

What Users Care about: A Framework for Social Content Alignment

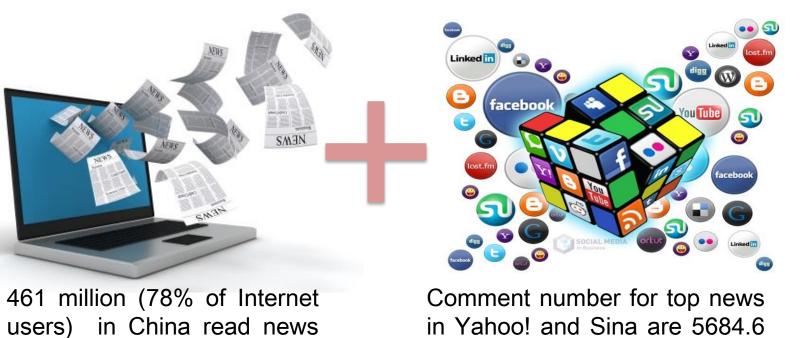
Tsinghua University

Lei Hou¹, Juanzi Li¹, Xiaoli Li², Jiangfeng Qu¹, Xiaofei Guo¹, Ou Hui¹, Jie Tang¹ $^{1}Knowledge\ Engineering\ Group,\ Dept.\ of\ Computer\ Science\ and\ Technology,\ Tsinghua\ University,\ China$ ²Institute for Infocomm Research, Singapore

Motivation and Problem Definition

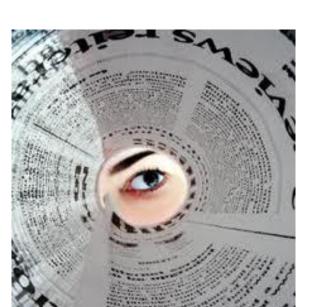
Motivation

The rapid development of Web and social media often floods users with huge volume of information



To understand the document web and related social content

online [CNNIC, Jun. 2013]



and 9205.4 [Nov, 2012].

We Want Know

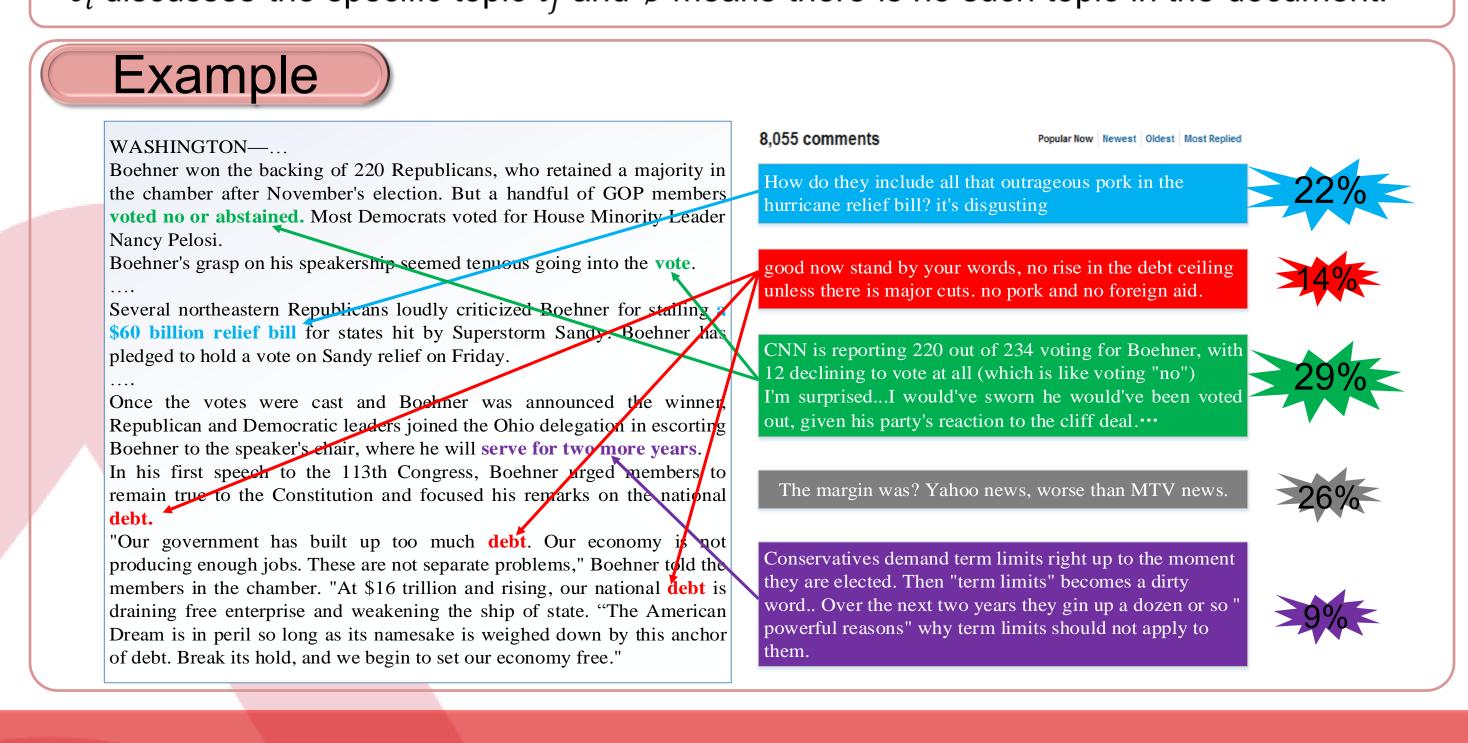
What topics the document and social media talk about

Which part in the news does the social content focuses

What others discuss over the part that I'm interested in

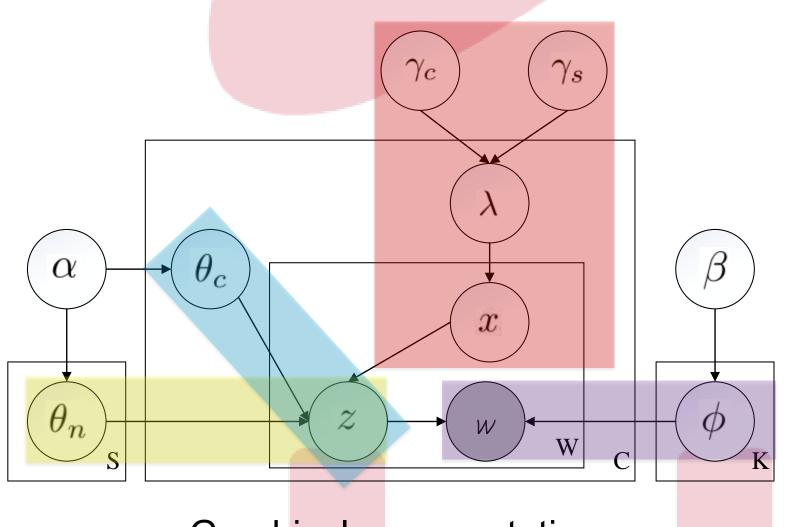
Problem Definition

d: web document; S: sentence set; C:comment set; T: topic set d is consisting of S and associated with C, and all of them talks about T Social Content Alignment is to generate a set of matching pairs < social content, topic>, namely $\{(c_i, t_j) \mid where c_i \in C, t_j \in T \cup \emptyset\}$, which means social content c_i discusses the specific topic t_i and \emptyset means there is no such topic in the document.



Approach





Graphical representation

DCT Model

Algorithm 1: Generative process for DCT model **Input**: the priors α , β , γ_c , γ_n ; S and C**Output**: estimated parameters θ_n , θ_c , λ and ϕ Initialize a standard LDA model over S; **foreach** document $d \in C$ do foreach word $w_{di} \in d$ do Toss a coin x_{di} according to $bernoulli(x_{di}) \sim beta(\gamma_n, \gamma_c)$ where beta(.) is a Beta distribution, and γ_c and γ_n are two Draw a topic $z_{di} \sim multi(\theta_c)$ from a comment-specific topic mixture else Draw a topic $z_{di} \sim multi(\theta_n)$ from a document-related topic mixture Draw a word $w_{di} \sim multi(\phi_{z_{di}})$ from z_{di} -specific word distribution

Generative process

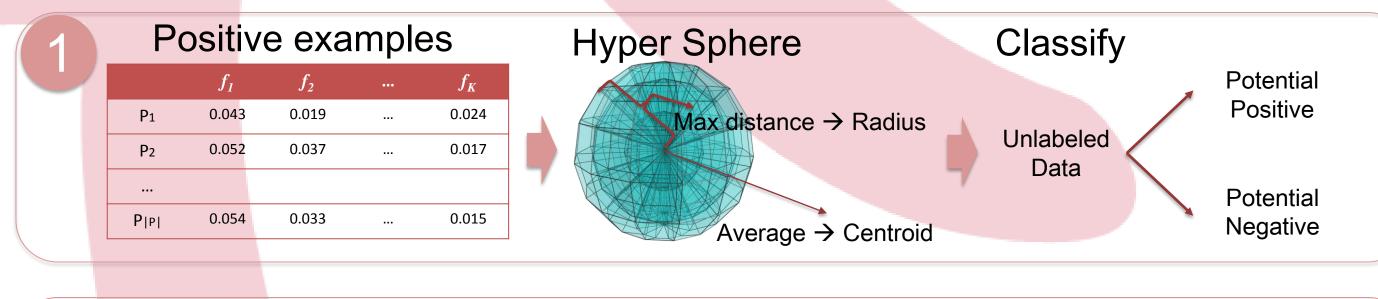
Top words for topic *launch cost*

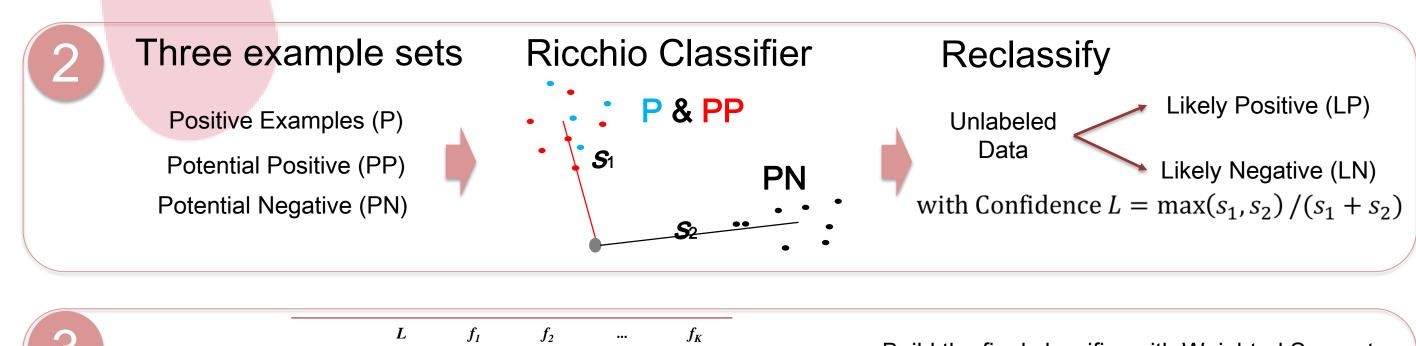
Aid Korea Comment only Stomach Money Launch **America** News only Food America Both Korea Food

The left only uses comments, and the right takes news as background

PU Learning

Goal: build a classifier to identify more accurate comments for a given topic **Assumption:** the topic sentences in news can be used as positive examples Core Idea: due to it is difficult to build an accurate classifier with very few positive and noise negative examples, we try to extend the positive example set as well as purify the negative set in three steps





							• •
2		L	f_{I}	f_2	•••	f_{K}	
3)	P1	1	0.043	0.019		0.024	Build the final classifier with Weighted Suppo
Training	P2	1	0.052	0.037		0.017	Vector Machine, whose objective function
Examples							$Minimize: \frac{1}{2}\mathbf{w}^T\mathbf{w} + C_P\sum_{i\in P}\xi_i +$
With	LP1	0.7	0.054	0.033		0.015	$i \in P$
Different							$C_{LP} \sum \xi_j + C_{LN} \sum \xi_k$
Confidences	LN ₁	0.83	0.003	0.061		0.055	$C_{LP} \sum_{j \in LP} \xi_j + C_{LN} \sum_{k \in LN} \xi_k$
	•••						subject to: $y_i(\mathbf{w}^T \vec{x}_i + b) \ge 1 - \xi_i, \ i = 1, 2,, n$

Experiment

Dataset

Basic Information[Total (cn + en)]:

- 22 (10 + 12) news 950 (516 + 434) sentences

- 6,219 (4,069 + 2,150) comments
- Confidence: 5 out 7 agree

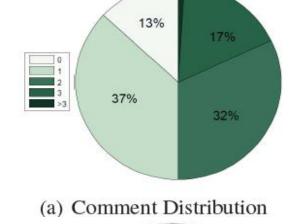
7 annotators

- 9,847 (7,520+2,327) links

Statistics

Source		Number of Sen/Com	Words	Vocabulary
Sina	Sen	516	8,932	2,772
	Com	4,069	112,853	13,891
Yahoo!	Sen	434	5,767	2,679
	Com	2.150	39.917	9.972

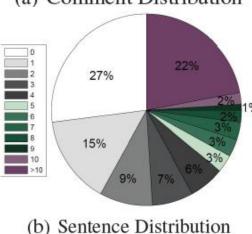
Annotation Observation



87% ←→one or multiple news sentences $13\% \leftarrow \rightarrow$ no sentences

 $22\% \leftarrow \rightarrow$ more than 10 comments

Conclusion: it is reasonable to make use of comments to enhance topic detection in DCT model.



 $27\% \leftarrow \rightarrow$ no comments Conclusion: automatic alignment is necessary; there are some sentences that simply provide some background of the news.

Result

Methods

- Unsupervised **VSM:** TF-IDF + Cosine Similarity
 - **DCT**: DCT Model directly
- Supervised - **BSVM**: classifier on sentences
 - T-SVM: classifier on topics extracted by DCT

Comparison in Precision

Ours (T-PU): unsupervised, classifier on topics

Result

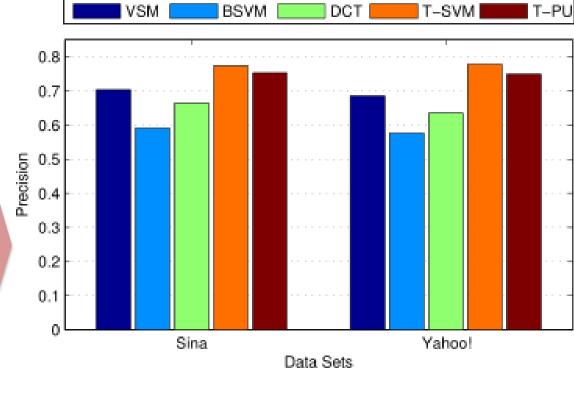
Overall

	Precision	Recall	F1-Measure
Sina	75.3%	56.7%	64.7%
Yahoo!	74.9%	63.4%	68.7%

- Best among three unsupervised methods
- With supervised methods
- BSVM: significant improvement(> 25%)
- T-SVM: comparable result (-2.1% in Sina and -2.9% in Yahoo!)

Failed Alignment

- Comment chain: a series of comments issued by two or more users while discussion, many annotators assign same links for them
- **Topic drift:** Topics may changes



0.021379 background topic 0.015716 & no comments 0.014300 0.010052 0.021896 cost → food aid 0.019176 0.015096

Conclusion and Future Work

Conclusion

- Study the social content alignment problem and present a two-phase framework to address it
- Propose DCT model which exploits Web document, social content and their dependency
- Employ PU algorithm for learning alignment
- Experiments show the effectiveness of the proposed approach

Future Work

- Social content alignment over similar web documents
- Investigate whether the social relationships influence the alignment
- Study topic drift in the social content

Email: houlei@keg.cs.tsinghua.edu.cn Aug. 6th, 2013 @BICC, Beijing, China