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Abstract—Link prediction and recommendation is a funda-
mental problem in social network analysis. The key challenge
of link prediction comes from the sparsity of networks due to
the strong disproportion of links that they have potential to
form to links that do form. Most previous work tries to solve
the problem in single network, few research focus on capturing
the general principles of link formation across heterogeneous
networks.

In this work, we give a formal definition of link recom-
mendation across heterogeneous networks. Then we propose a
ranking factor graph model (RFG) for predicting links in social
networks, which effectively improves the predictive perfor-
mance. Motivated by the intuition that people make friends in
different networks with similar principles, we find several social
patterns that are general across heterogeneous networks. With
the general social patterns, we develop a transfer-based RFG
model that combines them with network structure information.
This model provides us insight into fundamental principles
that drive the link formation and network evolution. Finall y,
we verify the predictive performance of the presented transfer
model on 12 pairs of transfer cases. Our experimental results
demonstrate that the transfer of general social patterns indeed
help the prediction of links.

Keywords-Social network analysis, Link prediction, Recom-
mendation, Factor graph, Heterogeneous networks

I. I NTRODUCTION

Social networks are not static. They are dynamic struc-
tures that evolve over time either by addition of new vertices
or nodes or by new links that form between nodes. Thus, the
study and modeling of the dynamics in the network structure
are important and a center of focus of a number of papers
[1], [2], [3], [4].

In this paper, we consider the process of link formation
as a tenet behind network growth and evolution. That is,
given nodes in a network, the network grows by forming
new relationships among the existing nodes. This has a
variety of applications including biology, medicine, and
social networks. In this paper, we focus on social networks,
considering the question of which individuals will form
connections with each other. This is the problem of link
prediction or recommendation, which can be defined as the
task of predicting whether a link will form between two
nodes in the future. However, how such social networks
evolve at the level of individual links is still not well
understood [5], and forms the main motivation for our work.

Another motivation for this work comes from the major
challenge of the link prediction problem which results from
the sparsity of real social networks [6], [5], which means
that the existing links between nodes are only a very small
fraction of all potential links in the network. To solve
the strongly unbalanced data between negative instances
and positive instances, the authors of [7] undersampled the
holdout test set to balance and the authors of [8] also
contribute only a sample of the negative instances to their
test set. However, this sample changes the data distribution
which no longer presents the same challenges at the real-
world distribution. This makes the prediction performance
is uninterpretable, because it no longer reflects the real
capabilities and limitations of the prediction model [6].
[9] studies the problem of inferring the types of social
relationships across heterogeneous networks. However, the
problem itself is different from the link prediction and
recommendation addressed in this work.

While a significant body of research has been conducted
on homogeneous social networks, there is very little work on
capturing the general principles across heterogeneous social
networks. What are the intrinsic mechanisms by which link
forms and structure evolves in different social networks?
To which extent can we use the general patterns to model
the link formation and network evolution? These questions
reveal the interacting human behaviors that underlie the
fundamental patterns of social activities. The solution tothis
problem could help shape and improve our understanding of
human behaviors and social networks.

The principle of homophily suggests that users with
similar characteristics tend to associate with each other
[10]. Here we study how four different online networks-
Epinions, Slashdot, Wikivote, Twitter-satisfy link homophi-
ly, which means that users who share common positive
links (trust/friends/vote/reciprocity) will have a tendency to
associate with each other. Figure 1 shows the probability
of a new relationship exists as a function of the number of
common links. Clearly, the likelihood of two users creatinga
link increases when the number of their common neighbors
increases in the four networks. This effect of homophily is
more pronounced when the number reaches 100, where the
probabilities are all higher than 50% in the four networks.
It is worth noting that the probability of reciprocal relations



in Twitter network increases more sharply than in the other
networks in Figure 1.

Let us consider an example in Figure 2. The top part of
Figure 2 shows two networks-Twitter and Mobile-which is
the input of our problem. The bottom part of Figure 2 is the
output of our problem: formation of new links. In Twitter,
we try to recommend (or predict) new following links for
users and in Mobile network we predict communication
relationships. The middle of Figure 2 is the general social
patterns we discovered over the two networks for link
formation. The fundamental challenge here is how to find
the general patterns and bridge them across heterogeneous
networks into a model for link prediction.

In this work, we consider the traditional link prediction
problem where we split the data into two parts: one is for
training and the other for testing. For each useru, we predict
users with whom she or he will create a new link and
recommend a candidate list for friends in the training data.
Then we evaluate whether new links form betweenu and
the recommended candidates in the testing data. Specifically,
the paper makes the following contributions.

• We first propose a ranking factor graph model for
link prediction, which can extensively improve the
performance (on average +10% in terms ofAUC and
two times higher inPre@30) of friends recommenda-
tion over both well-known unsupervised methods and
supervised frameworks.

• Then we conduct an investigation of link formation over
different online social networks in the high-level of hu-
man behaviors. We find some interesting general social
patterns in triad relationships, which is the basic unit
of network structure across heterogeneous networks.

• Based on the discovered general social patterns, we
define the problem of link prediction across heteroge-
neous networks and propose a transfer-based ranking
factor graph model, which incorporates the discovered
social patterns into a machine learning framework.

We verify the predictive power of the presented transfer-
based model with discovered general social patterns over dif-
ferent networks. Experimental results show that the transfer-
based model performs better in most cases when compared
to the baseline methods, including our non-transfer ranking
factor graph model.

This paper is organized as follows: In Section II, we
give a brief description of the online data we use. Section
III formulates the problems. Section IV introduces several
basic predictors and Section V presents the social patterns
and feature definition. Then we propose our transfer-based
model and the learning algorithm in Section VI. Section VII
introduces the experiment which validates the effectiveness
of our model. Finally, we review some previous work related
to ours in Section VIII and conclude this work in Section
IX.
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Figure 1. Probability of a new relationship exists as a function of the
number of common friends.

Figure 2. Example of predicting and recommending links across the
Twitter network and the Mobile network.

II. DATA DESCRIPTION

In this study, we consider four different online social
networks from which we can extract positive links: Epinions,
Slashdot, Wikivote, Twitter.

Epinions is a who-trust-whom online social web site for
product review. The data set consists of 131,828 nodes and
841,372 links, of which about 85.0% are trust links. From
this data, we create a network of reviewers with only trust
relationships. The trust data set consists of 131,828 nodes
and 715,360 links. Our goal on this data set is to predict
trust relationships for each user.

Slashdot is a technology-related news website known
for its specific user community. The raw network we used
here consists of 82,144 nodes and 549,202 links, which
was obtained in February 2009 by [11]. From this data, we
extract a network with only friendship to recommend friends
for each user.

Wikivote is a who-vote-whom network to decide who to
promote to adminship in Wikipedia.com. [11] crawled all



Table I
DATASET STATISTICS

Dataset #nodes #links +links d cc di

Epinions 131,828 841,372 85% 13 0.2424 14

Slashdot 82,144 549,202 78% 13 0.0863 11

Wikivote 7,115 103,689 79% 29 0.2089 7

Twitter 63,803 153,098 38% 5 0.1721 24

administrator elections and vote history data. The resulting
network contains 7,118 nodes and 103,747 links of which
78.7% are positive. We use the voting links to build our
network for positive link recommendation.

Twitter is an online social microblogging network which
is built by traversing the following links from 10/12/2010
to 12/23/2010 [4]. On Twitter, when one follows a user,
sometimes that user will follow back. Twitter thus facilitates
a reciprocal following relationship between users. Here, we
use the reciprocal following relationship to build the network
for recommending links for each user.

Table I lists statistics of the four networks with positive
links we extracted from the original data.d is the average de-
gree of each node andcc is the average clustering coefficient.
di denotes the diameter of each network. All the original
data is publicly available1. Our goal here is to predict and
recommend positive relationships for each user.

III. PROBLEM DEFINITION

We first give several necessary definitions, then present
the formal definitions of link prediction in singular ho-
mogeneous social networks. Finally, we give the problem
formulation of link recommendation across heterogeneous
networks.

Given a social graphG(V,E,X), whereV is a set of
|V | = N users andE ⊑ V ×V is a set of friendships among
users.X is a |V |2 × d attribute matrix associated with links
(both existing linksE and non-existing linksEU ) in V ×V
with each rowxs corresponding to a link (connectingvi and
vj), which describes the nodesvi andvj (i.e., degree) and
the link attributes (i.e., the number of common neighbors,
the similarity betweenvi andvj ).

Our first goal is to recommend friends for a specific
uservs, based on her/his attributesxs and her/his existing
friendships. More precisely, we are concerned with the
following problem:

Problem 1:Link Recommendation. Let G = (V,E,X)
be an attribute augmented friendship network. For a particu-
lar uservs and a set of candidatesC to whichvs may create
a link, the task of recommendation is to find a predictive
function such that we can recommend friends forvs:

f : (V,E,X, vs, C) → Y

1Epinions, Slashdot and WikiVote are available
at http://snap.stanford.edu. Twitter is available at
http://arnetminer.org/reciprocal

where Y = {y1, y2, . . . , y|C|} is a set of inferred results
for whether uservs would create links with users in the
candidate setC. The predictive function will output a
probabilityp(1|esi) for possible existence between usersvs
and vi; thus our task can be viewed as obtaining a pair
(esi, p(1|esi)) for each candidatevi for uservs.

Then, we turn to the problem of recommendation across
heterogeneous networks. The input of this problem consists
of two partially labeled networksGS (source network) and
GT (target network) with|ES | >> |EUS |. In other words,
there are far more existing links than non-existing links in
the source network, with an extreme case of|EUS | = 0. Based
on the traditional link recommendation, we formulate the
transfer recommendation with the following format:

Problem 2: Link Recommendation across Heteroge-
neous Networks.Given a source networkGS with abundant
positive relationships and a target networkGT , the goal is
to learn a predictive function

f : (GT |GS) → YT

for generating the probabilities that a user creates links in
the target network by leveraging the information from the
source network.

The second problem formulation is different from the
traditional link prediction problem [12], [6], [13]. The source
and target network could be different. It is also different from
the problem of inferring social ties across heterogeneous
networks [9], as in this paper we focus on the recommen-
dation problem. What are the fundamental factors that form
the link, the micro-clique and the macro-structure of the
networks? How reliably can we recommend friends in the
target network by using the information provided in the
source network? How similar and stable are the behaviors
of people when forming friendships in different network
worlds?

IV. BASIC PREDICTORS

In this section, we will first describe how we generate
candidate relationships and then introduce several baseline
predictors.

Candidate Generation.In this work, we try to recommend
friends for users. To construct the data, we first randomly
selected 2,000 nodes as the source users [5] from the
network. For each source user, we generate the candidate
list for her/him. Specifically, for a given uservs, there are
in total (|V | − d(vs)) potential links except her/his existing
friends.2 Here, we choose the2-hop neighborhood asvs’s
potential friends. There are two reasons that we focus on
predicting links in the distance of2-hop. First, there is
empirically hard to believe that the benefit of successfully
predicting links to nodes at highn-hop neighbors is greater
than the benefit of predicting them at lown-hop neighbors

2d(vs) denotes the degree of nodevs.



[6]. More than half of all links close triangles at the time
of creation, i.e., a person connects to a friend of her/his
friend [3]. Second, the number of potential candidates grows
exponentially (d(vs)n−1) as the number of hopsn increases.
For example, in Epinions, if setn=3, then only 0.6% of the
candidate relationships will finally be created.

Baseline Predictors. Straightforwardly, we can consider an
unsupervised method. In [12], the authors reviewed several
typical unsupervised methods for link prediction and found
that thecommon neighbors (CN)method,Adamic/Adar (AA)
[14] measure andJaccard (JA) indexhave better perfor-
mance in most cases. Here we consider the three methods
as the basic predictors. In addition, we also define another
predictor using thePreferential Attachment (PA)index. All
four methods use the principle of homophily (similarity) to
make predictions.

The CN predictor simply counts the number of common
neighbors between two nodesvi andvj to make prediction.
The ranking score can be formally defined as|ψ(vi)∩ψ(vj)|
whereψ(v) denotes the set of neighbors of nodev.

The AA predictor also counts the number of common
neighbors, but weights each common neighbor by a measure
called rarity, i.e.,

∑
vk∈ψ(vi)∩ψ(vj)

1
log d(vk)

. Intuitively, if a
common neighborvk has a large number of neighbors, then
it is not a good indicator to connect the candidate node to
the given node.

TheJA predictor examines the rate of common neighbors
in their neighbors, vizψ(vi)∩ψ(vj)

ψ(vi)∪ψ(vj)
.

ThePA predictor calculates the similarity betweenvi and
vj by the product of their degreesd(vi)× d(vj).

The unsupervised methods do not use training data, we
could further consider the following two supervised meth-
ods: SVMRank and logistic regression classification model
(LRC), for link recommendation and prediction. SVMRank
uses the local attributes associated with each link or node
as features to train a classification model and then apply it
to rank the potential nodes in the test data. Here, we use
SVM-light. LRC uses the same local attributes to train a
logistic regression classification model. As for features in
the supervised models, we use the same attributes as those
on our proposed model (Cf. II).

V. SOCIAL PATTERNS AND FEATURE DEFINITION

In this section, we introduce several interesting social
patterns we discovered in the different networks. Based on
these patterns, we give the feature definition for supervised
methods.

Degree distribution. The power-law distribution indicates
that growth and preferential attachment plays an important
role in network development [1]. In [15], the authors found
the Internet topology fits the power-law relationships. Sim-
ilarly, we connect the networks used here to power-law
distributions. Figure 3 illustrates that all four different online
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Figure 3. Distribution of the number of positive links (trust / friends /
vote / reciprocity) of each user.
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Figure 4. Probabilities of balanced triads in four network based on positive
links (trust / friends / vote / reciprocity) and all links.

networks can be fitted to power-law distributions, including
trust relations in Epinions, friendships in Slashdot, vote
relations in WikiVote and reciprocity in the Twitter following
network. People with different relations in different networks
all prefer to have connections with those who have had more
links.

Social balance. Social balance theory [11] is based on
the principles that “the friend of my friend is my friend”
and “the enemy of my enemy is my friend”, which means
that for each group of three users, either all three of these
users are friends or only one pair of them are friends.
To test whether social balance can help recommendation
across heterogeneous networks, we examine how the four
different networks satisfy this theory. Figure 4 shows the
probabilities of balanced triads based on positive links and
all links. It clearly shows that it is more likely (more than
80% likelihood) for users to establish balanced triangle of
positive relationships in all four online networks.

Microscopic mechanism. Microsociology is one of the
branches of sociology, concerning the nature of human social
interactions and agency on a small scale [16]. It shares close
association with the philosophy of phenomenology. It can
offer us a new perspective to understand the establishment
and development of social relationships at a micro-level.



Table II
LOCAL FEATURES DEFINED FOR LINK(vi, vj ) IN

EPINIONS/SLASHDOT/WIKI VOTE/TWITTER.

Feature description
in-degree din(vi) , din(vj)
out-degree dout(vi) , dout(vj)
all-degree dall(vi) , dall(vj)

common neighbors |ψ(vi)
⋂
ψ(vj )|, ψ(vi) is the neigh-

bors ofvi
Admic/Adar Index

∑
vk∈ψ(vi)

⋂
ψ(vj)

1
log d(vk)

Jaccard Index
|ψ(vi)

⋂
ψ(vj)|

|ψ(vi)
⋃
ψ(vj)|

Preferential Index d(vi) × d(vj )

Here, we step from the formation of a close triad, the basic
micro-structure in networks to understand the microscopic
mechanism of link evolution and network growth. More
specifically, we categorize users into two groups (elite users
and ordinary users) by estimating the importance of each
user by the PageRank algorithm, and selecting the top 1%
users [4] as elite users (opinion leaders), with the other as
ordinary users. We try to examine the close triad formation
with different types of users in it.

Figure 5(a) enumerates six cases of the process of triad
formation. We examine the probabilities that two users (Y
and Z) have a link, conditioned on whether user X, Y, Z
are elite users. There exists some interesting patterns we
have found. First, the probabilities of each of the six cases
forming a close triad are very distinct. In Figure 5(b), take
Epinions network as an example. Conditioned on whether Y
and Z are elite users, the probability of Y and Z have a link
in case (A/B) (both elite users) is higher (2 to 5 times) than
that in (C/D) (either), much higher (10 to 20 times) than
that in (E/F) (none). Users Y and Z are more likely (2 to 10
times) to have a link if X is an elite user (A/C/E) than if X is
not (B/D/F). Second, the four networks share a very similar
distribution on probabilities of close triad formation in all
six cases, though the four networks are totally different.

Based on these patterns, we particularly define so-
cial pattern-based features (social balance and microscopic
mechanism) for the proposed factor graph models. Table II
lists a detailed definition of the other features used in the
baseline models and the proposed models.

VI. T RANSFERRANKING FACTOR GRAPH MODEL

In this section, we present a (transfer-based) ranking factor
graph model (RFG) for friend recommendation.

A. The Link Recommendation Model

To rank the candidates generated for each source user, we
propose a ranking factor graph model (RFG) to recommend
friends. Figure 6 illustrates the graphical illustration of RFG
model.

Given a networkG = (V,E,X), the left-bottom figure
shows the 2-hop personalized network of a given uservs
and the right figure shows the proposed RFG model. For

the TRFG model, the input includes both a source network
and a target network in the left part of Figure 6. In the right
figure, the graphical model has two layers of variables and
two types of functions.

Now we explain the proposed RFG model in detail. For
the given uservs, there are two existing friends:v5 andv6.
We feed the model with the candidate list{v1, v2, v3, v4}
obtained from candidate initialization. The bottom layer
of variables in graphical model are observations, which
are a collection of both existing and potential friend pairs
{(vs, vi)}. The corresponding latent variable in the upper
layer represents whether two users are friends. The model
incorporates two different types of information including
social correlation and attribute correlation. The corporation
can be defined as a joint distribution:

p(Y |G) =
∏

f(vs, vi, ysi)g(Xc, Yc) (1)

This joint distribution contains two kinds of factor functions
which may influence the formation of links.

• Attribute correlation factor: f(vs, vi, ysi). It repre-
sents the influence of an attribute of potential link
betweenvs andvi.

• Social correlation factor: g(Xc, Yc). It denotes the
influence of social relationYc.

In principle, the two factors can be instantiated in different
ways. In this work, we model them by the Hammersley-
Clifford theorem [17] in a Markov random field. For the
attribute factor, we accumulate all of the attributes and obtain
a local entropy for all users:

f(vs, vi, ysi) =
1

Zα
exp{

d∑

j=1

αjfj(xsij , ysi)} (2)

whereα is the weight of functionfj andZα is a normaliza-
tion factor. It can be defined as either a binary function or a
real-value function. For example, for thecommon neighbors
feature of nodevs andvi, we simply define it as a real-value
feature.

For the social correlation factor, we define a set of
correlation feature functionsgk(Xc, Yc) over each triadYc
in the network. Then we define a social correlation factor
function as follows:

1

Zβ
exp{

∑

c

∑

k

βkgk(Xc, Yc)} (3)

where βk is the weight of the function, representing the
influence degree ofkth factor function onYc. We take
opinion leader feature as an example to explain social
correlation factor. It is defined as a binary function: if
the triad contains an opinion leader, then the value of a
corresponding triad factor function is 1, otherwise the value
is 0.



(a) Enumeration of triads.
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(b) Distribution of six kinds of triads.

Figure 5. Toy example of microscopic mechanism. In 5(a), Theenumeration is conditioned on whether X, Y, Z are opinion leaders (green means it is
an opinion leader); In 5(b), the Y-axis presents the probabilities that two users (Y and Z) have a link, conditioned on whether user X, Y, Z are opinion
leaders.

Figure 6. Graphical representation of the RFG and TRFG model. vs
is the given user in the source network who intends to create
links with others;{v1, v2, v3, v4} are four candidate friends;v5
and v6 are two existing friends ofvs; {ys1, · · · , y56} are latent
variables defined for pairs of users, each representing whether the
corresponding pair of users will form a friendship;f(.) represents
a factor function defined for each pair of users;g(.) represents a
correlation factor function defined between latent variables.

whereZ = ZαZβ is a normalization factor.|V | is the set
of users to whom we try to recommend friends and|C| is
the candidate list for each user.

Finally, by plugging Eqs. 2 and 3 into 1, we define
the following log-likelihood objective functionO(θ) =
log p(Y |G):

O(θ) =

|V |∑

s=1

|C|∑

i=1

d∑

j=1

αjfj(xsij , ysi)

+
∑

c

∑

k

βkgk(Xc, Yc)− logZ

(4)

whereZ = ZαZβ is a normalization factor;|V | is the set
of users to whom we try to recommend friends and|C| is
the candidate list for each user;θ = ({α}, {β}) indicates a
parameter configuration.

Learning RFG is to estimate the remaining free parameters
θ, which maximizes the log-likelihood objective function
O(θ). We use the gradient decent method to optimize the
objective function. Here we useα as the example to explain
how we learn the parameters. Specifically, we first write the
gradient of eachαj with regard to the objectiveE function,

∂O(θ)

∂αj
= E[fj(xsij , ysi)]− EPαj

(ysi|xsij )
[fj(xsij , ysi)] (5)

where E[fj(xsij , ysi)] is the expectation of feature
function fj(xsij , ysi) given the data distribution and
EPαj

(ysi|xsij
,G)[fj(xsij , ysi)] is the expectation of feature

function fj(xsij , ysi) under the distributionPαj
(ysi|xsij )

given by the estimated model. Usually, it is intractable to
estimate the marginal probability in the second term of Eq. 5
as the graphical structure can be arbitrary and may contain
cycles. In this work, we use loopy belief propagation (LBP)
[18] to approximate the gradients.

B. TRFG Learning

The Transfer-based factor graph model (TranFG) was first
proposed by [9]. However, TranFG was designed only for
dealing with the classification problem. We now discuss a
variant for our recommendation (ranking) problem. Our intu-
ition is that people make friends in different social networks
with similar principles. More fundamentally, the formation
and evolution of social links which is driven by human
behaviors should be general over all social networks. Back to
the model, we use the general patterns (social balance and
microscopic mechanism) found among different networks
and transfer the correlated patterns to help recommend new
friends across heterogeneous networks.

We now turn to discuss how to learn the predictive model
with two heterogeneous networks (a source networkGS and
a target networkGT ). Straightforwardly, we can define two
separate objective functions for source and target networks.
The challenge is then how to bridge the two networks such



that we can transfer the labeled information from the source
network to the target network. Therefore, we define the
following log-likelihood objective function over the source
and target networks by leveraging general patterns of link
formation into the proposed TRFG model.

O(α, β, µ) = OS(α, β) +OT (µ, β)

=

|VS |∑

s=1

|CS |∑

i=1

d∑

j=1

αjfj(x
S
sij

, y
S
si) +

|VT |∑

s=1

|CT |∑

i=1

d′∑

j=1

µjf
′
j(x

T
sij

, y
T
si)

+
∑

k

βk(
∑

c∈GS

gk(X
S
c , Y

S
c ) +

∑

c∈GT

gk(X
T
c , Y

T
c ))− logZ

(6)

whered and d′ are the number of attributes in the source
network and the target network respectively. In this objective
function, the first term and the second term respectively
define the likelihood over the source network and the target
network; the third term defines the likelihood over common
features about social patterns defined in the two networks.
The common feature functions are defined according to
the general social patterns. Such a definition implies that
attributes of the two networks can be entirely different as
they are optimized with different parameters{α} and{µ},
while the information transferred from the source network
to the target network is the importance of common features
that are defined according to the formation of close triads.

The last issue is to learn the TRFG model. Learning the
TRFG model is to estimate a parameter configurationθ =
({α}, {β}, {µ}) to maximize the log-likelihood objective
functionO(α, β, µ). We could still use the gradient decent
method to solve the objective function. Detailed learning
algorithms for TRFG can be found in [9].

Recommendation. With the estimated parameterθ, the link
recommendation is to find the most likely configuration of
Ys for a given uservs. This can be obtained by:

Y ∗ = argmaxO(Y |G,X, θ) (7)

For inference, we use the loopy belief propagation algo-
rithm to find the values ofYs that maximizes the likelihood.
Finally, we can rank the candidate list and recommend
friends for the given user.

VII. E XPERIMENT

In this section, we first describe evaluation metrics, then
present the performance of several baselines and our RFG
and TRFG models for recommendation. In the case of
TRFG, we finally give several analysis and discussions.

A. Evaluation Metrics

In this work, two-fold cross-validation (i.e., half training
and half testing) is used to evaluate the performance of the
recommendation and prediction. We quantitatively evaluate
the performance of friend recommendation in terms of

Precision at Top 30 (Pre@30) and the Area under the
ROC curve (AUC). AUC is a related scalar measure of the
performance over all thresholds and has classically been
used as a measure of performance in link prediction. For
Pre@30, we evaluate how many of top 30 nodes suggested
by the methods actually have links from nodevs. This
metric has been used in online social media (i.e., Facebook,
Twitter, etc.), where users are presented with a set of friend
suggestion.

Our models are implemented in C++, and all experiments
were performed on a server running Windows Server 2008
with Intel(R) Xeon CUP E7520 @1.87GHz (16 cores) and
128GB memory. The efficiency performance of the proposed
models is acceptable. It takes about three to twenty minutes
to train and predict in most cases. For the special case from
Epinions to Slashdot network, it takes about two hours, due
to the relatively large average degree of each node in these
two networks.

B. Experiments without Transfer

First, we illustrate how our RFG can serve as a powerful
model for recommending positive links on four different
online networks. Table III and IV containAUC andPre@30
values describing the performance of our model and the
other models for predicting potential links within a 2-hop
span, namely:Common Neighbors, Adamic/Adar, Jaccard
Index, Preferential Index, SVMRank and Linear Regression
Classification Model. In general, we note that the supervised
methods achieve better prediction results than unsupervised
ones in terms of bothAUC and Pre@30, and basically,
the AUC values have positive relevance withPre@30. In
Table III and IV, it can be clearly seen that our proposed
RFG model significantly outperforms both supervised and
unsupervised comparison methods. In terms ofAUC, RFG
achieves a 10-30% improvement compared with the unsu-
pervised methods and SVMRank. Especially in Slashdot, the
performance of RFG reaches about 2 times of unsupervised
methods. Comparing with LRC method, RFG also gets
an improvement of 4-9%. For precision at top 30, there
is a slight improvement by RFG to other methods. RFG
achieves a better performance than other methods, about
200% relative improvement compared with unsupervised
methods in Epinions and Wikivote. In Slashdot, there is
a more surprising good performance by RFG. More than
10 out of 30 positive relations we recommend are right in
cases of Slashdot and Wikivote. One of the reasons that
our RFG has better performance is that it considers some
implicit social patterns, namely social balance and close triad
formation.

C. Experiments across Heterogeneous Networks

Performance analysis.We now describe the transfer pow-
er of link recommendation on 12 pairs of networks: S-
lashdot/Wikivote/Twitter as source network to Epinions as



target network, Epinions/Wikivote/Twitter (S) to Slashdot
(T), Epinions/Slashdot/Twitter (S) to Wikivote (T), Epinions
/Slashdot/Wikivote (S) to Twitter (T). In all experiments,the
number of positive instances in the source network is set
to 50% n (n is the number of negative instances in target
network) and the number of source negative instances is
equal to 50% target positive instances.

Table V shows the recommendation results on 12 transfer
cases. We can see that TRFG with information transfer
from source networks outperforms the RFG without transfer
in most cases. With Epinions, the transfer from all three
other networks: Slashdot, Wikivote, Twitter benefits the
recommendation performance evaluated by bothAUC and
Pre@30 metrics. With Slashdot, only the transfer from
Epinions improves the predictive power. We also note that
all the transfers from Epinions or Slashdot have a more
powerful prediction than RFG. With Twitter, TRFG has a
slight advantage over RFG.

Although TRFG outperforms RFG in most cases by
leveraging the supervised information from source networks,
it is worth noting that the transfer seems unhelpful especially
for the cases from Twitter or Wikivote network. By a careful
consideration, we notice that the degree distributions of
Twitter and Wikivote networks does not fully fit the degree
distribution like Epinions and Slashdot in Figure 3. There
indeed exist some similar patterns over different networks,
but the generality of them is sometimes limited.

Transfer efficiency analysis. Here we try to test how
the scale of source networks can affect the prediction per-
formance. Figure 7 shows the performance of link recom-
mendation with transfer by varying the percent of source
instances to target instances. In general, it shows that the
prediction performance decreases as the percent increases,
which is contrary to our intuition that more source instances
could help solve the imbalance problem in target data. The
reason for it is interpretable. Although the social patterns
across heterogeneous networks are general, the original dis-
tribution of the target network varies to some certain extent
with more and more source instances, which may indeed
help decrease the imbalance ratio between negative and
positive instances. Therefore, to what extent we can leverage
the information transferred from source networks depends on
the specific pairs of networks. For example, with increasing
instances in source networks, the performance from Slashdot
to Epinions improves. In contrast, performance decreases
when transfer from Wikivote or Twitter networks.

VIII. R ELATED WORK

In this section, we review related work on link prediction,
social behavior analysis and transfer learning.

Link Prediction. Link prediction has attracted considerable
attention in recent years from both the computer science
and physics community. Existing work can be classified

Table III
PREDICTION WITHOUT TRANSFER, EVALUATED BY AUC

Method Epinions Slashdot Wikivote Twitter

CN 0.8728 0.5048 0.7842 0.5920

AA 0.8736 0.5362 0.7924 0.6198

JA 0.6850 0.3277 0.7241 0.5718

PA 0.8300 0.7108 0.7433 0.5725

SVMRank 0.8943 0.7880 0.7907 0.6834

LRC 0.9405 0.9200 0.8905 0.8044

RFG 0.9821 0.9866 0.9298 0.8905

Table IV
PREDICTION WITHOUT TRANSFER, EVALUATED BY PRECISION@30

Method Epinions Slashdot Wikivote Twitter

CN 3.00 1.81 5.49 4.53

AA 3.38 2.29 5.76 4.64

JA 2.62 1.10 3.45 4.61

PA 1.95 1.76 3.29 4.79

SVMRank 3.14 4.33 7.95 3.37

LRC 4.62 8.14 10.08 4.54

RFG 5.38 11.96 12.02 5.07

into two categories: unsupervised methods and supervised
methods. Most unsupervised link prediction algorithms are
based on the similarity measure between nodes of a graph. A
seminal work by Liben-Nowell and Kleinberg for unsuper-
vised methods addresses the problem from an algorithmic
point of view, investigating how different proximity features
can be exploited to predict the occurrence of new links
in social networks [12]. More recently, researchers have
advocated supervised approaches for link prediction. [19]
proposes a partially labeled factor graph for learning to
predict the type of social relationships in large networks.
[9] further extends this work to heterogeneous networks by
leveraging social theories as the bridge to connect different
networks. In [20], Wang et. al. introduce a local probabilistic
graphical model that can scale to large graphs to estimate the
joint co-occurrence probability of two nodes. [21] presents
a unified framework for learning link prediction and edge
weight prediction functions in large networks, based on the
transformation of a graph’s algebraic spectrum. In [6], [22],
Lichtenwalter et al. motivate the use of a binary classification
framework and vertex collocation profiles through a careful
investigation of many factors. In [5], a supervised random
walk is designed for link prediction and recommendation in
Facebook. The main difference between traditional work on
link prediction and our direction lies in that existing work
mainly focuses on specific networks, while we try to exploit
the general social patterns across heterogeneous networks
and incorporate them into a transfer-based ranking factor
graph model.
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Figure 7. Performance of link recommendation with transferby varying the percent of source instances to target instances. (ep means epinions network,
sd means slashdot network,wk means wikivote network andtw means twitter network.)

Table V
PREDICTION PERFORMANCE OF DIFFERENT TRANSFER CASES

EVALUATED BY AUC AND PRE@30. (S)INDICATES THE SOURCE

NETWORK AND (T) THE TARGET NETWORK.

Transfer cases AUC Pre@30

Epinions 0.9821 5.38

Slashdot (S) to Epinions (T) 0.9873 5.90

Wikivote (S) to Epinions (T) 0.9833 5.38

Twitter (S) to Epinions (T) 0.9825 5.39

Slashdot 0.9866 11.96

Epinions (S) to Slashdot (T) 0.9882 11.99

Wikivote (S) to Slashdot (T) 0.9833 11.21

Twitter (S) to Slashdot (T) 0.9762 10.38

Wikivote 0.9298 12.02

Epinions (S) to Wikivote (T) 0.9343 12.36

Slashdot (S) to Wikivote (T) 0.9313 12.41

Twitter (S) to Wikivote (T) 0.9048 10.74

Twitter 0.8905 5.07

Epinions (S) to Twitter (T) 0.8905 5.08

Slashdot (S) to Twitter (T) 0.8914 5.08

Wikivote (S) to Twitter (T) 0.8906 5.07

Social Behavior Analysis. Our work is also related with
social behavior analysis, because we try employ the general
human behaviors in online social networks. Barabási et al.
[23], [24], [13] take a lot of work to understand individual
human behavior patterns, model the scaling properties of
human sociality and study structure, social ties and pre-
dictability in communication networks. Eagle et al. [25] have
considered how interactions between people over mobile
communication can accurately predict relations among them.
The authors of [26] investigate how social actions evolve
in a dynamic social network and propose a time-varying

factor graph model for modeling and predicting users’ social
behaviors. Hopcroft et al. [4] investigate how social theory
influences the formation of Twitter network in high levels.
Tang et al. [27] study how collaboration relationships have
been formed across different domains. Again, existing work
focuses on social behavior analysis in the same network,
while our work here tries to connect some general social
patterns over different networks.

Transfer Learning. Another type of related work is
transfer learning, which aims to transfer knowledge from a
source domain to a related target domain. Two main issues
in transfer learning are “what to transfer” and “when to
transfer” [28]. Many approaches have been proposed by
selecting instances from the source domain for reusage in the
target domain [29], [30]. There is a lot of work conducted
to transfer features between different domains. For example,
Argyriou and Evgeniou [31] propose a method to learn a
shared low-dimensional representation for multiple related
tasks. In recent years, there is some work about transferring
knowledge across heterogeneous feature spaces [32]. For
example, Argyriou et al. [33] propose an algorithm for
classification in a heterogeneous environment. Compared
with existing work, the networks studied in our problem
are quite different and may not even have any overlapping
attribute features, while most existing works only consider
homogeneous networks. Also, we combine general social
features into a transfer learning framework, while existing
methods are mainly concerned with how to find shared
attributes across different domains.

IX. CONCLUSION

In this work, we study the problem of link prediction and
link recommendation both in homoeonomous networks and
across heterogeneous networks. First, we precisely define the
problems. Then we propose a ranking factor graph (RFG)



model for traditional link prediction and a transfer-based
RFG (TRFG) for the novel link-recommendation problem
across heterogeneous networks. At the micro-level, we find
several general social patterns over different online social
networks. We combine the discovered general social patterns
into TRFG, which is used to transfer supervised information
from the source network to help predict and recommend
links in the target network. Experimental results in both
cases show that our presented models can significantly
improve the predictive performance by comparing them with
several baseline methods.

Although the scale of online social networks is growing
at an exponential rate, the microscopic mechanism of link
formation is still largely unexplored. Exploring the general
social patterns of link formation could help us understand
human interactions better. There are many potential future
directions of this work. First, other general social patterns
can be further explored. Another idea is to apply the
proposed methodologies to other social networks to further
validate its effectiveness.
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