
MoodCast: Emotion Prediction via Dynamic Continuous Factor Graph Model

Yuan Zhang†§, Jie Tang†§, Jimeng Sun‡, Yiran Chen†, and Jinghai Rao♯
†Tsinghua National Laboratory for Information Science and Technology

§Department of Computer Science and Technology, Tsinghua University, China
‡IBM TJ Watson Research Center, USA ♯Nokia Research Center Beijing

{fancyzy0526, mithich.chan}@gmail.com, jietang@tsinghua.edu.cn, jimeng@us.ibm.com, jinghai.rao@nokia.com

Abstract—Human emotion is one important underlying force
affecting and affected by the dynamics of social networks. An
interesting question is “can we predict a person’s mood based
on his historic emotion log and his social network?”. In this
paper, we propose a MoodCast method based on a dynamic
continuous factor graph model for modeling and predicting
users’ emotions in a social network. MoodCast incorporates
users’ dynamic status information (e.g., locations, activities,
and attributes) and social influence from users’ friends into
a unified model. Based on the historical information (e.g.,
network structure and users’ status from time 0 to t− 1),
MoodCast learns a discriminative model for predicting users’
emotion status at timet. To the best of our knowledge, this work
takes the first step in designing a principled model for emotion
prediction in social networks. Our experimental results onboth
real social network and virtual web-based network show that
we can accurately predict emotion status of more than 62% of
users and 8+% improvement than the baseline methods.

I. I NTRODUCTION

We are living in an evolving social ecosystem and our
emotion statuses are often influenced by a complex set of
factors. For example, we may become happy because of
watching a great movie, having delicious food, or having
completed a difficult task; while we may also feel happy just
because our friends feel happy. Christakis and Fowler [1] [2]
qualitatively studied the problem of the spread of happiness
in social networks. They found that within a social network,
happiness spreads among people up to three degrees of
separation, which means when you feel happy, everyone
within three degrees to you has a higher likelihood to feel
happy too.

In this work, we address an even harder problem: i.e.,
how to quantitatively predict one’s emotion status. Given
complex social dynamics, we focus on the following aspects
of the social networks for doing the emotion prediction.
First, temporal correlation:One’s emotion status at current
time is highly correlated to her emotion in the recent past.
Figure 2(a) confirms this temporal correlation of the emotion
status on a mobile social network (MSN) data set. Second,
social correlation: One’s emotion is correlated with the
emotion status of her friends. Figure 2(b) confirms this
network correlation of the emotion status on the LiveJournal
data set. Third,attribute correlation: The environment and
activities of a person can also affect her emotion status.

Jennifer

Happy

Happy

location

Neutral

Neutral

call

sms

Mike

Allen

MikeAllen

Jennifer today

Jennifer

yesterday

?

Jennifer

tomorrow

MoodCast

Predict

Attributes f(.)

Temporal

correlation h(.)

Social correlation g(.)

Figure 1. Model illustration of emotion prediction in a mobile social
network.

Figure 2(c) shows that while playing and shopping, the
person’s emotion status more likely stays as “Positive” and
“Wonderful”. On the other hand, while working, the person’s
emotion status more likely stays as “Negative” or “Neutral”.

By leveraging these aspects, we solve the problem of
emotion prediction through a dynamic continuous factor
graph model. Specifically, in this model, each user’s attribute
is modeled as a factor function and her friends’ influences
are modeled as an exponential decay function; while the
user’s emotional changes over time are modeled as a Markov
chain. To learn the model, we design an approximate method
MoodCast using Metropolis-Hastings sampling. We apply
MoodCast to predict user’s emotion for two real networks:
one mobile social network and one online social network
derived from LiveJournal.com. Experimental results on both
data sets show that MoodCast can clearly improve the
prediction accuracy against several baseline methods.

Figure 1 illustrates the process involved in the MoodCast
model learning and prediction on the mobile network data
set. The top figure shows Jennifer’s social network and
the bottom figure shows the proposed MoodCast model.
In particular, for the mobile social network, we can use
the mobile context data (e.g., GPS location, call logs, SMS

Terrible Negative Neutral Positive Wonderful
0

0.2

0.4

0.6

Li
ke

lih
oo

d

Average
Dependent

(a) Temporal correlation

Negative Neutral Positive
0

0.2

0.4

0.6

0.8

Li
ke

lih
oo

d

Average
Dependent

(b) Social correlation

Terrible Negative Neutral Positive Wonderful
0

0.2

0.4

0.6

0.8

Li
ke

lih
oo

d

Average
Playing
Shopping
Working

(c) Attribute correlation

Figure 2. (a) One’s emotion status at previous time influences on her current mood.Averageis the the likelihood of all users with a certain emotion and
Dependentis the likelihood given that the user feels the same at previous time on the MSN data (statistics from the MSN data). (b) Thefriends’ emotions
influence on his current mood.Averageis the the likelihood of all users with a certain emotion andDependentis the likelihood given that the user’s friends
feel the same (statistics from the LiveJournal data). (c) The user’s activities influence on his/her current mood (statistics from the MSN data).

text) as the attributes of each user. The model incorporates
three different types of information including user’s historic
emotion status (temporal correlation), friends’ emotion sta-
tuses (social correlation), and user attributes. The output of
the learning phase is a predictive model, aka a dynamic
continuous factor graph model in our case. The final step
is to predict the emotion status of each user in the network.

II. PROBLEM DEFINITION

A static social network can be represented asG = (V, E),
whereV is the set of|V | = N users andE ⊂ V ×V is the
set of directed/undirected links between users. Given this,
we can define the user’s emotion status as follows.

Definition 1. Emotion: A user vi’s emotion status at time
t is represented asyt

i . Let Y be the space of the emotion
status. We can denote the historic log of every user’s emotion
status up to timet as Y = {yt

i}i,t, whereyt
i ∈ Y.

In general, the emotion status can be defined as a se-
quence of discrete events. For example, in the mobile social
network, five different events are defined: “wonderful”,
“positive”, “neutral”, “negative”, “terrible”. Further,each
user is associated with a number of attributes at a continuous
time-scale and thus we have the following definition.

Definition 2. Continuous time-evolving attributes: The
continuous time-evolving attributes in the social network
are defined as a set of historic attribute-value logs, i.e.,X .
Specifically, suppose each user hasd attributes. When user
vi changes the value of herj-th attribute at timet, we add
a three-dimensional element(vi, t, aj) → xt

ij into the set
X , wherext

ij is the new value of the attributeaj associated
with uservi at time t.

Note that as the attribute of a user may change at any time,
it is necessary to define the attribute changes at a continuous
time-scale, rather than discrete timestamps. Figure 3 illus-
trates some examples of continuous time-evolving attributes
of two users. The beginning of each color bar indicates the
value change of a specific attribute.

Given this, we can define the input of our problem, a
dynamic continuous network.

Definition 3. t−Dynamic continuous network: The dy-
namic continuous network (from time 0 to timet) is denoted
as Gt = (V, Et, Xt, Y t), where V is the set of users,

Location:
Jennifer

Mike

Dorm Lab Library Dorm

Dorm Supermarket Restaurant Dorm

Activity:
Jennifer

Mike

Sleeping Playing

Sleeping Shopping Eating Studying

Working

Playing

Mood: Jennifer

Mike

Neutral Wonderful

Neutral Good Bad

Bad

Neutral

Good

00:00 08:00 18:50 22:00

07:50 15:40 22:3019:50

Figure 3. Example of dynamic attributes.

et
ij ∈ Et is a link between usersvi and vj created at time

t, and Xt is the continuous time-evolving attributes of all
users in the network, andY t represents the set of emotion
status changes of all users in the social network.

We use the superscriptt to denote that the dynamic
continuous information in the networkGt is up to timet,
that is, all edgesE, attribute changesX and emotion status
changesY are recorded until timet. Thus the learning task
of our problem can be defined as:
Learning task: Given a dynamic continuous networkGt,
the goal is to learn a predictive functionf to predict the
emotion status of users at a future time(t + 1). Formally,
we havef(V, E(t+1), X(t+1)|Gt)→ Y (t+1).

To learn the emotion predictive model, there are several
requirements. First, as the input is a dynamic continuous
network, it is necessary to find a function to capture the
continuous property. Second, the emotion status of each user
is related to multiple factors, e.g., network structure, attribute
changes, and users’ historic emotion status, it is important
to find a unified model which is able to consider all the
information simultaneously. In existing works, Tan et al. [3]
propose a graph model to predict user actions in the dynamic
social network. Tang et al. [4] study how to quantify the
social influence and Goyal et al. [5] investigate how to learn
the influence from the history of users’ actions. However,
all the models do not consider user emotions. Christakis and
Fowler [1], [2] study the problem of the spread of happiness
in social networks. However, they only qualitatively test the
spread of happiness on two small data sets. To the best of
our knowledge, no previous work has been done for emotion
prediction in the dynamic social network.

III. O UR APPROACH

We formalize the problem of emotion prediction in a
dynamic continuous factor graph model and propose an
approach referred to as MoodCast to learn the model for
predicting emotional status of individuals. Our basic idea
is to define the correlations using different types of factor
functions. An objective function is then defined by the
joint probability of the factor functions, and the problem
of emotion model learning is cast as learning the model
parameters to maximize the objective function based on the
input dynamic network. In summary, we define three kinds
of factor functions:

• Temporal correlation function h(yt′

i , yt
i),t

′ < t. It
represents the dependency of one’s emotion status at
time t on his emotion at the recent past timet′.

• Social correlation function g(yt
i , y

t′

j),t′ < t. It repre-
sents the influence of uservj ’s emotion at timet′ on
uservi’s emotion at timet.

• Attribute correlation function {f(xt
ik, yt

i)}k. It de-
notes the influence of an attribute ofvi at time t.

The three factors can be instantiated in different ways,
reflecting our prior knowledge for different applications.
Here, we use the mobile social network as the example
to explain how we define the factor functions. Based on
the attributes associated with each user in the mobile social
network, we define the following attribute factor functions:
Location: The feature represents the location of the user.
We use GPS and GSM data to locate the user. The location
is usually denoted as the longitude and the latitude value. To
reduce noisy data, we only keep locations where the mobile
user stays for more than 10 seconds.
SMS text: The feature represents whether or not a word is
contained in the Short Message Service (SMS) text message
sending to or received from one’s friends.
Calling logs: The feature represents that the user makes
(or receives) a call to his friend.
Activity: The features represents what the user is doing.
There are eight predefined categories for the activities in the
annotation system.

All the factor functions are time-dependent. For example,
when there is a new call at timet, then a factor function is
defined. All the attribute factor functions are converted into
binary functions. For example,f(xt

i1 = 1, yt
i = ‘positive′)

represents if the uservi’s emotion status is “positive” at time
t and the index of his GPS location is 1, then the feature
value is 1, otherwise 0. Finally, for the historic attribute-
value log Xt, we can accumulate all the factor functions
and obtain a local entropy for all users:

1

Z1
exp{

∑

vi∈V

∑

xt
ik

∈X

αkfk(xt
ik, y

t
i)} (1)

whereαj is the weight of functionfj andZ1 is a normal-
ization factor.

For social correlation factor function, we define it based
on pairwise network structure and the continuous-time in-
formation. That is, if uservi andvj has an relationship, then
we define a social correlation factor function as follows:

g(yt
i , y

t′

j) = e
−σ1(t−t′)exp{βji(y

t
i − y

t′

j)2} (2)

where t′ is the latest past time when friendvj changed
her/his emotion (i.e., the latest record of emotion change
in Xt); e−σ1(t−t′) is user-independent time-decay factor;
σ1 is a predefined parameter. In the model, we assume
users’ emotions at timet are conditionally independent of
all the past states given the recent past statuses of friends’
emotion. In addition,βji is the weight of the function,
representing the influence degree ofvj on vi. It can be
easily seen that, without loss of generality, the parameter
σ1 can be absorbed into the learning process and combined
with βji. So the above feature function can be rewritten as
g(yt

i , y
t′

j) = exp{−βji(t− t′)(yt
i − yt′

j)2}.
For temporal correlation factor function, we try to use it

to model the decay of the user emotion based on his/her past
status and define it as:

h(yt
i , y

t′

i) = e
−σ2(t−t′)exp{λi(y

t
i − y

t′

i)2} (3)

wheret′ is the latest past time when the uservi changed his
emotion status; similarly,σ2 is a predefined parameter;λi

represents how likely uservi changes her emotion. In reality,
some users may easily change their emotion status while
the emotion status of some other users may be more stable.
Again, σ2 can be absorbed and thus we haveh(yt′

i , yt
i) =

exp{−λi(t− t′)(yt
i − yt′

i)2}.
Finally, a factor graph model is constructed by combining

Eqs. (1)-(3) together, i.e.,

p(Y |Gt) =
1

Z
exp{

∑

vi∈V

∑

xt
ik

∈X

αkfk(xt
ik, y

t
i)

+
∑

vj∈NB(vi)

∑

(yt
i
,yt′

j
)∈Y t

−βji(t − t
′)(yt

i − y
t′

j)2

+
∑

vi∈V

∑

(yt
i
,yt′

i
)∈Y t

−λi(t − t
′)(yt

i − y
t′

i)2}

(4)

whereZ is a normalization factor;NB(vi) denotes the set
of neighbors ofvi in the network;(yt

i , y
t′

j) indicates a pair
of close emotion status betweenvi andvj recorded inY t.

Learning the factor graph model is to estimate a parameter
configurationθ = ({αk}, {βji}, {λi}) from a given historic
attribute-value logXt, which maximizes the log-likelihood
objective functionL(θ) = logpθ(Y |G

t), i.e.,

θ
⋆ = arg max

θ
log p(Y = y|x, θ) (5)

Input : number of iterations and learning rateη;
Output : learned parametersθ = ({αk}, {βji}, {λi});

Initialize θ = {α, β, λ};1.1
repeat1.2

% sample a new configurationY ′ based onq(Y ′|Y);1.3
Y ′ ← q(Y ′|Y);1.4

τ ∼ min(p(Y ′|Gt,θ)
p(Y |Gt,θ)

, 1);1.5
toss a coins according to aBernoulli(τ, (1− τ));1.6
if (s = 1) then1.7

Y ← Y ′; % accept the new configurationY ′;1.8
if (Err(Y ′) < Err(Y) & ∆θF < 0) then1.9

θnew ← θold + η(∆θF);1.10
end1.11
else if (Err(Y ′) > Err(Y) & ∆θF ≥ 0) then1.12

θnew ← θold − η(∆θF);1.13
end1.14

end1.15
until convergence;1.16

Algorithm 1 : The MH-based learning algorithm.

IV. M ODEL LEARNING

It is usually intractable to do exact inference in such a
graphical probabilistic model. The intrinsic difficulty isto
calculate the normalization factorZ, which sums up all
possible configurations ofY , thus making the complex expo-
nential to the number of nodes in the graph. Several methods
have been proposed to address this problem. For example,
[3] defines all factor as a integral (quadratic) function, so
Z can be calculated by a transformation to a multivariate
Gaussian distribution. Some other methods such as Junction
Tree [6] and Belief Propagation [7] are used to obtain an
approximate solution. In this paper, we use a sampling-
based Metropolis-Hastings (MH) algorithm [8], a particular
Markov-chain Monte Carlo algorithm. The advantage of the
MH algorithm is that it can derive a global gradient update
for each parameter, thus obtaining better performance. The
MH-based learning algorithm mainly consists of two key
ingredients: (1) a proposal distribution, which defines how
likely a new conditional configuration should be accepted;
(2) parameter update according to the training error. In the
following, we explain the learning algorithm in details.

As summarized in Algorithm 1, in each iteration of the
learning algorithm, by the Metropolis-Hastings algorithm,
we first sample a new configurationY ′ conditioned on
Y according to a proposal distributionq(Y ′|Y), which
is defined over all possible configuration spaceY. The
algorithm accepts the new configuration with an acceptance
ratio τ ∼ min(p(Y ′|Gt,θ)

p(Y |Gt,θ) , 1). If the new configurationY ′ is
accepted, the algorithm continues to update the parameters
θ. Basically, there are two cases to update the parameters. In
both cases, we first calculate two scores: errorErr and un-
normalized likelihood difference∆θF . The error is simply
counting the number of mistakenly predicted examples on
the training data. That is, based on the currently learned
parametersθ, if the model predicts the emotion status of a

user is positive at timet and the user’s status is also (anno-
tated as) positive, we say that the the model makes a correct
prediction; otherwise a mistake. The un-normalized likeli-
hood difference is calculated by∆θF = θF (Y ′)− θF (Y),
whereF (Y ′) is the exponent component of Eq. (4) (i.e., the
formula without the normalization factor and the exponential
function). Then in the first case, if the errorErr(Y ′) of
the newY ′ is lower thanY but the likelihood difference is
negative (ideally should be positive), the algorithm updates
the parameters byθnew ← θold + η∆θF . In the second
case, if errorErr(Y ′) of the newY ′ is larger thanY but
likelihood difference is positive (should be negative), the
algorithm updates the parameters byθnew ← θold− η∆θF .

The proposal distributionq(Y ′|Y) in Algorithm 1 can
be defined in different ways. For simplicity, we can use a
random distribution, that is, from the current configuration
Y , we randomly change the emotion variable for each node
and then obtainY ′. Another strategy is to use a heuristic
algorithm to sampleY ′. For example, we can calculate the
un-normalized likelihood difference of a new configuration
and in each iteration we try to find a configuration with
the largest difference to update the parameters. However,
surprisingly, we find that the random solution always clearly
outperforms the heuristic-based proposal distribution, either
on efficiency or effectiveness.

Mood Forcasting Based on the learned parameterθ, we
can predict the users’ future emotions. Specifically, The
prediction problem can be cast as finding the emotion status
that maximizes the likelihood given the learned parameters
and historical data. Formally, the problem is an instance of
the Maximum a Posteriori (MAP) problem as follows.

argmax
y∈Y

p(Y = y|Gt, θ)

The prediction algorithm is also based on the Metropolis-
Hastings algorithm. Specifically, we first initialize a config-
uration of emotion statusY . In each iteration, we sample a
new configurationY ′. Then we calculateL(Y ′), the un-
normalized log-likelihood ofY ′, and decide whether we
accept it in the same way as that in the learning algorithm.
Then we compare it to the optimal solution we obtained
so far. If Y ′ is better (L(Y ′) > max), we record it as the
optimal solution.

V. EXPERIMENTAL RESULTS

We conduct experiments on two data sets to evaluate the
effectiveness of our proposed MoodCast. All data sets and
codes are publicly available.1

A. Experimental Setup

Data Sets We perform our experiments on two different
genres of data sets: one real mobile social network (MSN)

1http://arnetminer.org/moodcast/

and one virtual web-based network (LiveJournal). Statistics
of the two data sets are shown in Table I.

In the MSN data set, we have collected all-day communi-
cation (by SMS and call), calendar, alarm, Wifi signal, GPS
location, activity, and mood information from 30 volunteers
of a university from May to July, 2010. This data represents
over 36,000 hours of continuous data on human activity and
emotion status. In total, there are about 9,869 human labels
of the emotion status. Users in the MSN data set form a
small social network.

Table I
STATISTICS OF THEMSN AND THE L IVEJOURNAL DATA SETS.

Dataset Users Links Avg. links Label Avg. Labels
MSN 30 96 3.2 9,869 329

LiveJournal 469,707 23,318,572 49.6 2,665,166 5.7

The LiveJournal data set was collected from LiveJournal,2

a social media platform where users share common passions
and interests. Basically, users on LiveJournal can post what
they are doing, how they are feeling, and give comments
to the posts of their friends. The system also allows the
users to associate a “mood label” to each of their posts.
We conduct an analysis on the most 155 commonly used
mood labels and classify them into three categories: positive,
negative, and neutral. We collected the LiveJournal data set
in the following ways. First we choose the administrator
of the computer science community as the anchor and use
a crawler to extract her friends. Then for each user, we
extract his/her mood label and friends. With the recursively
crawling process, eventually we obtain a data set of over
5GB. The derived social network from the data set (as shown
in Table I) consists of 469K users and 23 million friendships
between the users. On average, each user has 49.64 friends
and publishes 5.64 posts on the website. We use words in
the posts as the user attributes.
Baseline Methods We define four baseline methods for the
emotion prediction task.

• SVM-Simple.The method only uses user attributes as
features to train a classification model and then employs
the classification model to predict the user mood. For
SVM, we use SVM-light3.

• SVM-Net.Besides using user attributes, the method also
include the network information (i.e. social correlation
and temporal correlation) as features, i.e., the same
features as in our MoodCast approach.

• Naive Bayes (NB-Simple).The method uses the same
features as that in SVM-Simple. The only difference is
that it uses the Naive Bayes as the classifier.

• Naive Bayes (NB-Net).It uses the same features as that
in SVM-Net and uses the Naive Bayes classifier.

2http://www.livejournal.com
3http://svmlight.joachims.org/

Evaluation Measures In all experiments, we evaluate the
mood prediction performance in terms of Precision, Recall,
and F1-Measure. We also analyze the convergent property
and the factor contribution of the proposed MoodCast ap-
proach.

B. Mood Forecasting Performance

On both the two data sets, we use the historic data (time
0 to t−1) of the users as the training data. Then we predict
a user’s emotion status at timet given the attributes’ values
of the user at timet. In particular, in the MSN data set,
we choose the data in the last 4 days as the test data and
the rest as the training data. In the LiveJournal data set,
we choose the data in the last 3 months as the test set and
the rest as the training data set. Table II lists the prediction
performance of the different approaches on the two data sets
with the following observations.

From the results, we see that our method clearly out-
performs the baseline methods on both data sets. On av-
erage, MoodCast achieves a 8+% improvement compared
with both SVM and Naive Bayes methods. Moreover, we
see that MoodCast has a stable performance while SVM
varies greatly on LiveJournal dataset. We analyze the result
by SVM and find that the poor performance of SVM is
caused by the sparse of the value of user attributes. The
attributes of LiveJournal data set are the keywords in their
posts. However, there are many posts that do not contain
discriminative keyword words. For example, a user posted
“Survey, everyone read, you will know me better” which
contains no useful words for predicting the emotion status.
Solely considering the attribute information (as in SVM-
Simple and NB-Simple) is difficult to accurately predict the
emotion status. From Table II, we can also see that sim-
ply combining all the features (social correlation, temporal
correlations) together (as in SVM-Net and NB-Net) can im-
prove the prediction performance, but the performance is still
unsatisfactory. Our method can leverage and differentiate
friends’ influence information and users’ historic emotion
information, thus achieving a better performance.

C. Analysis and Discussion

To obtain deeper understanding of the results, we perform
the following analysis.
Effect of the Number of Sampling Iterations We conduct
an experiment to see the effect of the number of the sampling
iterations. We use the average F1-Measure of three classifiers
to measure the overall performance. Figure 4 illustrates the
experiment result. We see our MH-based learning algorithm
converges in less than 100 iterations on both data sets. This
suggests that learning algorithm is very efficient and as well
has a good convergence property.
Factor Contribution Analysis In MoodCast, we consider
three different factor functions: social correlation (S),tem-
poral correlation (T), and attribute correlation (A). Herewe

Table II
PERFORMANCE OF MOOD PREDICTION ON THE TWO DATASETS WITH

DIFFERENT APPROACHES(%).

Classifier Method
MSN Dataset LiveJournal Dataset

Precision Recall F1-score Precision Recall F1-score

Positive

MoodCast 68.42 69.23 68.82 52.50 73.68 61.32
SVM-Simple 60.88 71.08 65.58 49.56 48.57 49.06

SVM-Net 59.12 72.70 65.21 50.72 60.29 55.09
NB-Simple 67.30 56.21 61.25 57.08 43.34 49.27

NB-Net 71.89 56.59 63.33 59.1 47.38 52.59

Neutral

MoodCast 67.78 76.57 71.90 59.61 84.92 75.44
SVM-Simple 67.39 59.73 63.33 67.58 78.69 72.71

SVM-Net 68.42 55.11 61.05 71.21 78.13 74.51
NB-Simple 54.14 68.04 60.30 65.95 54.14 59.46

NB-Net 51.06 71.62 59.62 61.70 61.53 61.61

Negative

MoodCast 30.77 13.95 19.20 45.45 54.98 49.77
SVM-Simple 5.63 4.54 5.03 71.67 37.39 49.14

SVM-Net 8.18 16.90 11.02 68.78 37.68 48.68
NB 14.70 28.16 19.32 54.77 36.61 43.89

NB-Net 17.88 32.08 22.96 51.70 41.18 45.84

Average

MoodCast 55.66 53.25 53.31 52.52 71.19 62.17
SVM-Simple 44.63 45.12 44.65 62.94 54.83 56.97

SVM-Net 45.24 48.23 45.76 63.57 58.70 59.42
NB-Simple 45.38 50.80 46.95 59.26 44.69 50.87

NB-Net 46.94 53.43 48.63 57.5 50.03 53.35

0 100 200 300
0.4

0.45

0.5

0.55

0.6

#Iterations

A
vg

. F
1−

M
ea

su
re

MSN Dataset
LiveJournal Dataset

Figure 4. The influence of sampling iteration times.

perform the analysis to evaluate the contribution of different
factor functions defined in our model. We first rank the
individual factor by their prediction power, then remove
those factors one by one in reversing order of their prediction
power. In particular, we first remove social correlation factor
function denoted as MoodCast-S, followed by removing the
temporal correlation factor function denoted as MoodCast-
ST, and then train and evaluate the prediction performance
compared to MoodCast. In the MSN data set, we further
remove the activity information (MoodCast-STA) and the
location information (MoodCast-STAL).

Figure 5 shows the average F1-Measure score after ignor-
ing the factor functions. We can observe clear drop on the
performance when ignoring some of the factors. This indi-
cates that our method works well by combining the different
factor functions and each factor in our method contributes
improvement in the performance. The only exception is
that when ignoring the social correlation factor function
on the MSN data set, there is no effect on the prediction
performance. This is a bit surprising. Intuitively, in the real
mobile network, users may be influenced by friends with
a stronger degree than users in the virtual social network.
By carefully investigating the data set, we found that in our
MSN data set, the friendship network is sparse (averagely
each user only has 3.2 friends) and the mobile users seldom

MSN
0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
vg

. F
1−

M
ea

su
re

LiveJournal
0.4

0.45

0.5

0.55

0.6

0.65

A
vg

. F
1−

M
ea

su
re

MoodCast
MoodCast−S
MoodCast−ST

MoodCast
MoodCast−S
MoodCast−ST
MoodCast−STA
MoodCast−STAL

Figure 5. Contribution of different factor functions. The left is MSN
result and the right is LiveJournal result. MoodCast-S stands for ignoring
social correlation factor. MoodCast-ST stands for ignoring both the social
correlation and the temporal correlation factors. MoodCast-STA stands for
further ignoring activity attribute and MoodCast-STAL stands for further
ignoring location attribute.

contact with each other through mobiles (this might be due
to the limited number of participants).

VI. CONCLUSION

In this paper, we study a novel problem ofemotion
prediction in social networks. We propose a method re-
ferred to as MoodCast for modeling and predicting emotion
dynamics in the social network. MoodCast formalizes the
problem into a dynamic continuous factor graph model
and defines three types of factor functions to capture the
different types of information in the social network. For
model learning, it uses a Metropolis-Hastings algorithm to
obtain an approximate solution. Experimental results on two
different real social networks demonstrate that the proposed
approach can effectively model each user’s emotion status
and the prediction performance is better than several baseline
methods for emotion prediction.

VII. *ACKNOWLEDGMENTS
The work is supported by the NSFC (No. 61073073, No.

60703059), NSFC Key Fund (No. 60933013), National High-tech
R&D Program (No. 2009AA01Z138). It is also supported by a
research award from Nokia China Research Center.

REFERENCES

[1] J. H. Fowler and N. A. Christakis, “Dynamic spread of happiness
in a large social network: longitudinal analysis over 20 years in the
framingham heart study,” inBritish Medical Journal, 2008.

[2] J. Whitfield, “The secret of happiness: grinning on the internet,” in
Nature, 2008.

[3] C. Tan, J. Tang, J. Sun, Q. Lin, and F. Wang, “Social actiontracking
via noise tolerant time-varying factor graphs,” inKDD’10, 2010, pp.
807–816.

[4] J. Tang, J. Sun, C. Wang, and Z. Yang, “Social influence analysis in
large-scale networks,” inKDD’09, 2009, pp. 807–816.

[5] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence
probabilities in social networks,” inWSDM’10, 2010.

[6] W. Wiegerinck, “Variational approximations between mean field theory
and the junction tree algorithm,” inUAI’00, 2000, pp. 626–633.

[7] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief
propagation,” inNIPS’01, 2001, pp. 689–695.

[8] S. Chib and E. Greenberg, “Understanding the metropolischastings
algorithm,” American Statistician, vol. 49, no. 4, p. 327C335, 1995.

