponse than the others. If we use citation count as the popularity
of papers among academia, we have the following observation in
Figure 1.(b).

(a). The growing volume of literatures. (b). Distribution of literature citation.

Figure 1: Statistics of literature data from ArnetMiner.

1http://arnetminer.org.



It is natural to find that not all publications attract equal atten-
tion to academia. We show the citation distribution (the number
of papers vs. citation counts) in the log-log plot of Figure 1.(b):
the interests toward literature measured by citation counts is highly
skewed. Not surprisingly, the plot follows a power law distribu-
tion. A power law relationship between two quantities x and y can
be written as y=axb where a and b are constants. We see that a
huge number of research papers attract only a few citations, and a
few research papers accumulate a large number of citations.

For the ever-growing literature collection, it is rather interesting
to forecast which kind of literature is more likely to attract scien-
tists’ response. In this paper, we use the citation counts as a simple
measurement for the popularity among researchers and the citation
count is calculated by how many times a particular publication is
cited by other articles. We study the interesting problem of Citation
Count Prediction (CCP) to examine the correlative characteristics
for popularity.

As a pilot study on learning to forecast future citations for liter-
ature, Citation Count Prediction faces with several challenges:
• The first challenge for CCP is to explore the truly effective fea-

tures important to future citation counts from several aspects such
as paper content, author expertise and venue impact. We introduce
a series of features which are correlative with the number of future
citations of literature;
• The second challenge for CCP is to combine all relevant fea-

tures to identify the potentially interesting papers in a unified pre-
dictive model, linearly or non-linearly. Given multiple features rel-
evant to popularity, i.e., citation counts in this study, we utilize sev-
eral regression models to estimate future citations.

Our contributions are manifold by solving these challenges. In
Section 2 we first define a series of features which correlate with
citation counts. We then formulate citation count prediction as a
learning problem and introduce several regression models to unify
all possible features for prediction. We describe experiments and
evaluations in Section 3, including performance comparisons and
feature analysis. We briefly review previous works in Section 4
and draw conclusions in Section 5.

2. CITATION COUNT PREDICTION

2.1 Problem Definition
In this section, we first present several necessary definitions and

a formal representation of the citation count prediction problem.
Citations. Given the literature corpus D, the citation counts

(CT (.)) of a literature article d∈ D is defined as:

citing(d) = {d′ ∈ D : d′cites d}
CT (d) = |citing(d)|

(1)

Learning task: Given a set of article features, X⃗ = x1, x2, . . . , xn,
our goal is to learn a predictive function f to predict the citation
counts of an article d after a give time period ∆t. Formally, we
have

f(d|X⃗,∆t) → CT (d|∆t) (2)

To learn the predictive model, we have investigated multiple rel-
evant factors such as paper content, author expertise and venue im-
pact. It is also important to find unified models which are able to
consider all the features simultaneously. We introduce both aspects
in the following subsections.

2.2 Feature Definition

2.2.1 Topic Rank
Topics have long been investigated as a significant feature for lit-

erature contents [12]. We utilize the unsupervised Latent Dirichlet
Allocation [2] to discover topics for our corpus as it has been ap-
plied successfully to many content analysis tasks, and implementa-
tions are freely available2. We empirically train a 100-topic models
on our corpus - the top words for a few of the sample topics are
shown in Table 1.

Table 1: Top words from selected LDA sample topics after stop-
word removal.

Topic Representative words
00 distribution probability value random probabilistic expected
09 query information search semantic retrieval document
12 mobile network wireless nodes communication device
84 data mining patterns analysis association set
97 programming formal language specification verification logic

Our topic feature works by inspecting the probability distribution
over topics assigned to a literature article d. That is, for each of
our 100 topics, our topic model calculates p(topici|d), the inferred
probability of topic i in document d. The topic distribution T (d)
over all topics in document d is then:

T (d) = {p(topic1|d), p(topic2|d), . . . , p(topic100|d)}

To calculate the total citation counts of a particular topic from
article d, denoted by CT (topici|d), we distribute the citations of
the article CT (d) according to the topic distribution T (d), i.e.,
CT (topici|d) = CT (d) × p(topici|d) and hence we obtain the
citations of all 100 topics by using:

CT (topici) =
∑
d∈D

CT (topici|d) (3)

where D is the whole literature collection. We rank topics by aver-
age citation counts, namely topic “popularity”.

2.2.2 Diversity
We obtain a notion of the breadth of an article from its topic dis-

tributions. This is important for identifying methodology papers,
which are often cited by a wider topical range of articles. When
an article has a vast range of audience, it is likely to be cited by
authors from various research fields, and hence attract high citation
counts. To measure the topical breadth of an article, we calculate
the entropy of the document’s topic distribution:

Diversity(d) =

|T |=100∑
i=1

−p(topici|d) · log p(topici|d) (4)

2.2.3 Recency
Temporal dimension has long been proved to be significant in

literature studies [1, 21]. Intuitively, the citation counts accumulate
as time passes by, thus a measure of the age of an article is assumed
to be important. We include as a feature the number of years since
the article was published. We expect a positive correlation on tem-
poral recency - the longer an article is published, the more citations
it may receive.

2.2.4 H-Index

2We use Stanford TMT (http://nlp.stanford.edu/software/tmt/),
with default settings for all model parameters.



The h-index is useful which attempts to measure both the pro-
ductivity and impact of the published work of a scientist [8]. The
index is based on the set of the scientist’s most cited papers and
the number of citations received in others’ publications. Besides,
h-index has been proved to have predictive power of scientific out-
put and impact of a researcher [9]. Therefore, we consider h-index
as a candidate feature to predict citation counts.

2.2.5 Author Rank
We try to identify the correlation between author rank and av-

erage citation count. Sometimes, the “fame" of an author’s name
ensures the amount of citations. Each author has his/her own ex-
pectation of citation counts. We calculate all authors according to
their average citation counts and assign each of them a unique rank
position number.

2.2.6 Productivity
According to [1], authors have inclination to cite papers they

have written themselves. Intuitively, the more productive an author
is, the larger chances for his/her papers to be cited. We hence as-
sume the productivity of an author is relevant to the citation counts,
due to the self-citation behavior analysis from previous studies.

2.2.7 Sociality
From the author social factor studies in [1], researchers tend to

cite papers from whom the author(s) have co-authored. Thus, it is
natural to assume that the paper from a widely connected author
has a larger probability to be cited by his/her wide variety of co-
authors. A straightforward and simple measurement is to count
the Number of Co-Authors (NOCA) and we assume the correlation
between the number of co-authors and average citation counts.

2.2.8 Authority
A unique social network for academia is established from the

“citing - cited" relationships among literature articles. Publications
carry with author authorities: a widely cited paper indicates peer
acknowledgements, and hence indicates authority. We transmit pa-
per authority to all its authors. We first build a graph of Ga(V,E),
where V is the set of vertices and each vertex vi in V represents a
literature paper and E denotes the citing-cited linkage. The citing-
cited graph has directions. The out-degrees measure how many
times a paper is cited while in-degrees indicate the references of
a particular paper. When there is a citing-cited relationship be-
tween two papers, we add a link into the graph. We use standard
cosine similarity between two papers to weigh the linkage in the
graph, i.e., aff(vi, vj) = simcos(vi, vj). The transition probabil-
ity between vi and vj is defined by normalizing the corresponding
affinity weight as follows:

p(vi, vj) =


aff(vi,vj)∑|V |

k=1
aff(vi,vk)

if
∑

aff ̸= 0

0 otherwise
(5)

We use the row-normalized matrix M = Mi,j|V |×|V | to describe
Ga with entry corresponding to the transition probability, i.e., Mi,j =
p(vi, vj). In order to make M be a stochastic matrix, the rows with
all zero elements are replaced by a smoothing vector with all ele-
ments set to 1

|V | . Based on the matrix M , the authority score of a
paper d (denoted as Authority(d)) can be deduced from those of
all other papers linked with it, which can be formulated in a recur-
sive form as in the PageRank algorithm.

Authority(vi) = µ
∑
j ̸=i

Authority(vj) ·Mj,i +
1− µ

|V | (6)

where µ=0.85. We define the authority of an author a as:

Authority(a) =
∑
d∈Da

Authority(d) (7)

where Da = {d|author(d) = a}.

2.2.9 Venue Rank
Like authors, venues also have academic reputations. Based on

our assumption, some venues have larger probability to be highly
cited than others. We hereby investigate the venue impact on cita-
tions. Similar to the author rank pattern, prestigious venues attract
more focus of researchers’ attention. The reputation of a venue
ensures the amount of citation as well.

2.2.10 Venue Centrality
Venues such as conferences or journals are connected by pa-

per citing-cited linkage. We establish a venue connective graph
Gv(V,E) where V denotes the venues and the edges E denote the
citing-cited relationships between venues. Gv(V,E) also has di-
rections: the out-degrees measure how many times a venue is cited
by papers from other venues while in-degrees denote citations. The
weight of each edge is calculated by the number of citations be-
tween two venues. Hence, the venue centrality can be calculated
via a similar PageRank algorithm as Equation (6).

2.3 Predictive Models

2.3.1 Linear Regression (LR)
Linear regression attempts to model the relationship between two

variables by fitting a linear equation to observed data. A linear
regression line has an equation of the form Y = a + bX, where X
is the explanatory variable and Y is the dependent variable. In our
study, citation features are considered to be explanatory variables,
and the predicted citation count is considered to be the dependent
variable.

2.3.2 k-Nearest Neighbor (kNN)
The k-Nearest Neighbor algorithm is a method widely used in

statistical estimation and pattern recognition for classifying objects
based on closest training examples in the feature space by a ma-
jority common vote amongst its k nearest neighbors. The same
method can be used for regression, by simply assigning the prop-
erty value (in our case, citations) for the object (i.e., paper d) to be
the average of the values of its k nearest neighbors to predict the
value based on a similarity measure (e.g., distance functions such
as cosine similarity). The neighbors are taken from a set of objects
for which real citation counts are known.

Choosing the optimal value for k is best done by first inspecting
the data. In general, a large k value is more precise as it reduces the
overall noise; however, the compromise is that the distinct bound-
aries within the feature space are blurred. Based on performance
tuning on the training set, we set k-NN as 5-NN empirically.

2.3.3 Support Vector Regression (SVR)
Statistical Learning Theory has provided a very effective frame-

work for classification and regression tasks involving features. Sup-
port Vector Machines (SVM) are directly derived from this frame-
work and they work by solving a constrained quadratic problem
where the convex objective function for minimization is given by
the combination of a loss function with a regularization term (the
norm of the weights). There are two main categories for support
vector machines: support vector classification (SVC) and support
vector regression (SVR). SVM is a learning system using a high



dimensional feature space. It yields prediction functions that are
expanded on a subset of support vectors.

The model produced by SVR only depends on a subset of the
training data, because the cost function for building the model ig-
nores any training data that is close to the model prediction. Sup-
port Vector Regression is the most common application form of
SVMs. An overview of the basic ideas underlying support vector
machines for regression and function estimation has been given in
details in [16].

2.3.4 CART Model
We then fit a Classification and Regression Tree (CART) model

[3], in which a greedy optimization process recursively partitions
the feature space, resulting in a piecewise-constant function where
the value in each partition is fit to the mean of the corresponding
training data. Folded cross-validation [13] is used to terminate par-
titioning to prevent over-fitting. Our model included 10 features
summarized in the last section as predictors.

Figure 2: An example of regression tree for citation prediction.

Figure 2 shows the regression tree for one of the folds. Con-
ditions at the nodes indicate partitions of the features, where the
left (right) child is followed if the condition is satisfied (violated).
Leaf nodes give the function value for the corresponding partition.
Thus, for example, one of the leaves indicates that papers with h-
index∈[1.756, 2.903) and Sociality (NOCA)<2.247 are predicted
to have approximately 180 citation counts.

Thorough comparisons among all predictive methods and all fea-
tures are examined in the experiments and evaluations.

3. EXPERIMENTS AND EVALUATION

3.1 Data Description
We perform citation prediction on the real-world data set3, which

is extracted from academic search and mining platform ArnetMiner
[20]. It covers 1,558,499 papers from major Computer Science
publication venues and has gathered 916,946 researchers for more
than 50 years (from 1960 to 2011). The full graph of citation net-
work contained in this data has 1,558,499 vertices (literature pa-
pers) and 20,083,947 edges (citations).

To predict the citation counts after one year, we randomly take
10,000 papers from the literature collection from Year 2009 as the
test set, and another random 10,000 papers from the Year 2009 as
the development set. Note that for all training and evaluation, we
only used features calculated over previous years. For example,
3Downloaded from http://arnetminer.org/citation

Figure 3: Actual vs. predicted citation counts: the performance
for 10-Year CCP for Year 2000 with full features, regression =
CART. The dotted line y = x means the best result of predicted
citation counts = actual citation counts.

when predicting articles published in Year 2009, all the articles up
through Year 2008 are processed, and only the articles from the
Year 2009 are available (as test set). Thus, these time dependent
features would only include papers published in 2008 and earlier.
Structuring the evaluation in this way is more realistic - when pre-
sented with new coming articles, the system can only predict possi-
ble future citations based on the patterns it has previously observed.
We take the same procedure to predict citation counts after 5 (and
10) years with 10,000 test papers and 10,000 development papers
from Year 2005 (and Year 2000). For unobserved feature values,
e.g., new authors or new venues, we use the minimum feature val-
ues instead of N/A: anything has a start. We compare predicted
citation counts with actual citations from the test data.

3.2 Evaluation Metric
The coefficient of determination R2 is used in the context of sta-

tistical models whose main purpose is the prediction of future out-
comes on the basis of related features. It is the proportion of vari-
ability in a data set that is accounted for by the statistical model,
which provides a measure of how well future outcomes are likely
to be predicted by the model. The definition of R2 is:

R2 =

∑
d∈DT

(CT ccp(d)− CT (DT ))
2

∑
d∈DT

(CT (d)− CT (DT ))2
(8)

where CT ccp(d) is the predicted citations for article d in the test
set DT and CT (DT ) = 1

|DT |
∑

d∈DT
CT (d) is the mean of the

observed citation counts for an article in DT . R2 ∈[0, 1], and a
larger R2 indicates better performance and hence is desired.

3.3 Performance and Feature Analysis
The best predictive performance of 10-Year citation count pre-

diction is shown in Figure 3, and the detailed results are summa-
rized in Table 2 and 3. The size of the circles in Figure 3 indicates
the number of points in each predicted citation counts. Most circles



Table 2: The performance of various prediction techniques for different feature combinations on the test set. “+” indicates the single
feature group in isolation while “-” indicates the drop of the feature group from the full combination.

1-Year CCP (∆t=1) 5-Year CCP (∆t=5) 10-Year CCP (∆t=10)
Methods LR kNN SVR CART LR kNN SVR CART LR kNN SVR CART
+Content 0.093 0.055 0.097 0.100 0.102 0.061 0.103 0.105 0.122 0.101 0.147 0.155
+Author 0.541 0.515 0.537 0.549 0.572 0.567 0.583 0.571 0.598 0.581 0.603 0.611
+Venue 0.274 0.208 0.322 0.315 0.301 0.296 0.317 0.332 0.321 0.313 0.355 0.373
-Content 0.646 0.628 0.671 0.697 0.679 0.632 0.691 0.705 0.689 0.693 0.711 0.723
-Author 0.279 0.245 0.285 0.303 0.296 0.317 0.364 0.372 0.394 0.387 0.402 0.418
-Venue 0.571 0.551 0.548 0.562 0.582 0.575 0.585 0.589 0.612 0.606 0.631 0.643

Combined 0.664 0.607 0.625 0.683 0.706 0.640 0.719 0.752 0.767 0.725 0.755 0.786

are gathered within in the range of [0, 50], indicating most of the
papers have relatively low citations. The predicted citation counts
will be overestimated for a short period of years. A possible expla-
nation is that for papers with certain features (such as high author
rank, high venue rank, etc.) are predicted to have high citations. To
sum up, the system is not well performed in predicting short term
impact but it is still of great significance because it is likely to esti-
mate the long term citation counts for a paper more accurately, but
the ultimate citations determine the achievements of literature.

Different predictive models have different performances on these
three individual tasks in our experiments. In general, non-linear
regression achieves better performance. From Table 2, we notice
that kNN has the worst performance. The result is as expected be-
cause kNN merely seeks the most similar neighbors and takes the
neighbors’ citation counts as the predictive citations while utilizes
little information from the enormous training data. LR, by linear
combination of all features, and CART by non-linear regressions
have comparable performances and proves the generality of our
extracted features. CART performs best among these regression
models in practice.

We then examine the different aspects of feature groups: paper
content (feature 1-2), author expertise (feature 4-8) and venue im-
pact (feature 9-10) in Table 2. Author expertise is proved to be the
most influential feature group in citation count prediction, with the
highest performance of R2=0.611 in isolation and the lowest per-
formance when left out from full feature combination. It is under-
standable that authors are likely to cite papers written by reputable
and influential authors. Venue impact is also significant. Papers
from prestigious venues are likely to be highly cited. Unexpect-
edly, paper content is proved to have the least significance, with
the average performance of R2=0.12 in isolation for CART. We
assume (1) authors have biases to choose their bibliography: they
sometimes merely consider author/venue reputation; (2) it seems
that paper quality is represented by author/venue which create the
paper. Influential authors or venues seem to overwhelm the impact
of paper content itself; (3) it might also be due to the insufficient
feature distilling for contents, e.g. using abstracts as approximation
may not be enough for topic/diversity discovery.

We also conduct to a detailed experiment on all separate features
in Table 3. We mark the most prominent performance of single
features with asterisks in Table 3. The absence of Author Rank,
Venue Rank and H-Index lead to unfavorable decrease.

4. RELATED WORK
The measurement of citation count has long been a big con-

cern for academia, and is heavily discussed by fundamental re-
search journals (e.g. Science, Nature and PNAS) as further exam-
inations of scientific achievements to distinguish significant ones.

Table 3: Feature analysis: R2 result when with the pending
feature (“+”) in isolation (we mark the top 3 prominent features
with asterisks), and the result in R2 when dropped from the all-
features model (“-”).

Feature + −
Topic Rank 0.079 0.721
Diversity 0.157 0.645
Recency 0.101 0.677
H-Index 0.244∗ 0.536

Author Rank 0.486∗ 0.375
Productivity 0.198 0.613

Sociality (NOCA) 0.056 0.731
Authority 0.155 0.647

Venue Rank 0.337∗ 0.593
Venue Centrality 0.049 0.762

The yearly calculated Impact Factor, introduced by Eugene Garfield,
is a measurement of citation counts of articles published in science
journals and is still pervasive [6]. It is frequently used as a proxy
for the relative importance of a journal within its field, with jour-
nals with higher impact factors deemed to be more important than
those with lower ones and can be combined with other metrics such
as popularity [17]. However, impact factor can not reflect the cita-
tions of individual papers [5, 15] and hence needs a normalization
from the audience of citing sides [22].

As to author aspects, the h-index is a useful index that attempts
to measure both the productivity and impact of the published work
of a scientist or scholar [9, 8]. The index is based on the set of the
scientist’s most cited papers and the number of citations that they
have received in other people’s publications. H-index measures the
impact of researchers and is directly related to publication citations.

However, both impact factor and h-index reflect the macro char-
acteristics but the attractiveness of a specific collection (all papers
from a particular author or venue) may be skewed by individuals.
No previous work has focused on manipulation for individual pa-
pers, neither does any try to measure future citations of literatures.
To the best of our knowledge, we are the first to formally research
into future citation counts prediction for literatures.

Citation counts indicate the impact of authors, papers and venues,
and several works have conducted to analyze citation behavior [1,
14] and perceive interesting discoveries. Sun et al. have investi-
gated different impacts of author, venue and content features for
clustering in these heterogeneous networks [18]. Through citation
linkage, authors are found to affect to authors and paper contents
[21, 19], and as well contents (such as topics) are influential to
each other [12, 4]. We conduct to an extended examination of all



these factors correlated with citation counts, with many more new
features added. There do exist several prediction works for the lit-
erature world based on citation features, such as co-author predic-
tion [11] and citation linkage prediction by collaborative filtering
[10]. Other applications include literature search/recommendation
system based on features and citation behaviors [1, 7].

Unlike previous studies, we formally research into a new predic-
tive task of citation count prediction and what is more, we add more
relevant features into consideration.

5. CONCLUSION AND FUTURE WORK
In this paper we present a novel task of Citation Count Prediction

(CCP), which predicts the future citations for publications. Given
a particular paper and its corresponding features relevant with ci-
tation patterns (such as paper content, author expertise and venue
impact), CCP predicts its possible citation counts. We formally for-
mulate CCP task as a learning problem utilizing several regression
models, and evaluate the prediction performance by coefficient of
determination (R2).

From our experiments, we find that authors have biases in citing
references. Author expertise and venue impact are the distinguish-
ing factors for the consideration of bibliography, among which, Au-
thor Rank, Venue Rank make paper attractive. Content features in
isolation are not predictive. In general, the prediction after a longer
period can achieve the best accuracy (R2=0.786 when ∆t = 10).
Currently, we consider a particular paper itself without consider-
ing any of its audience (citing papers). However, the impact of
audience can also be modeled because once a paper is cited by an
attractive audience, it is likely to be attractive as well. As consid-
ering the audience will result in a multi-step diffusion problem and
increase the complexity in measurement. In this study, we do not
consider the audience’s characteristics when measuring the popu-
larity of the cited literature, while it can be further studied in the
future.
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