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Abstract—Visually mining a large influence graph is appeal-
ing yet challenging. Existing summarization methods enhance
the visualization with blocked views, but have adverse effect on
the latent influence structure. How can we visually summarize
a large graph to maximize influence flows? In particular, how
can we illustrate the impact of an individual node through
the summarization? Can we maintain the appealing graph
metaphor while preserving both the overall influence pattern
and fine readability?

To answer these questions, we first formally define the
influence graph summarization problem. Second, we propose
an end-to-end framework to solve the new problem. Last, we
report our experiment results. Evidences demonstrate that our
framework can effectively approximate the proposed influence
graph summarization objective while outperforming previous
methods in a typical scenario of visually mining academic
citation networks.
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I. INTRODUCTION

Graphs are prevalent and have become a prevalent plat-
form for the masses to interact and disseminate a variety
of information (e.g., influence, memes, opinions, rumors,
etc.). How to make sense of an individual’s influence in the
context of such graphs? This, which is referred as Influence
Graph Summarization (IGS) problem, is the central problem
we aim to address in this paper. For example, how does a
highly-cited paper impact the research community to raise
several topic threads; and consequentially, how do these
topics interact with each other and lead to a new multi-
disciplinary research direction?

Although closely related, IGS problem bears some subtle
difference from the existing work. First (influence maxi-
mization), many elegant algorithms have been proposed for
the so-called influence maximization problem [1]. While
effective in identifying who are most influential in the graph,
the question of what makes them influential largely remains
open. Second (graph summarization), many interesting work
has been done in the context of graph clustering and
compression. These works typically look for homogeneous
regions in graphs by optimizing a pre-defined loss function
(e.g., minimizing the inter-cluster connection, maximizing
the intra-cluster density, etc). Despite their own success,
most, if not all, of the existing work on graph summarization

tends to ignore the specific characteristics of influence
graphs and how the end user would visually perceive and
consume the summarization results.

To be specific, we outline two design objectives that
differentiate our IGS problem from existing works.
• D1. Flow Rate Maximization. Quite different from ex-

tracting dense clusters on graph, the goal of IGS is to
highlight the flow of influence not only within but also
across clusters. By maximizing the overall flow rate,
IGS-based summarization outlines the strongest interac-
tion among groups of nodes on a graph. For example,
Figure 1 depicts the influence of the famous power-
law paper presented at SIGCOMM’99. The evolution
of research topics is revealed, rather than the hot topics
themselves.

• D2. Localized Visualization. While a large graph can
span millions of nodes and prohibit any readable visual
summarization, in IGS objective, we switch to summa-
rize the influence of a single node on the graph (called
the source node). This localized visualization problem
is at least as important as the overall summarization
problem. Consider a user navigating the citation graph of
computer science papers, after an overview of the entire
field, likely she will drill down to a few interested papers
and examine their influence separately.

In this paper, we propose a unified framework to generate
flow-based, localized visual summarization over large-scale
influence graphs. The main contributions of the paper can
be summarized as:
• Problem Definition, to fulfill the design objectives listed

above for flow-based visual summarization of large in-
fluence graphs (Section II);

• A Unified Framework and Implementation Details, to
solve the IGS problem (Section III and Section IV);

• Performance Evaluations, to demonstrate the effective-
ness of the proposed framework (Section V).

II. PROBLEM DEFINITION

Table I lists the notations used throughout the paper.
The raw inputs are the influence graph I and the source
node f either selected by the user or detected by any



Figure 1. Influence graph summarization on [Faloutsos SIGCOMM’1999] (#Cluster = 20). Node label gives the cluster size and summary on paper
title+abstract normalized by keyword frequency. Link thickness indicates the normalized flow rate.

Table I
NOTATIONS.

SYMBOL DESCRIPTION
I influence graph as input
f source node selected by user or algorithm
G maximal influence graph of f in I
vi, N(i), n nodes, neighbor set and # of nodes in G
A, aij adjacency matrix of G and its entries
MG similarity matrix of G
S graph summarization of G
πc, |πc|, k clusters, cluster size and # of clusters in S
ξs, r(ξs), l flows, flow rate and # of flows in S
πc(s), πd(s) the source and target cluster of flow ξs

existing influence maximization algorithm. Without loss of
generality, it is enough to consider a maximal influence
graph G of f which is an induced subgraph of I containing
all the nodes reachable from f in I (including f ). Though
it is easy to extend the definition to a maximal origin graph
by reversing all the links in I or use the union of the two
definitions, for relevancy to the IGS problem we stick to
the maximal influence graph definition in this paper. Let G
have n nodes, denoted as {vi}ni=1. G is represented by the
adjacency matrix A = {aij}ni,j=1 in which aij denotes the
link weight. aij > 0 if there is a link from vi to vj .

Definition 1: The graph summarization of G, denoted
as S, is a super node-link graph of G. The node set of
S contains k disjoint and exhaustive node clusters of G,
denoted as {πc}kc=1 where |πc| indicates the number of
nodes in cluster πc. The link set of S contains l flows
between the nodes in S (i.e., clusters in G), denoted as
{ξs}ls=1. Each flow ξs represents the collection of all the
links in G from nodes in cluster πc(s) to nodes in cluster
πd(s). The flow rate of ξs is defined by

r(ξs) =

∑
vi∈πc(s),vj∈πd(s)

aij

|πc(s)||πd(s)|

Note that S can be a partial summarization of G, with fewer
flows (l < k2) than a full summarization (l = k2). This
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Figure 2. Difference between IGS problem and traditional graph clustering
problem. Each dash box in the original graph G becomes a square node
in the graph summarization S. (a) Traditional graph clustering leading to
higher intra-cluster flow rate; (b) Influence graph summarization exposing
denser overall flows. In S, the flow rate is labeled above each link and is
mapped to the link thickness visually. We assume a uniform link weight of
1 in the original graph G.

is desirable for influence graph visualization where huge
number of flows and edge crossings can cause unpleasant
visual clutter.

Problem 1: The general IGS problem is defined as
finding a graph summarization S with k clusters and l top
flows of the maximal influence graph G to optimize the
objective function:

max

l∑
s=1

r(ξs)
√
|πc(s)||πd(s)| (1)

The general IGS problem defined in (1), although seem-
ingly similar to, is different from the traditional graph
clustering problems. Let us explain their difference using
the classic ratio association graph clustering problem, whose
objective function is shown below.

max

k∑
c=1

∑
i,j∈πc

aij
|πc|

=

k∑
c=1

r(ξc)|πc|

where ξc denotes the intra-cluster flow from πc to itself.



The IGS objective function is designed to maximize
the sum of l selected flows between or within clusters,
corresponding to l arbitrary blocks in the adjacency matrix.
On the other hand, the ratio association objective maximizes
the sum of intra-cluster flows at all the k diagonal matrix
blocks. In other words, IGS finds dense flows through
summarization which fits well the goal to highlight flows
of influence across the graph. This is quite different from
the traditional graph clustering objective that finds dense
node clusters. An example is given in Figure 2 for visual
comparison.

III. FRAMEWORK

A. End-to-End Pipeline

We propose a unified framework to solve the IGS prob-
lem. The framework features an end-to-end pipeline, as
shown in Figure 3, which decomposes the IGS problem
into several building blocks. Initially, the maximal influence
graph G is computed from the input graph I by a breadth-
first or depth-first search starting from the source node
f . Over the maximal influence graph G, three processing
components work in parallel to generate three matrices on
the graph: the topology similarity matrix, and the optional
attribute and time matrices. The core of our framework
is the decomposition of the topology similarity matrix to
generate k node clusters for the summarization. We carefully
design the topology similarity matrix to ensure that the graph
summarization approximates the flow rate maximization
objective. The requirement of the l flows in the summa-
rization is handled by link pruning using either ranking-
based filtering or the maximum spanning tree algorithm. The
proposed pipeline is flexible and admits many existing graph
mining algorithms for each of its building blocks. On the
other hand, by itself, none of these existing algorithms is
sufficient to solve the IGS problem.

B. Node Summarization

Node summarization is the key building block of our
proposed pipeline. First we compute the topology similarity
matrix by the common neighbor heuristic:

MG =
AAT +ATA

2
(2)

where A is the adjacency matrix of the maximal influence
graph G.

We then propose a matrix decomposition based solution
to generate k node clusters from the similarity matrix MG.
The decomposition employs a Symmetric version of the
Nonnegative Matrix Factorization (SymNMF [2]) which
optimizes:

min
H≥0
||MG −HHT ||2F (3)

where ||·||F denotes the Frobenius norm of the matrix. H =
{hij} is a n by k matrix indicating the cluster membership
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Figure 3. The framework to solve the IGS problem.

assignment of nodes in G: vi will be clustered into πc if hic
is the largest entry in the ith row of H .

IV. IMPLEMENTATION DETAILS

In this section, we provide some additional implementa-
tion details. As shown in Figure 3, our framework involves
four kinds of algorithm-driven building blocks. The rooted
graph search follows the standard BFS/DFS implementation.
Below we describe details for similarity matrix computation,
node summarization and the link pruning for post-processing
of the summarization.

Similarity Matrix Computation. In Section III, we pro-
pose to use the heuristic of common neighbors to construct
the similarity matrix (CommonNeighbor) to approximate
the objective function of the IGS problem. This algorithm
runs fast even for very large graphs due to a complexity
of O(md2) where m is the number of links in G and d
is the average node degree. We have implemented three
versions of the algorithm and it is shown that bidirectional
CommonNeighbor is generally better than one-directional
forward or backward CommonNeighbor in Section V.

Node Summarization with SymNMF. The node summa-
rization is done by applying SymNMF on similarity matrix
MG, and using the factorized matrix H for cluster mem-
bership assignment. In our implementation, we apply the
iterative SymNMF solver with the multiplicative updating
rule in [2] which guarantees convergence. In this iterative
algorithm, the initialization of H is critical to the final result.
We introduce nonnegative eigenvalue decomposition similar
to the method in [3] to compute a good initial factorization.

Link Pruning. The graph summarization by SymNMF
needs further post-processing to select l top flows for the
final summarization S. Here we extract the top flows ac-
cording to the rank of the normalized flow rate. The other
flows are then filtered out. Notice that to recover critical
links, we introduce a constraint to keep a connected graph
in the summarization. It is achieved by adding back the most
dense flow going to each node cluster. An alternative choice
is to use the maximum spanning tree (MST) algorithm [4].

V. EVALUATION

In this section, we evaluate the proposed IGS framework
and the CommonNeighbor algorithms by comparing with
alternative graph summarization methods. Nine approaches



(a) k = 10, l = 10

(b) k = 10, l = 20

(c) k = 20, l = 20
Figure 4. The performance in maximizing the IGS objective on five sample
graphs. The flow rate is summed from the top l flows between k clusters.

are considered: three using CommonNeighbor algorithms
to compute the similarity matrix for SymNMF (i.e. for-
ward+backward, forward, and backward settings), one using
SimRank algorithm [5] to compute the similarity matrix
for SymNMF, the classical graph clustering algorithm with
Ratio Association and Normalized Cut objectives [6], ag-
glomerative Modularity-based graph clustering [7], Metis K-
way graph partition [8] and the Minimal Description Length
(MDL) based graph summarization [9]. Note that modularity
clustering is executed agglomeratively until all clusters stop
merging at the top level or the number of clusters reaches k.
The MDL algorithm can not specify the number of clusters,
in fact, it generates 4,937 clusters on one medium-sized
influence graph. To ensure fair comparison (a larger number
of clusters will lead to a much higher overall flow rate),

we exclude MDL from numeric comparisons, but present
its visual summarization results. The experiment data are
paper citation graphs collected from ArnetMiner [10]. The
influence graphs are obtained by reversing citation links.

A. Flow Rate Maximization

We first pick five source papers from the data set to
generate maximal influence graphs. These influence graphs
are summarized into k clusters, between which the top l flow
rates are summed according to the IGS objective. Figure
4(a)∼(c) present the comparisons among eight summariza-
tion methods on the numeric objective function.

The initial result in Figure 4(a) with a minimal graph
summarization (k = 10, l = 10) suggests that among
three CommonNeighbor algorithms, the bidirectional setting
almost always achieves the best performance in maximiz-
ing the IGS objective (at least > 100% gain), except on
the largest graph (#Node=33,494), the backward Common-
Neighbor obtains a tiny advantage (1%). Further, compar-
ing the bidirectional CommonNeighbor to traditional graph
summarization methods, CommonNeighbor achieves much
better performance than Ratio Association, Normalized Cut
and Metis (at least > 20%, in average > 100%). In some
cases, the performance of CommonNeighbor is matched by
SimRank (< 10% gain) or outperformed by Modularity.
This is because the Modularity algorithm generates more
clusters than the initial setting of k = 10. For example, the
sample graph with 33,494 nodes stops at 71 clusters in the
top modularity level.

When we double the number of flows (k = 10, l = 20)
in Figure 4(b), the sum of flow rates does not increase
much on all algorithms (in average < 15%) and the overall
comparative patterns stay unchanged. This shows that the
top k flows already capture most of the flow rates on
the graph summarization. We then increase the number
of clusters (k = 20, l = 20). The results in Figure 4(c)
reveal that the objection function increases much as the
number of clusters increases (at least > 30%, in average
> 90%, comparing Figure 4(c) with Figure 4(b)), except for
Modularity, which remains unchanged because their number
of clusters are already larger than k and kept stable. On the
comparative pattern, bidirectional CommonNeighbor regains
performance advantage over SimRank and Modularity under
a large number of clusters.

B. Visualization

We evaluate the effectiveness of summarization methods
also by comparing their visualization results: whether they
produce a clean influence graph summarization with little
visual clutter and whether the results are meaningful for
users with domain knowledge. We first pick the famous
frequent pattern mining paper by Prof. Jiawei Han et al.
as the source to generate the maximal influence graph. Then
we execute seven typical summarization methods and depict



(a) CommonNeighbor (proposed) (b) SimRank (c) Ratio Association

(d) Normalized Cut (e) Modularity (f) Metis K-way (g) MDL
Figure 5. Influence graph summarization results on [Han SIGMOD’2000] by different methods (k = 10, l = 20). Node label gives the number of papers
in each cluster and their content summary by either title+abstract keywords in (a),(b) or the top 3 research fields in (c)∼(f). Link thickness indicates the
normalized flow rate. Some part of the graph is highlighted to show the number of citations as edge labels. Note that the modularity algorithm stops at 62
clusters and can not merge any further. MDL produces 4,937 clusters, leaving a half of the visual complexity from the input graph.

their results in Figure 5(a)∼(g). At the first glance, the
proposed bidirectional CommonNeighor method generates a
connected tree-like influence graph summarization without
edge crossing (Figure 5(a)). Compared to that, SimRank gets
a similar visual form (Figure 5(b)) due to the comparable
objective function result, but the generated graph is not
connected. The Metis result is also clean (Figure 5(f)), but
all the clusters have a similar number of nodes, making the
summarized graph impractical for usage. Ratio Association
and Normalized Cut look inferior due to the poor graph
connectivity (Figure 5(c)) and the flat influence hierarchy
(Figure 5(d)). Modularity and MDL are the worst because
of the visual clutter generated from the large number of
clusters remained in the summarization (Figure 5(e)(g)).

Taking a closer look at the visual summarizations, we
find that by CommonNeighbor, most flows represent at
least 300 citation links. While by SimRank, the critical
flows linking the source node are fragmented, two of which
only include 52 and 83 citations. The same deficiency is
found in the result by Metis, where two highlighted flows
only have 11 and 12 citations. We also invite a senior
researcher from the database and data mining community
to evaluate the summarization result. With our interactive
tool, she can switch between the title+abstract summary
and the research field summary. She can also access paper
details in each node cluster with a sorted list by citation
count. She mainly compares the visual summarization by
CommonNeighbor and SimRank. In this case, she prefers
the result by CommonNeighbor in Figure 5(a) because the
influence evolutions make more sense: the initial paper

quickly raises much attention on pattern mining research
such as itemset and association rule mining, then the thread
splits into four streams on general data management research
(such as web and uncertainty skyline analysis), trajectory
analysis, subgraph analysis and application in software engi-
neering (e.g. bug analysis). The thread of web data analysis
gradually moves to web retrieval and finally leads to tag
analysis and anomaly behavior detection. Compared with
CommonNeighbor, SimRank creates some false links, e.g.
the direct flow from the frequent pattern mining paper to
uncertainty data analysis.

Furthermore, we ask another invited researcher to study
the influence of the well-known Internet power-law paper
in SIGCOMM’1999. The maximal influence graph is sum-
marized by the bidirectional CommonNeighbor algorithm
into Figure 1 (in the second page). From the visual sum-
marization, she learns that the SIGCOMM paper directly
influences the research on Internet topology and simulation.
Next, over the Internet topology topics, the P2P research
becomes popular and after that the web-related research and
XML. The most recent hot topic in this thread appears to
be sensor network which corresponds well to his domain
knowledge.

VI. RELATED WORK

First, graph summarization, constructing a smaller ab-
straction to represent the large graph has been a traditional
research topic, e.g. using graph clustering algorithms. These
algorithms usually optimize certain association or cut mea-
sure during the k-way graph partition. Several measures



have been proposed, e.g. ratio association, ratio cut [11]
and normalized cut [6]. The similar problem is also studied
in the context of community detection by interdisciplinary
researchers [12]. However, most of the clustering and com-
munity detection methods on graph target at maximizing
intra-cluster connections while minimizing inter-cluster con-
nections. This is fairly different from the IGS problem
studied here. On the other hand, there are also plenty of
works in compressing large graphs for efficient storage
and representation. In [9], MDL-based compression was
proposed to present the graph with an aggregated structure
and an error correction list. On influence graphs which are
sparse, it performs similarly to a structural equivalence based
grouping [13], leaving huge visual clutters unsettled. Mean-
while, Shahaf et al. [14][15] studied the similar problem of
summarizing large amount of information into user-friendly
visual maps. On a quite different focus, our method is built
on the graph with explicit linkage data while the textual
content of each node can be absent or incomplete.

Second, considerable work has been conducted for study-
ing the effects of social influence. For example, Bakshy et
al. [16] conducted randomized controlled trials to identify
the effect of social influence on consumer responses to
advertising. Tang et al. [17] presented a Topical Affinity
Propagation (TAP) approach to quantify the topic-level so-
cial influence in large networks. Kempe et al. [1] proposed
to use a submodular function to formalize the influence max-
imization problem and develop a greedy algorithm to solve
the problem with provable approximation guarantee. Most
of these works focus on the existence of social influence or
the nature of the information diffusion process and do not
consider the summarization problem. Recently, Mehmood et
al. proposed CSI [18], a model that generalizes the classical
Independent Cascade model to the community level. CSI can
produce similar visual forms to our result. However, the CSI
model is designed for the social influence scenario, while
our method is more focused on the visual summarization of
large influence graphs in the objective of maximizing flows.
We do not leverage the information propagation model and
the associated log data in such scenarios.

VII. CONCLUSIONS

In this paper, we propose the influence graph summa-
rization problem and present a unified framework to solve
it. The framework achieves our design objectives, including
(1) flow rate maximization that highlights the evolution of
influence; (2) localized visualization from the source node.
The framework is comprehensive and flexible. We provide
both the SymNMF based solution and implementation de-
tails. Through evaluations with real-world academic citation
graphs, we demonstrate that our framework constantly out-
performs classical methods, such as graph clustering and
compression algorithms, in both quantitative performance
and qualitative visual effects.
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