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Abstract—Users often fail to find the right keywords to
precisely describe their queries in the information seeking
process. Techniques such as user intention predictions and
personalized recommendations are designed to help the users
figure out how to formalize their queries. In this work, we
aim to help users identify their search targets using a new
approach called Interactive User Intention Understanding. In
particular, we construct an automatic questioner that generates
yes-or-no questions for the user. Then we infer user intention
according to the corresponding answers. In order to generate
“smart” questions in an optimal sequence, we propose the IHS
algorithm based on heuristic search. We prove an error bound
for the proposed algorithm on the ranking of target items given
the questions and answers. We conduct experiments on three
datasets and compare our result with two baseline methods.
Experimental results show that IHS outperforms the baseline
methods by 27.83% and 25.98% respectively.

I. INTRODUCTION

With the exponential growth of information, we often
fail to find the exact information that we are seeking for,
even with the “powerful” search engines. Studies on two
billion daily web searches show that approximately 28%
of the queries are modifications of a previous query [18].
In addition, when users attempt to fill a single information
need, 52% of them modified their queries [11]. Among those
modifications, 35.2% totally changed the query, while 7.1%
only added terms [21]. This indicates that users’ needs are
sometimes too vague to be stated clearly.

Psychologists and educators believe that questions-and-
answers convey more precise information than mere state-
ments [22]. This inspires us to explore an interactive
question-and-answer approach to help users identify their
needs. Specifically, we aim to construct an automatic ques-
tioner that generates questions for the user. We infer the user
intention according to the returned answers. More formally,
by assuming a hypothetical space that contains the user’s
target, we partition it according to the user’s responses to
the questions, and let it finally converge to the user’s target.

This method, which we call interactive user intention
understanding, is a novel approach and has not been studied.
The major challenges include:

Question generation. Good questions should contribute
to a partitioning of the hypothesis space. Also, a good
question sequence should identify the target within a few

rounds. Therefore, the core challenge here is how to generate
an optimal sequence of questions.

User response. There are typically two types of answers
that we can design: literal statements or option choices.
Literal statements convey more information, at the cost of
efficiency – they require more efforts for users to type in
and more time for the system to process. Option choices are
more user-friendly, but provide limited information. Thus
another challenge is how to design proper answer types to
balance the trade-off between these methods.

Interaction efficiency. The time cost of each interactive
round includes: (1) time for the questioner to generate
questions, (2) time for the user to response, and (3) time
for updating the hypothesis space. In real applications the
hypothesis space will be very large. How to design efficient
algorithms to deal with large-scale data and make the
interaction brief is another challenge.

We address all three challenges in our approach, which
only requires users to answer in binary forms; “yes” or “no.”
Figure 1(a) shows an example of the interaction process.
Question 1 could be “Are you looking for companies in
the field of Search Engine?” and suppose the user answers
“no.” Then the points standing for companies (lower part)
will be assigned lower probabilities. A similar procedure is
enacted for Question 2. We then obtain four regions with
three different probability values: red points that are more
likely to be the target and grey points that are less likely.

In this paper, we make three contributions:
First, we propose an interactive method that does not

require typing. Simplified operation is especially meaningful
for mobile users, considering the inefficiency of mobile
typing as well as the rapid growth of the mobile Internet.

Second, we model the probability that the user may make
mistakes and prove a bound of target ranking. Concretely, we
realize that during the interactive process, the user may an-
swer questions incorrectly by different reasons, for example
mis-operations. We assume each user makes mistakes with
some probability, and we bound the ranking of the target
when we have asked some number of questions. The bound
also depends on the probability of “mistaken answers”.

Third, we design an Interactive Heuristic Search (IHS)
method to generate sequential questions and partition the hy-
pothesis space according to the user’s answers. We compare
the proposed algorithm with baseline approaches on three
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(a) Ilustrative example. (b) Prototype system.

Figure 1. An example of the hypothesis space being partitioned by two questions. The image on the left stands for a decision tree made up of questions.
The two boxes on the right represent two statuses of the same hypothesis space. Bright points have higher probability to be the target than pale points.

datasets. On average, IHS requires 7.47 questions less than
others to identify the target. Experiments show that ignoring
user response time, IHS takes only 0.16 second on average
to finish an interactive round.

We have developed and deployed a web application for in-
teractive user intention understanding based on our approach
and the Patent dataset in PatentMiner1 [24]. Figure ?? shows
a screenshot of the prototype system. Users can find suitable
companies for job-hunting or business analysis. We found
that, in practical usage, the system needs fewer questions to
identify users’ intention. This might be because the system
actually displays the top five companies during each questin
round, enabling the user to find the target even when it
does not rank first. On average, the questioner requires on
average two to three questions to make an item rank first
in the top five. Also, the system allows users to enter a
query and search for some candidates first to limit the size
of hypothesis space and reduce the number of questions
required.

The paper is organized as follows. Section II reviews
related literature. Section III formulates the problem. Sec-
tion IV introduces our proposed algorithm. Section V gives
the theoretical basis for the proposed algorithm. Section VI
describes the experiments we conduct to validate the ef-
fectiveness of our methodology. Section VII concludes this
work.

II. RELATED WORK

Intention Prediction. Predicting a user’s intention based on
the user’s query or other information is a challenging task.
Bauer [2] introduced some typical methods that train agents
to identify and extract interesting pieces of information from
online documents. Fragoudis and Likothanassis introduced
the retriever, an autonomous agent that executes user-queries

1http://pminer.org

and returns high quality results in [7]. This agent makes use
of existing search engines and conducts self-training in order
to analyze the user’s preferences from semantic information.

Another approach developed by Chen [4] models and
infers user actions. This approach not only considers key-
word features, but also tries to form a concept hierarchy of
keywords to improve performance. Other information agents
like Office Assistant [9] and WebWatcher [1] use similar
approaches.

Recommendation and Link Analysis. To understand
users’ intentions, various issues based on search engines
and recommendation systems have been developed. Link
analysis [17], [12], [14] is a data-analysis technique used
to evaluate relationships between nodes in a network. Tech-
niques like this will help the system identify popular items,
which in turn helps users search for valuable items and
information. Many recommendation engines have also been
developed. Typically, users need to tell the recommendation
engines their preferences on some items explicitly, since
most of traditional recommendation methods rely heavily on
user logs and feedbacks [13]. In [19], the authors performed
an analysis on different item-based recommendation gener-
ation algorithms, including the computation of similarities
between items and the way of obtaining recommendations.
Meanwhile, they make comparisons between their results
and the basic k-nearest neighbor approach [6], [5], which is
based on collaborative filtering and is a popular recommen-
dation system. However, recommendation engines may not
produce meaningful recommendations when users cannot
express their preferences accurately or there are no user logs
available.

Related Machine Learning Algorithms. As we mentioned
before, the core challenge of our work is the question
selection problem, which is similar to that of active learning
problems [20], [26]. However, we model the probability of



users making mistakes in our work, which makes it different
from active learning. Also, partitioning algorithms such as
KD tree [16], [10] and learning algorithms such as neural
networks [3] can be applied to solve the question selection
problem. Another widely used algorithm is the greedy, which
will be briefly introduced in Section IV as a baseline.

Systems involving the problem of finding a target item
by asking yes-or-no questions have similar patterns. Usually
the system asks the player a yes-or-no question, and the
player answers it. Using the player’s answer, the system uses
some algorithm to find another question and presents it to
the player. The selection of the question aims to minimize
the total number of questions to be asked to identify the
target item.

It is usually very useful to analyze the number of ques-
tions to be asked such that the target item is ranked in the
top n. Such analysis requires considering the worst case in
the procedure; in this game, it is the “worst answer” that
the player could possibly give. When we consider the worst
case in this game, it becomes similar to another well-known
game called “Pusher-Chooser,” introduced by Spencer [23],
in which pusher has to find a balanced split, whereas chooser
tries to take the advantage to introduce an imbalance.

III. PROBLEM

In this section, we introduce some necessary definitions as
well as the formulation of the problem. Suppose we have a
set of n items as candidates for users to choose from, which
are embedded in an m-dimensional tag space. Each tag can
be viewed as an attribute or a feature of items. Formally,
we use a tag matrix to represent the relations between items
and tags:

Definition 1: Tag Matrix. A tag matrix X is an n ×m
matrix, where xij = 1 if and only if item i contains tag j.

To help the user to find the target item in her/his mind,
we generate a number of Yes-or-No questions and ask the
user to answer one-by-one.

Definition 2: Yes-or-No Question. A yes-or-no question
can be regarded as a pair (qi, l), where qi is a tag used in
the i-th question and l ∈ {0, 1} stands for the user’s answer.
Here l = 1 denotes “yes” and l = 0 denotes “no.”

As we mentioned before, we only use general questions
that require user to answer “yes” or “no.” The format for
the i-th question is asking whether the target item the user
is looking for contains tag qi.

Problem&System: In this problem, we are given a tag
matrix X , and our aim is to interactively understand the
users’ intentions in several iterations.

More precisely, we assume that there is a latent target
item that best fits the users’ intentions. In each round we
present a yes-or-no question to the users. According to the
answer provided by the user, we generate next questions to
be presented. We also demonstrate a ranking list of items as

recommendations to the user. Our goal is to minimize the
number of questions to find the target item.

IV. APPROACH

A. Framework

We desribed our proposed approach in this section. The
general idea is to assign each item a weight, which represents
how likely the item is to be the user’s target. In each
question-and-answer round, we update the weights accord-
ing to the user’s answer and rank the items by their weights.

More formally, we use a vector w(t) to denote items’
weights in the t-th round, where w(t)

i denotes the weight of
item i. The weights are initialized to be 1, i.e., w(0) =1. In
round t, for the i-th item that mismatches the answer, we
decrease its weight w(t)

i by multiplying a discount factor
γ (0 ≤ γ < 1). For example, if the user answers that
she is not interested in any items containing tag j, then
all items containing tag j will receive a discounted weight.
After updating, we present the ranking of items according
to their weights in each round. The details of the framework
can be found in Algorithm 1.

Considering users may make mistakes when they answer
the questions (e.g., clicking yes-or-no buttons incorrectly),
an item which mismatches the user’s answer in one round
may has chance to make a comeback if it matches all of the
following answers. Thus, in most cases, we let the discount
factor γ ≥ 0 instead of defining γ = 0. Formally, we define
the probability that a user makes a mistake (i.e., answer the
question incorrectly) in one round as p.

Next we will introduce two algorithms for generating
questions to ask the user.

B. Greedy

We first introduce a greedy algorithm as a baseline. The
basic idea is, in each round, we choose the tag that can
“eliminate” more candidates. In other words, we choose the
tag which is able to mostly decreases

∥∥w(t)
∥∥
1
.

Suppose we are asking the user if she is seeking for items
with tag q, in which case the items are divided into two
groups: one with tag q and the other without tag q. It follows
that the corresponding total weight for these two groups are
〈w(t),Xq〉 and 〈w(t), 1−Xq〉 respectively, where Xq is the
q-th column of the tag matrix X. We then define a score α
as follows:

α = min

{
〈w(t),Xq〉
‖w(t)‖1

,
〈w(t), 1−Xq〉
‖w(t)‖1

}
(1)

We want to maximize α to obtain the largest decline of
total weight

∥∥w(t)
∥∥ when tag q is asked. We now define the

expected value of each tag q at the t-th iteration as

E(q) =
∥∥∥w(t)

∥∥∥−1

1
〈w(t),Xq〉 (2)



Algorithm 1 The interactive recommendation framework.
Input: a tag matrix X , the maximum number of questions

T, and the discount factor γ.
Output: an updated weight vector w(T).

1: initialize weights w(0)
i = 1 for all i;

2: t = 0;
3: repeat
4: q = QuestionSelectionAlgo(X , wt, γ);
5: Ask the user if she is seeking for items containing

tag q;
6: if the answer is “yes” then
7: w

(t+1)
i = w

(t)
i γ1−xiq for each item i;

8: else
9: w

(t+1)
i = w

(t)
i γxiq for each item i;

10: end if
11: t = t+ 1;
12: until t = T
13: return w(T);

From the property
1

‖w(t)‖1
(〈w(t),Xq〉+ 〈w(t), 1−Xq〉) = 1,

we know that searching for q that maximizes α is actually
maximizing min(E(q), 1 − E(q)), which is also equivalent
to minimizing |E(q)− 0.5|. Thus the greedy approach is in
fact searching for q such that

q = argmin
q
|E(q)− 0.5| (3)

C. Interactive Heuristic Search

The limitation of Greedy is that it only considers and
optimizes one-step strategy. Next we propose a heuristic
algorithm that tries to optimize the question sequence.

Suppose at the beginning of each round we consider k
future questions in advance. Similar to the greedy algorithm,
our goal is to reduce ‖W‖1 as much as possible.

Let the tags used in future k questions to be Qk =
{q1, q2, . . . , qk}. Let the corresponding k answers to be
l = l1l2 . . . lk ∈ {0, 1}k, where 1 stands for “yes” and 0
stands for “no”.

After answering the t-th question, the weight of the i-th
item is w(t)

i . Then at the end of the (t + 1)-th round, we
have

w
(t+1)
i =

{
w

(t)
i γ1−xiqt if the answer is “yes”

w
(t)
i γxiqt if the answer is “no”

(4)

where qt is the tag contained in the t-th question.
To simplify, for the corresponding answer l ∈ {0, 1}, we

have

w
(t+1)
i = w

(t)
i γl⊕xiqt (5)

Therefore, after answering all k questions, the weight of
the i-th item is:

wi

k∏
j=1

γlj⊕xij (6)

Hence the total decline of the weight according to answer
vector l is

W [Q|l] =
∑
i

wi(1−
k∏

j=1

γlj⊕xij ) (7)

Since l ∈ {0, 1}k, there are 2k possible answer sequences.
To construct the heuristic function, we consider the worst
case, the one that produces a minimal reduction of weight.
Thus the questions should be selected as:

Q∗ = argmax
Q

min
l∈{0,1}k

{
∑
i

wi(1−
k∏

j=1

γlj⊕xij )} (8)

We then employ a heuristic search to find Q∗. Since the
algorithm asks for a user’s response in every round, we refer
to it as Interactive Heuristic Search.

V. THEORETICAL ANALYSIS

In this section we present some degenerate cases for the
heuristic search discussed above. We first discuss the case
when k = 2 – that is, the algorithm considers two future
questions in advance in every round. We then present an
even simpler case where k = 2 and p = 0 – that is, we
assume that the answer always reflects the truth. We let the
discount factor γ = 0; under this condition the heuristic
function will degenerate to set functions.

At the end of this section we prove a bound on the rank-
ing of target items given the questions and corresponding
answers.

The Behavior of the Algorithm when k = 2. Next we
consider a simple case of the proposed interactive heuristic
search. Namely, the algorithm only considers k = 2 question
in advance in each iteration. We make the deduction in
a different way from the previous one, which results in a
simpler heuristic function to be calculated.

Let q1 and q2 be the first two selected tags. l1 and l2 are
the user’s corresponding answers. According to the user’s
answer to q1, we evaluate the decline of ‖w‖1 as

W [q1|l1 = 1] = (1− γ)〈w,1−Xq1〉 (9)
W [q1|l1 = 0] = (1− γ)〈w,Xq1〉 (10)

where we use W [q|l] to denote the decline of the weight
caused by tag q given the user’s answer l.

For simplicity of the deduction and equations, we con-
struct another weight vector w′ and define w′i = wiγ

xiq1 .
We also let W = ‖w‖1, W ′ = ‖w′‖1, W0 = (1 + γ)W ,
and Wa = 〈w,Xa〉 for a tag a. Another important notation



is Wa∩b =
∑
i wi(xia ∧ xib). Thus we can simplify Eqs. 9

- 10 as

W [q1|l1 = 1] = (1− γ)(W −Wq1) (11)
W [q1|l1 = 0] = (1− γ)Wq1 (12)

Similarly we evaluate the total decline of weight after
asking q1 and q2 as

W [q1 & q2|l1 = 1, l2 = 1]

= (1− γ)(W0 − γWq1 − γWq2 − (1− γ)Wq1∩q2) (13)
W [q1 & q2|l1 = 0, l2 = 1]

= (1− γ)(W + γWq1 −Wq2 + (1− γ)Wq1∩q2) (14)
W [q1 & q2|l1 = 1, l2 = 0]

= (1− γ)(W + γWq2 −Wq1 + (1− γ)Wp1∩q2) (15)
W [q1 & q2|l1 = 0, l2 = 0]

= (1− γ)(Wq1 +Wq2 − (1− γ)Wq1∩q2) (16)

Hence our selected question tags q1 and q2 is:

q1, q2 = arg max
q1,q2

min{Eqs.13− 16} (17)

which is a clearer and cleaner heuristic function.

The Behavior of the Algorithm when k = 0 and p = 0.
Next we consider an even simpler case, where the user will
always answer questions correctly (p = 0) and our algorithm
considers two question in advance (k = 2). We also let γ =
0. Thus we exclude the items immediately if they mismatch
the user’s answers. We will see that in this case, the heuristic
function degenerates into a set of set functions. The possible
updates of weights are

W [q1 & q2|l1 = 1, l2 = 1] = W −Wq1∩q2 (18)
W [q1 & q2|l1 = 0, l2 = 1] = W −Wq2 +Wq1∩q2 (19)
W [q1 & q2|l1 = 1, l2 = 0] = W −Wq1 +Wq1∩q2 (20)
W [q1 & q2|l1 = 0, l2 = 0] = Wq1 +Wq2 −Wq1∩q2(21)

The weights of all items are either 0 or 1; i.e., the weights
become binary. We let S be the set of items that currently
have weight 1. Let P1 and P2 be two sets covering the items
that have tags q1 and q2 respectively; then W becomes the
Cardinality function. I.e., we have

W = Card(S) (22)
Wq1 = Card(P1) (23)
Wq2 = Card(P2) (24)

Wq1∩q2 = Card(P1 ∩ P2) (25)

And the decreased weight becomes

W [q1 & q2|l1 = 1, l2 = 1]

= Card(S)− Card(P1 ∩ P2) (26)
W [q1 & q2|l1 = 0, l2 = 1]

= Card(S)− Card(P2) + Card(P1 ∩ P2) (27)
W [q1 & q2|l1 = 1, l2 = 0]

= Card(S)− Card(P1) + Card(P1 ∩ P2) (28)
W [q1 & q2|l1 = 0, l2 = 0]

= Card(P1) + Card(P2)− Card(P1 ∩ P2) (29)

which follows that

q1, q2 = arg min
q1,q2

max


Card(P1 ∩ P2),
Card(P1 − P2),
Card(P2 − P1),

Card(S − P1 ∪ P2)

 (30)

Notice that the equation above is quite intuitive: two sets
P1 and P2 separate the hypothesis space into several parts,
and we then search for the sets such that the maximum of
these parts is minimized.

Ranking of the Target Item. We assume that the number
of questions needed to find the target item is t. We let α
be the lower bound of the ratio of the decrease over all
iterations. More specifically, we let W (1),W (2), . . . ,W (t)

be the total weights after each iteration, l1, l2, . . . , lt ∈ {0, 1}
be an arbitrary answer sequence. We then have

α = inf
j,l1,l2,...

∑
i w

(j)
i (1− γlj+1⊕xi)

W (j)
(31)

Theorem 1: Let p be the probability that the user answers
incorrectly. and γ be the discount factor. We use a sequence
of random variables yi to denote whether the user answers
incorrectly in the i-th iteration. If the user answers incor-
rectly in the i-th iteration, yi = 1; otherwise yi = 0. Then

Pr[yi = 1] = p (32)

Let Yt =
∑t
i=1 yi and y = ln(γ)Yt − t ln(1 − α); the

target item will surely be in the top L items with highest
weights, where

L =
n

ey
(33)

the expected value of which is:

E[L] = n[(1− α)(1 + p

γ
(1− γ))]t (34)

which means that the target item will surely be in the top
L = n

ey items with highest weights, where L is a random
variable. The expected value of L is n[(1−α)(1+ p

γ (1−γ))]
t.

However, this bound depends on α, which is hard
to evaluate when we do not know the weight sequence
W (1), . . . ,W (t).



Next we will show a bound on the expected value of L on
a random tag matrix, which does not depend on α. Suppose
we know the probability of each entry in the tag matrix being
1 is τ . That is, the tag matrix is generated with each entry
being 1 with probability τ and 0 with probability 1−τ . The
value of each entry is set independently. Then we have the
following theorem:

Theorem 2: After answering t questions, the target item
will surely be in the top L items with greatest weights, and
the expected value of L has the following bound:

E[L] ≤ (2r)tn

2
es + 1 (35)

where

r = ((2− 4p)τ2 − (2− 4p)τ + 1− p) (36)
s = −t/4 + p(t− 1)(1− p) (37)

We can see that this bound on the expected value of L
does not depend on α, and is thus easier to evaluate.

Please refer to Appendix for the proofs of Theorem 1&2.

VI. EXPERIMENTS

A. Experimental Setup

We perform experiments on three datasets to compare the
performance of Interactive Heuristic Search (IHS), Greedy,
and Static Heuristic Search (SHS), the details of the former
two algorithms can be found in Section IV. To show the
power of interactions with users, we propose the third
algorithm SHS. The question generation method of SHS is
the same as IHS, but SHS only interacts with the user every
two rounds. For example, at first, SHS will generate two
questions q1 and q2. In the first round, we ask the user the
question q1. After the user has answered q1, we then ask her
the question q2 directly. SHS then uses the obtained answers
of q1 and q2 to generate the next two questions. Thus, unlike
IHS, the generation of q2 in SHS is independent with the
answer to q1.

We then introduce our three datasets respectively.
Random. In this synthetic dataset, the tag matrix is

randomly constructed, with 1,000 items and 100 tags. Each
element in the matrix is initialized to 1 with a manually de-
fined probability τ and is initialized to 0 with the probability
1− τ .

Patent. In this dataset, we extract 13,091 companies and
3,770,411 patents from USPTO2. Companies are regarded as
items and 428 categories of patents are tags. We then create
the tag matrix as follows: if the company i owns at least one
patent belonging to a specific category j, the corresponding

2http://www.uspto.gov/, a public patent database in united states

element xij is 1; otherwise 0. Averagely, each item contains
17.2 tags.

ArnetMiner. This dataset consists of 36,371 conferences
in computer science and 1,905,496 papers provided by
ArnetMiner3. We then generate topic distributions, θv , for
each conference v on 200 topics by the ACT model proposed
in [25]. We treat each conference as an item and each topic
as a tag. We set the entity in tag matrix xvz = 1 if θvz > β,
where z is a topic and β is a threshold that is manually
defined. In the tag matrix, each row contains 21.2 elements
with value 1 on average.

For each dataset, we build a simulator (answerer) to
answer questions. At first, the answerer randomly selects
an item as the target. In each round, the simulator is
given by a question q generated by the question selection
algorithm (questioner). The answerer provides the answer to
the questioner according to the value of xqv . The interactive
progress continues until the stop condition holds – i.e., the
target ranks first (the weight of the target item is the largest)
or the maximum number of questions has been reached.

B. Quantitative Analysis

In the Random dataset, we randomly pick 300 items as
target one by one, and count the average number of questions
used to identify each target, denoted as r. We vary the
probability τ from 0.05 to 0.5, and see how the performance
of different algorithms change.

In the Patent dataset, we first count the number of tags
that “cover” the i-th item as

C(i) =

m∑
j=1

Xij (38)

We rank all items according to C(i). After that, we
select the top 1,000 items with highest C(i) as targets.
We then select top 2,000 items and keep continue in this
fashion to see how the range of target items influences
the performance. Similar experiments are conducted on the
ArnetMiner dataset. Besides, we also vary the p and see how
user mis-operations affect the results. Figures 2 - 4 show the
detailed results on three data sets respectively.

Firstly, we can see that IHS outperforms Greedy and SHS
(8.07 and 8.86 fewer questions on average respectively),
especially when the user answers incorrectly with higher
probability; e.g., IHS uses 12.7 fewer questions than Greedy
in Figure 3(f). In most cases, SHS requires more questions
than Greedy (31.85 vs. 31.06 on average), which indicates
that it is important to keep interacting with the user.

Secondly, from Figure 2, we can see that r generally
decreases as τ increases. The reason is quite intuitive: if
the tag matrix is very sparse – i.e., each item has very few
tags – it is hard for the algorithm to find the tag that the
item contains. Thus it costs more questions to find the target

3http://aminer.org/
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Figure 2. The performance of different algorithms in the Random dataset.
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Figure 3. The performance of different algorithms in the Patent dataset.

item. In Figure 3 and Figure 4, r also decreases as the target
range expands, which can be explained in the same way.

Thirdly, from all figures, we can easily find that r in-
creases as p increases. It indicates that, if the user does
not know much about the target item and keeps answering
incorrectly, it is hard for the questioner to find the answer.
We can also see curves in all figures tend to be monotonic
and smoother with smaller p.

Another interesting fact is that, the gap between the
performance of IHS and Greedy becomes larger as p in-
creases. By a careful investigation, we find that when the
user answers incorrectly, the weights of items that match the
answer (we refer these item as a set S) do not change while
the target item’s weight decreases. To recover from this fault,
the questioner must ask questions which can differentiate the
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Figure 4. The performance of different algorithms in the ArnetMiner dataset.

Table I
EFFICIENCY STATISTIC (IN SECONDS).

Dataset IHS SHS Greedy
Random 0.025 0.009 0.006
Patent 0.321 0.299 0.087

ArnetMiner 0.120 0.149 0.115

target item from items in S; otherwise the target will never
rank higher than items in S. IHS performs better than Greedy
since IHS considers more tags in one iteration, which makes
it more likely to select a tag that can differentiate the target
from the items in S. It also indicates that IHS has a stronger
capability to compensate for mis-operations and has a more
robust performance than Greedy.

C. Efficiency Analysis

To see how efficient our approach is, we count the average
time used by Interactive Heuristic Search, Static Heuristic
Search, and Greedy in each interaction round. Table I shows
the results. In all datasets, IHS requires more time than
Greedy and Static Heuristic Search. However, it takes less
than 1 second (0.16 second on average) which can be
tolerated in real applications. Static Heuristic Search costs
almost half the time of Interactive Heuristic Search, as it
generates a new pair of questions in every two rounds.

D. Qualitative Analysis

Now we present a case study to demonstrate the effective-
ness of the proposed approach. Figure 5 shows an example
generated from our experiments. It represents a number of
interactive rounds where the target item is IBM. Several

parameters and tags used in questions generated by different
algorithms are shown in the figure, where |W | denotes the
sum of weights before the corresponding round starts, rank
stands for the rank of the target item, and E denotes the
expected value of the selected tag. Black arrows indicate
the user’s responses.

In the first round, Greedy selects a tag with expectation
value close to 0.5, which is reasonable. In the next round,
IHS outperforms Greedy, since all the tags cannot partition
the hypothesis space well. IHS makes a relatively worse
choice at first, but a better one in the next round. SHS
chooses the same tag with IHS at first, but does not interact
with the user after this round, thus loses helpful information.
After the first two rounds, IHS reduces the weights most, and
makes the target ranks top two.

VII. CONCLUSION AND FUTURE WORK

In this paper, we study a new problem, Interactive User
Intention Understanding, to help users identify their target
items. A heuristic-search-based algorithm is designed to
generate questions. We also give a bound on the ranking
of the target item after the user has been asked a number of
questions. We then conduct a series of synthetic experiments
on three datasets and show that our approach outperforms
two baseline methods.

This is our first attempt in interactive user intention
understanding, which has been largely unexplored to date.
One challenge of this work is how to reduce time cost in each
interaction round, which limits the total time of searching in
our algorithm. An interesting and challenging idea is: can we
build a decision tree corresponding to questions we will use
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Figure 5. Case study. Portion of interactive rounds when the target company is IBM. |W | denotes the sum of weights before the corresponding round
starts; rank stands for the rank of the target item; tag is the selected tag used to generate questions; and E denoted the expectation value of the selected
tag. Black arrows indicate the user’s responses.

according to user responses? In this way it only cost O(1)
time to choose a question in each round, which sounds quite
exciting.

Another idea is that, in the real world, the more popular
an item is, the more likely it is to be the target. Thus we can
first make an assumption of the distribution over all possible
target items, and use the knowledge of this distribution to
ask smarter questions.
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VIII. APPENDIX

A. Theorem 1

Proof: Since in t iterations the user answers Yt ques-
tions incorrectly, the weight of the target item is γYt . We
know that at the t-th iteration, the total weight W (t) is no
greater than W (0)(1 − α)t = n[1 − α]t, because at least
αW (i−1) vanishes after answering the i-th question.

The target item will be surely ranking in top L after the
t-th iteration if

L× γYt ≥W (t) = n(1− α)t (39)

We could simply take

L =
n(1− α)t

γYt
(40)

To get the expected value of L, we have

E[L] = E[n(1− α)tγ−Yt ] (41)

= n(1− α)tE[( 1
γ
)Yt ] (42)

= n(1− α)t
t∏

i=1

E[ 1
γ

yi

] (43)

= n(1− α)t[1 + p

γ
(1− γ)]t (44)

which is exactly the result we are looking for.

B. Theorem 2

Proof: We let the user answers l1, l2, . . . , lt to these t
questions where li ∈ {0, 1}. Assume that the target item is
v (the v-th item). Using the definition of p, we have

Pr[li = xvi] = 1− p (45)
Pr[li = 1− xvi] = p (46)

Since each entry is set to be 0 or 1 independently, for
j 6= v,

Pr[li = xji] = p× 2q(1− q) +
(1− p)× (q2 + (1− q)2) = r (47)

Pr[li 6= xji] = p× (q2 + (1− q)2) +
(1− p)× 2q(1− q) = 1− r (48)

and it follows that r > 1− r.
We let Nj be the number of tags that in which item j is

different from l1, l2, . . . , lt. Then we have

Pr[Nj = w] =

(
t

w

)
(1− r)wrt−w (49)

<

(
t

w

)
rt (50)

An item j (j 6= v) ranks higher than the target item v if
and only if Nj < Yt. The intuition for this is that item j
has more tags that match the user’s answers l1, . . . , lt than
item v. Therefore we have

Pr[Nj < Yt] =

Yt−1∑
i=0

(1− r)irt−i

(
t

i

)
(51)

< rt
Yt−1∑
i=0

(
t

i

)
(52)

< rt × 2t−1

(
t
Yt

)(
t
t
2

) (53)

≤ (2r)t

2
e−

(t/2−Yt)
2

t (54)

where Eqs. 53-54 draw from [15] [8].
Since the rank of the target item L is exactly the number

of items that rank higher than it plus 1, we have

E[L] = n× E[Pr[Nj < Yt]] + 1 (55)

≤ (2r)tn

2
E[e−

(t/2−Yt)
2

t ] + 1 (56)

≤ (2r)tn

2
eE[

−(t/2−Yt)
2

t
] + 1 (57)

=
(2r)tn

2
e−t/4+p(t−1)(1−p) + 1 (58)

=
(2r)tn

2
es + 1 (59)

where Eq. 57 draws from Jensen’s Inequality.


