
Boosting	 Cross-‐lingual	 Knowledge	 Linking	 via
	 Concept	 Annotation	
Zhichun	 Wang1,	 Juanzi	 Li2,	 Jie	 Tang2	
1Beijing	 Normal	 University,	 2Tsinghua	 University	 	

Cross-‐lingual	 knowledge	 linking	 is	 to	 automa)cally	 discover	 cross-‐lingual	
links	 (CLs)	 between	 wikis, which	 can	 largely	 enrich	 the	 cross-‐lingual	
knowledge	 and	 facilitate	 sharing	 knowledge	 across	 different	 languages.	 The	
seed	 CLs	 and	 the	 inner	 link	 structures	 are	 two	 important	 factors	 for	 finding	
new	 CLs.	 A	 challenging	 problem	 is	 how	 to	 find	 large	 scale	 CLs	 between	 wikis	
(e.g.	 English	 Wikipedia	 and	 Baidu	 Baike)	 when	 there	 are	 insufficient	 seed	
CLs	 and	 inner	 links?	

	 Results	 of	 concept	 annotation 	 Results	 of	 incremental	 linking

	 Experiments

2.2 Concept Annotation
Important concepts in a wiki article are usually annotated by
editors with hyperlinks to their corresponding articles in the
same wiki database. These inner links guide readers to arti-
cles that provide related information about the subject of cur-
rent article. The linkage structure was often used to estimate
similarity between articles in traditional knowledge linking
approaches, e.g., [Wang et al., 2012]. However, there might
be missing inner links in the wiki articles, especially when the
articles are newly created or have fewer editors. In this cir-
cumstance, link-based features cannot accurately assess the
structure-based similarity between articles. Therefore, our
basic idea is to first uses a concept annotator to enrich the
inner links in wikis before finding new CLs.

Recently, several approaches have been proposed to anno-
tating documents with concepts in Wikipedia [Mihalcea and
Csomai, 2007; Milne and Witten, 2008; Kulkarni et al., 2009;
Shen et al., 2012]. These approaches aim to identify impor-
tant concepts in the given documents and link them to the
corresponding articles in Wikipedia. The concept annotator
in our approach provides the similar function as existing ap-
proaches. However, instead of discovering links from an ex-
ternal document to a wiki, concept annotator focuses on en-
riching the inner links in a wiki. Therefore, there will be
some existing links in the articles before annotating. In our
approach, the inputs of concept annotator are two wikis and
a set of CLs between them. The concept annotation process
consists of two basic steps: (1) concept extraction, and (2)
annotation.

Concept Extraction. In this step, possible concepts that
might refer to other articles in the same wiki are identified in
an input article. The concepts are extracted by matching all
the n-grams in the input article with the elements in a con-
trolled vocabulary. The vocabulary contains the titles and the
anchor texts of all the articles in the input wiki. For an in-
put article a, the results of concept extraction contain a set
of concepts C = {ci}ki=1 and the sets of candidate articles
{Tc1 , Tc2 , ..., Tck} that each concept might link to.

Annotation. In the annotation step, links from the con-
cepts to the destination articles are identified. Here we use
two metrics, the Link Probability and the Semantic Related-
ness, to decide the correct links for each concept. The Link
Probability measures the possibilities that an article is the
destination of a given concept, which is approximated based
on the already known annotations in a wiki. The Semantic
Relatedness measures relatedness between the candidate des-
tination article and the surrounding context of the concept.
Formally, these two metrics are defined as follows.

Definition 1 Link Probability. Given a concept c identified
in an article, the Link Probability from this concept c to an-
other article a is defined by the approximated conditional
probability of a given c:

LP (a|c) = count(a, c)

count(c)
(1)

where count(a, c) denotes the number of times that c links to
a and count(c) denotes the number of times that c appears in
the whole wiki.

Definition 2 Semantic Relatedness. Given a concept c, let
Nc be the existing annotations in the same article with c, the
Semantic Relatedness between a candidate destination article
a and the context annotations of c is computed as:

SR(a, c) =
1

|Nc|
X

b2Nc

r(a, b) (2)

r(a, b) = 1� log(max(|Ia|, |Ib|))� log(|Ia \ Ib|)
log(|W |)� log(min(|Ia|, |Ib|))

(3)

where Ia and Ib are the sets of inlinks of article a and article
b, respectively; and W is the set of all articles in the input
wiki.

The Semantic Relatedness metric has been used in several
other approaches for linking documents to Wikipedia. The
inner link structures in the wiki are used to compute the Se-
mantic Relatedness. One thing worth mentioning is that when
there are insufficient inner links, this metric might be not ac-
curate enough to reflect the relatedness between articles. To
this end, our approach first utilizes the known CLs to merge
the link structures of two wikis, which results in a Integrated
Concept Network. The Semantic Relatedness is computed
based on the links in the Integrated Concept Network, which
is formally defined as follows.

Definition 3 Integrated Concept Network. Given two wikis
W1 = (A1, E1), W2 = (A2, E2), where A1 and A2 are sets
of articles, E1 and E2 are sets of links in W1 and W2, respec-
tively. Let CL = {(ai, bi)|ai 2 B1, bi 2 B2}ki=1 be the set of
cross-lingual links between W1 and W2, where B1 ✓ A1 and
B2 ✓ A2. The Integrated Concept Network of W1 and W2 is
ICN(W1,W2) = (V, L), where V = A1 [A2; L is a set of
links which are established as follows:
(v, v

0
) 2 E1 _ (v, v

0
) 2 E2 ! (v, v

0
) 2 L

(v, v
0
) 2 E1 ^ (v, b) 2 CL ^ (v

0
, b

0
) 2 CL ! (b, b

0
) 2 L

(v, v
0
) 2 E2 ^ (v, a) 2 CL ^ (a

0
, v

0
) 2 CL ! (a, a

0
) 2 L

In the Integrated Concept Network, the link structures of
two wikis are merged by using CLs. The Semantic Related-
ness computed based on Integrated Concept Network is more
reliable than on a single wiki. In order to balance the Link
Probability and the Semantic Relatedness, our approach uses
an algorithm that greedily selects the articles that maximize
the product of the two metrics. Algorithm 1 outlines the al-
gorithm in the concept annotator.

2.3 Cross-lingual Link Prediction
As shown in Figure 2, the CL predictor takes two wikis and a
set of seed CLs between them as inputs, then it predicts a set
of new CLs. This subsection first introduces the definitions of
different similarity features, and then describes the learning
method for predicting new CLs.

Feature Definition
Six features are defined to assess the similarities between ar-
ticles by using different kinds of information, all of these
features are based on the link structures and therefore are
language-independent.

Link	 Probability

2.2 Concept Annotation
Important concepts in a wiki article are usually annotated by
editors with hyperlinks to their corresponding articles in the
same wiki database. These inner links guide readers to arti-
cles that provide related information about the subject of cur-
rent article. The linkage structure was often used to estimate
similarity between articles in traditional knowledge linking
approaches, e.g., [Wang et al., 2012]. However, there might
be missing inner links in the wiki articles, especially when the
articles are newly created or have fewer editors. In this cir-
cumstance, link-based features cannot accurately assess the
structure-based similarity between articles. Therefore, our
basic idea is to first uses a concept annotator to enrich the
inner links in wikis before finding new CLs.

Recently, several approaches have been proposed to anno-
tating documents with concepts in Wikipedia [Mihalcea and
Csomai, 2007; Milne and Witten, 2008; Kulkarni et al., 2009;
Shen et al., 2012]. These approaches aim to identify impor-
tant concepts in the given documents and link them to the
corresponding articles in Wikipedia. The concept annotator
in our approach provides the similar function as existing ap-
proaches. However, instead of discovering links from an ex-
ternal document to a wiki, concept annotator focuses on en-
riching the inner links in a wiki. Therefore, there will be
some existing links in the articles before annotating. In our
approach, the inputs of concept annotator are two wikis and
a set of CLs between them. The concept annotation process
consists of two basic steps: (1) concept extraction, and (2)
annotation.

Concept Extraction. In this step, possible concepts that
might refer to other articles in the same wiki are identified in
an input article. The concepts are extracted by matching all
the n-grams in the input article with the elements in a con-
trolled vocabulary. The vocabulary contains the titles and the
anchor texts of all the articles in the input wiki. For an in-
put article a, the results of concept extraction contain a set
of concepts C = {ci}ki=1 and the sets of candidate articles
{Tc1 , Tc2 , ..., Tck} that each concept might link to.

Annotation. In the annotation step, links from the con-
cepts to the destination articles are identified. Here we use
two metrics, the Link Probability and the Semantic Related-
ness, to decide the correct links for each concept. The Link
Probability measures the possibilities that an article is the
destination of a given concept, which is approximated based
on the already known annotations in a wiki. The Semantic
Relatedness measures relatedness between the candidate des-
tination article and the surrounding context of the concept.
Formally, these two metrics are defined as follows.

Definition 1 Link Probability. Given a concept c identified
in an article, the Link Probability from this concept c to an-
other article a is defined by the approximated conditional
probability of a given c:

LP (a|c) = count(a, c)

count(c)
(1)

where count(a, c) denotes the number of times that c links to
a and count(c) denotes the number of times that c appears in
the whole wiki.

Definition 2 Semantic Relatedness. Given a concept c, let
Nc be the existing annotations in the same article with c, the
Semantic Relatedness between a candidate destination article
a and the context annotations of c is computed as:

SR(a, c) =
1

|Nc|
X

b2Nc

r(a, b) (2)

r(a, b) = 1� log(max(|Ia|, |Ib|))� log(|Ia \ Ib|)
log(|W |)� log(min(|Ia|, |Ib|))

(3)

where Ia and Ib are the sets of inlinks of article a and article
b, respectively; and W is the set of all articles in the input
wiki.

The Semantic Relatedness metric has been used in several
other approaches for linking documents to Wikipedia. The
inner link structures in the wiki are used to compute the Se-
mantic Relatedness. One thing worth mentioning is that when
there are insufficient inner links, this metric might be not ac-
curate enough to reflect the relatedness between articles. To
this end, our approach first utilizes the known CLs to merge
the link structures of two wikis, which results in a Integrated
Concept Network. The Semantic Relatedness is computed
based on the links in the Integrated Concept Network, which
is formally defined as follows.

Definition 3 Integrated Concept Network. Given two wikis
W1 = (A1, E1), W2 = (A2, E2), where A1 and A2 are sets
of articles, E1 and E2 are sets of links in W1 and W2, respec-
tively. Let CL = {(ai, bi)|ai 2 B1, bi 2 B2}ki=1 be the set of
cross-lingual links between W1 and W2, where B1 ✓ A1 and
B2 ✓ A2. The Integrated Concept Network of W1 and W2 is
ICN(W1,W2) = (V, L), where V = A1 [A2; L is a set of
links which are established as follows:
(v, v

0
) 2 E1 _ (v, v

0
) 2 E2 ! (v, v

0
) 2 L

(v, v
0
) 2 E1 ^ (v, b) 2 CL ^ (v

0
, b

0
) 2 CL ! (b, b

0
) 2 L

(v, v
0
) 2 E2 ^ (v, a) 2 CL ^ (a

0
, v

0
) 2 CL ! (a, a

0
) 2 L

In the Integrated Concept Network, the link structures of
two wikis are merged by using CLs. The Semantic Related-
ness computed based on Integrated Concept Network is more
reliable than on a single wiki. In order to balance the Link
Probability and the Semantic Relatedness, our approach uses
an algorithm that greedily selects the articles that maximize
the product of the two metrics. Algorithm 1 outlines the al-
gorithm in the concept annotator.

2.3 Cross-lingual Link Prediction
As shown in Figure 2, the CL predictor takes two wikis and a
set of seed CLs between them as inputs, then it predicts a set
of new CLs. This subsection first introduces the definitions of
different similarity features, and then describes the learning
method for predicting new CLs.

Feature Definition
Six features are defined to assess the similarities between ar-
ticles by using different kinds of information, all of these
features are based on the link structures and therefore are
language-independent.

2.2 Concept Annotation
Important concepts in a wiki article are usually annotated by
editors with hyperlinks to their corresponding articles in the
same wiki database. These inner links guide readers to arti-
cles that provide related information about the subject of cur-
rent article. The linkage structure was often used to estimate
similarity between articles in traditional knowledge linking
approaches, e.g., [Wang et al., 2012]. However, there might
be missing inner links in the wiki articles, especially when the
articles are newly created or have fewer editors. In this cir-
cumstance, link-based features cannot accurately assess the
structure-based similarity between articles. Therefore, our
basic idea is to first uses a concept annotator to enrich the
inner links in wikis before finding new CLs.

Recently, several approaches have been proposed to anno-
tating documents with concepts in Wikipedia [Mihalcea and
Csomai, 2007; Milne and Witten, 2008; Kulkarni et al., 2009;
Shen et al., 2012]. These approaches aim to identify impor-
tant concepts in the given documents and link them to the
corresponding articles in Wikipedia. The concept annotator
in our approach provides the similar function as existing ap-
proaches. However, instead of discovering links from an ex-
ternal document to a wiki, concept annotator focuses on en-
riching the inner links in a wiki. Therefore, there will be
some existing links in the articles before annotating. In our
approach, the inputs of concept annotator are two wikis and
a set of CLs between them. The concept annotation process
consists of two basic steps: (1) concept extraction, and (2)
annotation.

Concept Extraction. In this step, possible concepts that
might refer to other articles in the same wiki are identified in
an input article. The concepts are extracted by matching all
the n-grams in the input article with the elements in a con-
trolled vocabulary. The vocabulary contains the titles and the
anchor texts of all the articles in the input wiki. For an in-
put article a, the results of concept extraction contain a set
of concepts C = {ci}ki=1 and the sets of candidate articles
{Tc1 , Tc2 , ..., Tck} that each concept might link to.

Annotation. In the annotation step, links from the con-
cepts to the destination articles are identified. Here we use
two metrics, the Link Probability and the Semantic Related-
ness, to decide the correct links for each concept. The Link
Probability measures the possibilities that an article is the
destination of a given concept, which is approximated based
on the already known annotations in a wiki. The Semantic
Relatedness measures relatedness between the candidate des-
tination article and the surrounding context of the concept.
Formally, these two metrics are defined as follows.

Definition 1 Link Probability. Given a concept c identified
in an article, the Link Probability from this concept c to an-
other article a is defined by the approximated conditional
probability of a given c:

LP (a|c) = count(a, c)

count(c)
(1)

where count(a, c) denotes the number of times that c links to
a and count(c) denotes the number of times that c appears in
the whole wiki.

Definition 2 Semantic Relatedness. Given a concept c, let
Nc be the existing annotations in the same article with c, the
Semantic Relatedness between a candidate destination article
a and the context annotations of c is computed as:

SR(a, c) =
1

|Nc|
X

b2Nc

r(a, b) (2)

r(a, b) = 1� log(max(|Ia|, |Ib|))� log(|Ia \ Ib|)
log(|W |)� log(min(|Ia|, |Ib|))

(3)

where Ia and Ib are the sets of inlinks of article a and article
b, respectively; and W is the set of all articles in the input
wiki.

The Semantic Relatedness metric has been used in several
other approaches for linking documents to Wikipedia. The
inner link structures in the wiki are used to compute the Se-
mantic Relatedness. One thing worth mentioning is that when
there are insufficient inner links, this metric might be not ac-
curate enough to reflect the relatedness between articles. To
this end, our approach first utilizes the known CLs to merge
the link structures of two wikis, which results in a Integrated
Concept Network. The Semantic Relatedness is computed
based on the links in the Integrated Concept Network, which
is formally defined as follows.

Definition 3 Integrated Concept Network. Given two wikis
W1 = (A1, E1), W2 = (A2, E2), where A1 and A2 are sets
of articles, E1 and E2 are sets of links in W1 and W2, respec-
tively. Let CL = {(ai, bi)|ai 2 B1, bi 2 B2}ki=1 be the set of
cross-lingual links between W1 and W2, where B1 ✓ A1 and
B2 ✓ A2. The Integrated Concept Network of W1 and W2 is
ICN(W1,W2) = (V, L), where V = A1 [A2; L is a set of
links which are established as follows:
(v, v

0
) 2 E1 _ (v, v

0
) 2 E2 ! (v, v

0
) 2 L

(v, v
0
) 2 E1 ^ (v, b) 2 CL ^ (v

0
, b

0
) 2 CL ! (b, b

0
) 2 L

(v, v
0
) 2 E2 ^ (v, a) 2 CL ^ (a

0
, v

0
) 2 CL ! (a, a

0
) 2 L

In the Integrated Concept Network, the link structures of
two wikis are merged by using CLs. The Semantic Related-
ness computed based on Integrated Concept Network is more
reliable than on a single wiki. In order to balance the Link
Probability and the Semantic Relatedness, our approach uses
an algorithm that greedily selects the articles that maximize
the product of the two metrics. Algorithm 1 outlines the al-
gorithm in the concept annotator.

2.3 Cross-lingual Link Prediction
As shown in Figure 2, the CL predictor takes two wikis and a
set of seed CLs between them as inputs, then it predicts a set
of new CLs. This subsection first introduces the definitions of
different similarity features, and then describes the learning
method for predicting new CLs.

Feature Definition
Six features are defined to assess the similarities between ar-
ticles by using different kinds of information, all of these
features are based on the link structures and therefore are
language-independent.

Seman)c	
Relatedness

For	 each	 ar)cle	 a	 in	 W1,	 the	 ar)cle	 b*	 in	 W2	 that	 maximizes	 the	 following	
score	 func)on	 s(a,b*)	 and	 sa)sfies	 s(a,b*)>0	 is	 predicted	 as	 the	
corresponding	 ar)cle	 of	 a.	

A	 regression	 model	 is	 used	 to	 learn	 the	 weights	 of	 features	 based	 on	 a	 set	 of	
known	 CLs.	 The	 op)mal	 weights	 should	 sa)sfies:	

Algorithm 1: Concept annotation algorithm.
Input: A wiki W = (A,E)

Output: Annotated wiki W = (A,E
0
)

for each article a 2 A do
Extract a set of concepts Ca in a;
Get the existing annotations Na in a;
for each ci 2 Ca do

Find the set of candidate articles Tci of ci;
Get b⇤ = argmaxb2Tci

LP (b|ci)⇥ SR(b,Na);
Na = Na [{b⇤};

end
for each bj 2 Na do

if < a, bj >/2 E then
E = E [{< a, bj >}

end
end

end
return Nd

Feature 1: Outlink similarity
Outlinks of an article correspond to a set of other articles

that it links to. The outlink similarity computes the similari-
ties between articles by comparing elements in their outlinks.
Given two articles a 2 W1 and b 2 W2, let O(a) and O(b)
be the outlinks of a and b respectively. The outlink similarity
is computed as

f1(a, b) =
2 · |�1!2(O(a)) \O(b)|
|�1!2(O(a))|+ |O(b)| (4)

where �1!2(·) is a function to maps articles in W1 to their
corresponding articles in W2 if there are CLs between them.

Feature 2: Outlink+ similarity
Given two articles a 2 W1 and b 2 W2, let O+

(a) and
O+

(b) be the outlinks in the abstracts and infoboxes of a and
b respectively. The outlink+ similarity is computed as

f2(a, b) =
2 · |�1!2(O

+
(a)) \O+

(b)|
|�1!2(O+

(a))|+ |O+
(b)| (5)

Feature 3: Inlink similarity
Inlinks of an article correspond to a set of other articles

linking to it, let I(a) and I(b) denote inlinks of two articles,
the inlink similarity is computed as

f3(a, b) =
2 · |�1!2(I(a)) \ I(b)|
|�1!2(I(a))|+ |I(b)| (6)

Feature 4: Inlink+ similarity
Let I+(a) and I+(b) denote two articles’ inlinks that are

from other articles’ abstracts and infoboxes, the inlink+ sim-
ilarity is computed as

f4(a, b) =
2 · |�1!2(I

+
(a)) \ I+(b)|

|�1!2(I+(a))|+ |I+(b)| (7)

Feature 5 Category similarity
Categories are tags attached to articles, which represent the

topics of the articles’ subjects. Let C(a) and C(b) denote

categories of two articles, the category similarity is computed
as

f5(a, b)(=
2 · |�1!2(C(a)) \ C(b)|
|�1!2(C(a))|+ |C(b)| (8)

Here �1!2(·) maps categories from one wiki to another
wiki by using the CLs between categories, which can be ob-
tained from Wikipedia.

Feature 6 Category+ similarity
Given two articles a and b, let C(a) and C(b) be the cat-

egories of a and b respectively. Category+ similarity com-
putes similarities between categories by using CLs between
articles. Let E(c1) and E(c2) be the set of articles belonging
to category c1 and c2 respectively, the similarity between two
categories is computed as

f6(a, b) =
1

nm

nX

i=1

mX

j=1

�(cai , c
b
j) (9)

�(c1, c2) =
2|�1!2(E(c1)) \ E(c2)|
|�1!2(E(c1))|+ |E(c2)|

(10)

where cai 2 C(a), cbj 2 C(b), n = |C(a)|, and m = |C(b)|.

Regression-based Model for Predicting new CLs
The CL predictor in our approach computes the weighted sum
of different similarities between articles, and applies a thresh-
old !0 to decide whether an article pair should have a CL. For
this purpose, a scoring function is defined:

s(a, b) = !0 + ~! · ~fa,b
= !0 + !1 ⇥ f1(a, b) + ...+ !6 ⇥ f6(a, b)

(11)

For each article a in W1, the article b⇤ in W2 that maxi-
mizes the score function s(a, b⇤) and satisfies s(a, b⇤) > 0

is predicted as the corresponding article of a. The idea of
CL prediction is simple and straightforward, but how to ap-
propriately set the weights of different similarity features is a
challenging problem.

Here, we propose a regression-based model to learn the
weights of features based on a set of known CLs. Given a set
of CLs {(ai, bi)}ni=1 as training data, let A = {(ai)}ni=1 and
B = {(bi)}ni=1, our model tries to find the optimal weights to
ensure:

8ai 2 A, 8b
0
2 (B � {bi}), s(ai, bi)� s(ai, b

0
) > 0

which also means

~! · (~fai,bi � ~fai,b‘) > 0

Therefore, we generate a new dataset D = {(xi, yi)}ni=1,
where the input vector xi = (

~fai,bi � ~fai,bj 6=i), the target out-
put yi is always set to 1. Then we train a linear regression
model on the dataset D to get the weights of different fea-
tures. The threshold !0 is set to the value that maximizes the
F1-measure on the training CLs.

Algorithm 1: Concept annotation algorithm.
Input: A wiki W = (A,E)

Output: Annotated wiki W = (A,E
0
)

for each article a 2 A do
Extract a set of concepts Ca in a;
Get the existing annotations Na in a;
for each ci 2 Ca do

Find the set of candidate articles Tci of ci;
Get b⇤ = argmaxb2Tci

LP (b|ci)⇥ SR(b,Na);
Na = Na [{b⇤};

end
for each bj 2 Na do

if < a, bj >/2 E then
E = E [{< a, bj >}

end
end

end
return Nd

Feature 1: Outlink similarity
Outlinks of an article correspond to a set of other articles

that it links to. The outlink similarity computes the similari-
ties between articles by comparing elements in their outlinks.
Given two articles a 2 W1 and b 2 W2, let O(a) and O(b)
be the outlinks of a and b respectively. The outlink similarity
is computed as

f1(a, b) =
2 · |�1!2(O(a)) \O(b)|
|�1!2(O(a))|+ |O(b)| (4)

where �1!2(·) is a function to maps articles in W1 to their
corresponding articles in W2 if there are CLs between them.

Feature 2: Outlink+ similarity
Given two articles a 2 W1 and b 2 W2, let O+

(a) and
O+

(b) be the outlinks in the abstracts and infoboxes of a and
b respectively. The outlink+ similarity is computed as

f2(a, b) =
2 · |�1!2(O

+
(a)) \O+

(b)|
|�1!2(O+

(a))|+ |O+
(b)| (5)

Feature 3: Inlink similarity
Inlinks of an article correspond to a set of other articles

linking to it, let I(a) and I(b) denote inlinks of two articles,
the inlink similarity is computed as

f3(a, b) =
2 · |�1!2(I(a)) \ I(b)|
|�1!2(I(a))|+ |I(b)| (6)

Feature 4: Inlink+ similarity
Let I+(a) and I+(b) denote two articles’ inlinks that are

from other articles’ abstracts and infoboxes, the inlink+ sim-
ilarity is computed as

f4(a, b) =
2 · |�1!2(I

+
(a)) \ I+(b)|

|�1!2(I+(a))|+ |I+(b)| (7)

Feature 5 Category similarity
Categories are tags attached to articles, which represent the

topics of the articles’ subjects. Let C(a) and C(b) denote

categories of two articles, the category similarity is computed
as

f5(a, b)(=
2 · |�1!2(C(a)) \ C(b)|
|�1!2(C(a))|+ |C(b)| (8)

Here �1!2(·) maps categories from one wiki to another
wiki by using the CLs between categories, which can be ob-
tained from Wikipedia.

Feature 6 Category+ similarity
Given two articles a and b, let C(a) and C(b) be the cat-

egories of a and b respectively. Category+ similarity com-
putes similarities between categories by using CLs between
articles. Let E(c1) and E(c2) be the set of articles belonging
to category c1 and c2 respectively, the similarity between two
categories is computed as

f6(a, b) =
1

nm

nX

i=1

mX

j=1

�(cai , c
b
j) (9)

�(c1, c2) =
2|�1!2(E(c1)) \ E(c2)|
|�1!2(E(c1))|+ |E(c2)|

(10)

where cai 2 C(a), cbj 2 C(b), n = |C(a)|, and m = |C(b)|.

Regression-based Model for Predicting new CLs
The CL predictor in our approach computes the weighted sum
of different similarities between articles, and applies a thresh-
old !0 to decide whether an article pair should have a CL. For
this purpose, a scoring function is defined:

s(a, b) = !0 + ~! · ~fa,b
= !0 + !1 ⇥ f1(a, b) + ...+ !6 ⇥ f6(a, b)

(11)

For each article a in W1, the article b⇤ in W2 that maxi-
mizes the score function s(a, b⇤) and satisfies s(a, b⇤) > 0

is predicted as the corresponding article of a. The idea of
CL prediction is simple and straightforward, but how to ap-
propriately set the weights of different similarity features is a
challenging problem.

Here, we propose a regression-based model to learn the
weights of features based on a set of known CLs. Given a set
of CLs {(ai, bi)}ni=1 as training data, let A = {(ai)}ni=1 and
B = {(bi)}ni=1, our model tries to find the optimal weights to
ensure:

8ai 2 A, 8b
0
2 (B � {bi}), s(ai, bi)� s(ai, b

0
) > 0

which also means

~! · (~fai,bi � ~fai,b‘) > 0

Therefore, we generate a new dataset D = {(xi, yi)}ni=1,
where the input vector xi = (

~fai,bi � ~fai,bj 6=i), the target out-
put yi is always set to 1. Then we train a linear regression
model on the dataset D to get the weights of different fea-
tures. The threshold !0 is set to the value that maximizes the
F1-measure on the training CLs.

Algorithm 1: Concept annotation algorithm.
Input: A wiki W = (A,E)

Output: Annotated wiki W = (A,E
0
)

for each article a 2 A do
Extract a set of concepts Ca in a;
Get the existing annotations Na in a;
for each ci 2 Ca do

Find the set of candidate articles Tci of ci;
Get b⇤ = argmaxb2Tci

LP (b|ci)⇥ SR(b,Na);
Na = Na [{b⇤};

end
for each bj 2 Na do

if < a, bj >/2 E then
E = E [{< a, bj >}

end
end

end
return Nd

Feature 1: Outlink similarity
Outlinks of an article correspond to a set of other articles

that it links to. The outlink similarity computes the similari-
ties between articles by comparing elements in their outlinks.
Given two articles a 2 W1 and b 2 W2, let O(a) and O(b)
be the outlinks of a and b respectively. The outlink similarity
is computed as

f1(a, b) =
2 · |�1!2(O(a)) \O(b)|
|�1!2(O(a))|+ |O(b)| (4)

where �1!2(·) is a function to maps articles in W1 to their
corresponding articles in W2 if there are CLs between them.

Feature 2: Outlink+ similarity
Given two articles a 2 W1 and b 2 W2, let O+

(a) and
O+

(b) be the outlinks in the abstracts and infoboxes of a and
b respectively. The outlink+ similarity is computed as

f2(a, b) =
2 · |�1!2(O

+
(a)) \O+

(b)|
|�1!2(O+

(a))|+ |O+
(b)| (5)

Feature 3: Inlink similarity
Inlinks of an article correspond to a set of other articles

linking to it, let I(a) and I(b) denote inlinks of two articles,
the inlink similarity is computed as

f3(a, b) =
2 · |�1!2(I(a)) \ I(b)|
|�1!2(I(a))|+ |I(b)| (6)

Feature 4: Inlink+ similarity
Let I+(a) and I+(b) denote two articles’ inlinks that are

from other articles’ abstracts and infoboxes, the inlink+ sim-
ilarity is computed as

f4(a, b) =
2 · |�1!2(I

+
(a)) \ I+(b)|

|�1!2(I+(a))|+ |I+(b)| (7)

Feature 5 Category similarity
Categories are tags attached to articles, which represent the

topics of the articles’ subjects. Let C(a) and C(b) denote

categories of two articles, the category similarity is computed
as

f5(a, b)(=
2 · |�1!2(C(a)) \ C(b)|
|�1!2(C(a))|+ |C(b)| (8)

Here �1!2(·) maps categories from one wiki to another
wiki by using the CLs between categories, which can be ob-
tained from Wikipedia.

Feature 6 Category+ similarity
Given two articles a and b, let C(a) and C(b) be the cat-

egories of a and b respectively. Category+ similarity com-
putes similarities between categories by using CLs between
articles. Let E(c1) and E(c2) be the set of articles belonging
to category c1 and c2 respectively, the similarity between two
categories is computed as

f6(a, b) =
1

nm

nX

i=1

mX

j=1

�(cai , c
b
j) (9)

�(c1, c2) =
2|�1!2(E(c1)) \ E(c2)|
|�1!2(E(c1))|+ |E(c2)|

(10)

where cai 2 C(a), cbj 2 C(b), n = |C(a)|, and m = |C(b)|.

Regression-based Model for Predicting new CLs
The CL predictor in our approach computes the weighted sum
of different similarities between articles, and applies a thresh-
old !0 to decide whether an article pair should have a CL. For
this purpose, a scoring function is defined:

s(a, b) = !0 + ~! · ~fa,b
= !0 + !1 ⇥ f1(a, b) + ...+ !6 ⇥ f6(a, b)

(11)

For each article a in W1, the article b⇤ in W2 that maxi-
mizes the score function s(a, b⇤) and satisfies s(a, b⇤) > 0

is predicted as the corresponding article of a. The idea of
CL prediction is simple and straightforward, but how to ap-
propriately set the weights of different similarity features is a
challenging problem.

Here, we propose a regression-based model to learn the
weights of features based on a set of known CLs. Given a set
of CLs {(ai, bi)}ni=1 as training data, let A = {(ai)}ni=1 and
B = {(bi)}ni=1, our model tries to find the optimal weights to
ensure:

8ai 2 A, 8b
0
2 (B � {bi}), s(ai, bi)� s(ai, b

0
) > 0

which also means

~! · (~fai,bi � ~fai,b‘) > 0

Therefore, we generate a new dataset D = {(xi, yi)}ni=1,
where the input vector xi = (

~fai,bi � ~fai,bj 6=i), the target out-
put yi is always set to 1. Then we train a linear regression
model on the dataset D to get the weights of different fea-
tures. The threshold !0 is set to the value that maximizes the
F1-measure on the training CLs.

Therefore,	 a	 training	 data	 set	 is	 generated	 to	 feed	 the	 linear	 regression	
algorithm	 to	 learn	 the	 weights:	

Algorithm 1: Concept annotation algorithm.
Input: A wiki W = (A,E)

Output: Annotated wiki W = (A,E
0
)

for each article a 2 A do
Extract a set of concepts Ca in a;
Get the existing annotations Na in a;
for each ci 2 Ca do

Find the set of candidate articles Tci of ci;
Get b⇤ = argmaxb2Tci

LP (b|ci)⇥ SR(b,Na);
Na = Na [{b⇤};

end
for each bj 2 Na do

if < a, bj >/2 E then
E = E [{< a, bj >}

end
end

end
return Nd

Feature 1: Outlink similarity
Outlinks of an article correspond to a set of other articles

that it links to. The outlink similarity computes the similari-
ties between articles by comparing elements in their outlinks.
Given two articles a 2 W1 and b 2 W2, let O(a) and O(b)
be the outlinks of a and b respectively. The outlink similarity
is computed as

f1(a, b) =
2 · |�1!2(O(a)) \O(b)|
|�1!2(O(a))|+ |O(b)| (4)

where �1!2(·) is a function to maps articles in W1 to their
corresponding articles in W2 if there are CLs between them.

Feature 2: Outlink+ similarity
Given two articles a 2 W1 and b 2 W2, let O+

(a) and
O+

(b) be the outlinks in the abstracts and infoboxes of a and
b respectively. The outlink+ similarity is computed as

f2(a, b) =
2 · |�1!2(O

+
(a)) \O+

(b)|
|�1!2(O+

(a))|+ |O+
(b)| (5)

Feature 3: Inlink similarity
Inlinks of an article correspond to a set of other articles

linking to it, let I(a) and I(b) denote inlinks of two articles,
the inlink similarity is computed as

f3(a, b) =
2 · |�1!2(I(a)) \ I(b)|
|�1!2(I(a))|+ |I(b)| (6)

Feature 4: Inlink+ similarity
Let I+(a) and I+(b) denote two articles’ inlinks that are

from other articles’ abstracts and infoboxes, the inlink+ sim-
ilarity is computed as

f4(a, b) =
2 · |�1!2(I

+
(a)) \ I+(b)|

|�1!2(I+(a))|+ |I+(b)| (7)

Feature 5 Category similarity
Categories are tags attached to articles, which represent the

topics of the articles’ subjects. Let C(a) and C(b) denote

categories of two articles, the category similarity is computed
as

f5(a, b)(=
2 · |�1!2(C(a)) \ C(b)|
|�1!2(C(a))|+ |C(b)| (8)

Here �1!2(·) maps categories from one wiki to another
wiki by using the CLs between categories, which can be ob-
tained from Wikipedia.

Feature 6 Category+ similarity
Given two articles a and b, let C(a) and C(b) be the cat-

egories of a and b respectively. Category+ similarity com-
putes similarities between categories by using CLs between
articles. Let E(c1) and E(c2) be the set of articles belonging
to category c1 and c2 respectively, the similarity between two
categories is computed as

f6(a, b) =
1

nm

nX

i=1

mX

j=1

�(cai , c
b
j) (9)

�(c1, c2) =
2|�1!2(E(c1)) \ E(c2)|
|�1!2(E(c1))|+ |E(c2)|

(10)

where cai 2 C(a), cbj 2 C(b), n = |C(a)|, and m = |C(b)|.

Regression-based Model for Predicting new CLs
The CL predictor in our approach computes the weighted sum
of different similarities between articles, and applies a thresh-
old !0 to decide whether an article pair should have a CL. For
this purpose, a scoring function is defined:

s(a, b) = !0 + ~! · ~fa,b
= !0 + !1 ⇥ f1(a, b) + ...+ !6 ⇥ f6(a, b)

(11)

For each article a in W1, the article b⇤ in W2 that maxi-
mizes the score function s(a, b⇤) and satisfies s(a, b⇤) > 0

is predicted as the corresponding article of a. The idea of
CL prediction is simple and straightforward, but how to ap-
propriately set the weights of different similarity features is a
challenging problem.

Here, we propose a regression-based model to learn the
weights of features based on a set of known CLs. Given a set
of CLs {(ai, bi)}ni=1 as training data, let A = {(ai)}ni=1 and
B = {(bi)}ni=1, our model tries to find the optimal weights to
ensure:

8ai 2 A, 8b
0
2 (B � {bi}), s(ai, bi)� s(ai, b

0
) > 0

which also means

~! · (~fai,bi � ~fai,b‘) > 0

Therefore, we generate a new dataset D = {(xi, yi)}ni=1,
where the input vector xi = (

~fai,bi � ~fai,bj 6=i), the target out-
put yi is always set to 1. Then we train a linear regression
model on the dataset D to get the weights of different fea-
tures. The threshold !0 is set to the value that maximizes the
F1-measure on the training CLs.

Algorithm 1: Concept annotation algorithm.
Input: A wiki W = (A,E)

Output: Annotated wiki W = (A,E
0
)

for each article a 2 A do
Extract a set of concepts Ca in a;
Get the existing annotations Na in a;
for each ci 2 Ca do

Find the set of candidate articles Tci of ci;
Get b⇤ = argmaxb2Tci

LP (b|ci)⇥ SR(b,Na);
Na = Na [{b⇤};

end
for each bj 2 Na do

if < a, bj >/2 E then
E = E [{< a, bj >}

end
end

end
return Nd

Feature 1: Outlink similarity
Outlinks of an article correspond to a set of other articles

that it links to. The outlink similarity computes the similari-
ties between articles by comparing elements in their outlinks.
Given two articles a 2 W1 and b 2 W2, let O(a) and O(b)
be the outlinks of a and b respectively. The outlink similarity
is computed as

f1(a, b) =
2 · |�1!2(O(a)) \O(b)|
|�1!2(O(a))|+ |O(b)| (4)

where �1!2(·) is a function to maps articles in W1 to their
corresponding articles in W2 if there are CLs between them.

Feature 2: Outlink+ similarity
Given two articles a 2 W1 and b 2 W2, let O+

(a) and
O+

(b) be the outlinks in the abstracts and infoboxes of a and
b respectively. The outlink+ similarity is computed as

f2(a, b) =
2 · |�1!2(O

+
(a)) \O+

(b)|
|�1!2(O+

(a))|+ |O+
(b)| (5)

Feature 3: Inlink similarity
Inlinks of an article correspond to a set of other articles

linking to it, let I(a) and I(b) denote inlinks of two articles,
the inlink similarity is computed as

f3(a, b) =
2 · |�1!2(I(a)) \ I(b)|
|�1!2(I(a))|+ |I(b)| (6)

Feature 4: Inlink+ similarity
Let I+(a) and I+(b) denote two articles’ inlinks that are

from other articles’ abstracts and infoboxes, the inlink+ sim-
ilarity is computed as

f4(a, b) =
2 · |�1!2(I

+
(a)) \ I+(b)|

|�1!2(I+(a))|+ |I+(b)| (7)

Feature 5 Category similarity
Categories are tags attached to articles, which represent the

topics of the articles’ subjects. Let C(a) and C(b) denote

categories of two articles, the category similarity is computed
as

f5(a, b)(=
2 · |�1!2(C(a)) \ C(b)|
|�1!2(C(a))|+ |C(b)| (8)

Here �1!2(·) maps categories from one wiki to another
wiki by using the CLs between categories, which can be ob-
tained from Wikipedia.

Feature 6 Category+ similarity
Given two articles a and b, let C(a) and C(b) be the cat-

egories of a and b respectively. Category+ similarity com-
putes similarities between categories by using CLs between
articles. Let E(c1) and E(c2) be the set of articles belonging
to category c1 and c2 respectively, the similarity between two
categories is computed as

f6(a, b) =
1

nm

nX

i=1

mX

j=1

�(cai , c
b
j) (9)

�(c1, c2) =
2|�1!2(E(c1)) \ E(c2)|
|�1!2(E(c1))|+ |E(c2)|

(10)

where cai 2 C(a), cbj 2 C(b), n = |C(a)|, and m = |C(b)|.

Regression-based Model for Predicting new CLs
The CL predictor in our approach computes the weighted sum
of different similarities between articles, and applies a thresh-
old !0 to decide whether an article pair should have a CL. For
this purpose, a scoring function is defined:

s(a, b) = !0 + ~! · ~fa,b
= !0 + !1 ⇥ f1(a, b) + ...+ !6 ⇥ f6(a, b)

(11)

For each article a in W1, the article b⇤ in W2 that maxi-
mizes the score function s(a, b⇤) and satisfies s(a, b⇤) > 0

is predicted as the corresponding article of a. The idea of
CL prediction is simple and straightforward, but how to ap-
propriately set the weights of different similarity features is a
challenging problem.

Here, we propose a regression-based model to learn the
weights of features based on a set of known CLs. Given a set
of CLs {(ai, bi)}ni=1 as training data, let A = {(ai)}ni=1 and
B = {(bi)}ni=1, our model tries to find the optimal weights to
ensure:

8ai 2 A, 8b
0
2 (B � {bi}), s(ai, bi)� s(ai, b

0
) > 0

which also means

~! · (~fai,bi � ~fai,b‘) > 0

Therefore, we generate a new dataset D = {(xi, yi)}ni=1,
where the input vector xi = (

~fai,bi � ~fai,bj 6=i), the target out-
put yi is always set to 1. Then we train a linear regression
model on the dataset D to get the weights of different fea-
tures. The threshold !0 is set to the value that maximizes the
F1-measure on the training CLs.

Boosting Cross-lingual Knowledge Linking using Concept Annotation

Abstract

yi = 1 Cross-lingual links in Wikipedia serve as
important resource for sharing knowledge across
different languages. However, there are still many
articles in Wikipedia that have no cross-lingual
links to certain languages. Recognizing this prob-
lem, several knowledge linking approaches has
been proposed to find new cross-lingual links be-
tween wikis. When the inner link structures of
wikis are sparse and the already known cross-
lingual links are limited, it becomes difficult to find
all the possible cross-lingual links. In order to solve
this problem, we propose an approach that uses
concept annotation to boost cross-lingual knowl-
edge linking. Our approach first annotates each
wiki article with concepts described in other arti-
cles, so that new inner links can be built. Then,
new cross-lingual links are predicted based on sev-
eral similarity link-based features. Evaluaton on
the Wikipedia data shows that our prediction model
performs better than SVM; and the concent annota-
tion can effectively improve both the precision and
recall of the discovered cross-lingual links.

1 Introduction
As the web is evolving to a highly globalized information
space, sharing knowledge among people that speak different
languages on the web becomes an important and challeng-
ing task. Wikipeida is a pioneer project that aims to provide
knowledge encoded in various different languages. Accord-
ing to the statistics in Jun 2012, there are more than 20 mil-
lion articles written in 285 languages in Wikipedia. Articles
describing the same subjects in different languages are con-
nected by cross-lingual links (CLs) in Wikipedia. These CLs
serve as a valuable resource for sharing knowledge across
languages, which have been used in many applications, in-
cluding machine translation [Wolodja Wentland and Hartung,
2008], cross-lingual information retrieval [Peters et al., 2008;
Macdonald et al., 2008], and multilingual taxonomy extrac-
tion [de Melo and Weikum, 2010], etc.

However, there are still many articles having no CLs to cer-
tain languages in Wikipedia. For example, there are 4 million

English articles in Wikipedia1, only 6% of them are linked to
their corresponding Chinese articles. Recognizing this prob-
lem, several approaches has been proposed to find new CLs
between wikis [Sorg and Cimiano, 2008; Oh et al., 2008;
Wang et al., 2012], which is called cross-lingual knowledge
linking in this paper. The existing cross-lingual knowlege
linking approaches utilized the already known CLs between
two wikis and the inner link structures of each wiki to find
new CLs. Therefore, two factors are important to the quan-
tity and quality of the discovered CLs: the number of seed
CLs and the connectivity of articles in each wiki. Large num-
ber of known CLs and rich inner links within each wiki are
required to accurately find sufficient number of new CLs.
However, the number of seed CLs and inner links in wikis
vary in different knowledge linking tasks. Figure 1 shows the
information of wikis that were involved in previous knowl-
edge linking approaches, including the average numbers of
outlinks and the percentages of articles having CLs to En-
glish Wikipedia. It shows that English Wikipedia has the
best connectivity than other wikis, it might because English
Wikipedia has more users than other wikis. Because of differ-
ent editing policies and user’s habits, the average number of
outlinks in Baidu Baike is less than 2, which is much smaller
than that in Wikipedia. What’s more, only less than 5% of
the articles in Baidu Baike have CLs to articles in English
Wikipedia, which is also much smaller than other wikis2. In
this case, discovering all the possible missing CLs between
wikis (such as Baidu Baike) that have sparse connectivity and
limited seed CLs is a challenging problem.

In order to solve the above problem, we propose a new
knowledge linking approach that discovers both inner links
and CLs. Before finding new CLs, our approach first identi-
fies important concepts in each wiki article, and links these
concepts to the corresponding articles in the same wiki. This
concept annotation process can effectively enrich the inner
links in a wiki. Then, several link-based similarity features
are computed for each candidate CL, a supervised learning
method is used to predict new CLs. Specifically, our contri-
butions include:

1The figures are obtained from the Wikipedia dumps archived in
August, 2012

2The CLs between Baidu Baike and English Wikipedia are built
by the method used in [Wang et al., 2012]

Beijing

China

Tsinghua	
University

Jinlong	 Guo

北京

中国

清华大学

郭金龙

Forbidden	
City 故宫

?	

cross-‐lingual	 link	

Inner	 link	
Inner	 link	

	 EN ZH

Outlink	 similarity

Algorithm 1: Concept annotation algorithm.
Input: A wiki W = (A,E)

Output: Annotated wiki W = (A,E
0
)

for each article a 2 A do
Extract a set of concepts Ca in a;
Get the existing annotations Na in a;
for each ci 2 Ca do

Find the set of candidate articles Tci of ci;
Get b⇤ = argmaxb2Tci

LP (b|ci)⇥ SR(b,Na);
Na = Na [{b⇤};

end
for each bj 2 Na do

if < a, bj >/2 E then
E = E [{< a, bj >}

end
end

end
return Nd

Feature 1: Outlink similarity
Outlinks of an article correspond to a set of other articles

that it links to. The outlink similarity computes the similari-
ties between articles by comparing elements in their outlinks.
Given two articles a 2 W1 and b 2 W2, let O(a) and O(b)
be the outlinks of a and b respectively. The outlink similarity
is computed as

f1(a, b) =
2 · |�1!2(O(a)) \O(b)|
|�1!2(O(a))|+ |O(b)| (4)

where �1!2(·) is a function to maps articles in W1 to their
corresponding articles in W2 if there are CLs between them.

Feature 2: Outlink+ similarity
Given two articles a 2 W1 and b 2 W2, let O+

(a) and
O+

(b) be the outlinks in the abstracts and infoboxes of a and
b respectively. The outlink+ similarity is computed as

f2(a, b) =
2 · |�1!2(O

+
(a)) \O+

(b)|
|�1!2(O+

(a))|+ |O+
(b)| (5)

Feature 3: Inlink similarity
Inlinks of an article correspond to a set of other articles

linking to it, let I(a) and I(b) denote inlinks of two articles,
the inlink similarity is computed as

f3(a, b) =
2 · |�1!2(I(a)) \ I(b)|
|�1!2(I(a))|+ |I(b)| (6)

Feature 4: Inlink+ similarity
Let I+(a) and I+(b) denote two articles’ inlinks that are

from other articles’ abstracts and infoboxes, the inlink+ sim-
ilarity is computed as

f4(a, b) =
2 · |�1!2(I

+
(a)) \ I+(b)|

|�1!2(I+(a))|+ |I+(b)| (7)

Feature 5 Category similarity
Categories are tags attached to articles, which represent the

topics of the articles’ subjects. Let C(a) and C(b) denote

categories of two articles, the category similarity is computed
as

f5(a, b)(=
2 · |�1!2(C(a)) \ C(b)|
|�1!2(C(a))|+ |C(b)| (8)

Here �1!2(·) maps categories from one wiki to another
wiki by using the CLs between categories, which can be ob-
tained from Wikipedia.

Feature 6 Category+ similarity
Given two articles a and b, let C(a) and C(b) be the cat-

egories of a and b respectively. Category+ similarity com-
putes similarities between categories by using CLs between
articles. Let E(c1) and E(c2) be the set of articles belonging
to category c1 and c2 respectively, the similarity between two
categories is computed as

f6(a, b) =
1

nm

nX

i=1

mX

j=1

�(cai , c
b
j) (9)

�(c1, c2) =
2|�1!2(E(c1)) \ E(c2)|
|�1!2(E(c1))|+ |E(c2)|

(10)

where cai 2 C(a), cbj 2 C(b), n = |C(a)|, and m = |C(b)|.

Regression-based Model for Predicting new CLs
The CL predictor in our approach computes the weighted sum
of different similarities between articles, and applies a thresh-
old !0 to decide whether an article pair should have a CL. For
this purpose, a scoring function is defined:

s(a, b) = !0 + ~! · ~fa,b
= !0 + !1 ⇥ f1(a, b) + ...+ !6 ⇥ f6(a, b)

(11)

For each article a in W1, the article b⇤ in W2 that maxi-
mizes the score function s(a, b⇤) and satisfies s(a, b⇤) > 0

is predicted as the corresponding article of a. The idea of
CL prediction is simple and straightforward, but how to ap-
propriately set the weights of different similarity features is a
challenging problem.

Here, we propose a regression-based model to learn the
weights of features based on a set of known CLs. Given a set
of CLs {(ai, bi)}ni=1 as training data, let A = {(ai)}ni=1 and
B = {(bi)}ni=1, our model tries to find the optimal weights to
ensure:

8ai 2 A, 8b
0
2 (B � {bi}), s(ai, bi)� s(ai, b

0
) > 0

which also means

~! · (~fai,bi � ~fai,b‘) > 0

Therefore, we generate a new dataset D = {(xi, yi)}ni=1,
where the input vector xi = (

~fai,bi � ~fai,bj 6=i), the target out-
put yi is always set to 1. Then we train a linear regression
model on the dataset D to get the weights of different fea-
tures. The threshold !0 is set to the value that maximizes the
F1-measure on the training CLs.

Algorithm 1: Concept annotation algorithm.
Input: A wiki W = (A,E)

Output: Annotated wiki W = (A,E
0
)

for each article a 2 A do
Extract a set of concepts Ca in a;
Get the existing annotations Na in a;
for each ci 2 Ca do

Find the set of candidate articles Tci of ci;
Get b⇤ = argmaxb2Tci

LP (b|ci)⇥ SR(b,Na);
Na = Na [{b⇤};

end
for each bj 2 Na do

if < a, bj >/2 E then
E = E [{< a, bj >}

end
end

end
return Nd

Feature 1: Outlink similarity
Outlinks of an article correspond to a set of other articles

that it links to. The outlink similarity computes the similari-
ties between articles by comparing elements in their outlinks.
Given two articles a 2 W1 and b 2 W2, let O(a) and O(b)
be the outlinks of a and b respectively. The outlink similarity
is computed as

f1(a, b) =
2 · |�1!2(O(a)) \O(b)|
|�1!2(O(a))|+ |O(b)| (4)

where �1!2(·) is a function to maps articles in W1 to their
corresponding articles in W2 if there are CLs between them.

Feature 2: Outlink+ similarity
Given two articles a 2 W1 and b 2 W2, let O+

(a) and
O+

(b) be the outlinks in the abstracts and infoboxes of a and
b respectively. The outlink+ similarity is computed as

f2(a, b) =
2 · |�1!2(O

+
(a)) \O+

(b)|
|�1!2(O+

(a))|+ |O+
(b)| (5)

Feature 3: Inlink similarity
Inlinks of an article correspond to a set of other articles

linking to it, let I(a) and I(b) denote inlinks of two articles,
the inlink similarity is computed as

f3(a, b) =
2 · |�1!2(I(a)) \ I(b)|
|�1!2(I(a))|+ |I(b)| (6)

Feature 4: Inlink+ similarity
Let I+(a) and I+(b) denote two articles’ inlinks that are

from other articles’ abstracts and infoboxes, the inlink+ sim-
ilarity is computed as

f4(a, b) =
2 · |�1!2(I

+
(a)) \ I+(b)|

|�1!2(I+(a))|+ |I+(b)| (7)

Feature 5 Category similarity
Categories are tags attached to articles, which represent the

topics of the articles’ subjects. Let C(a) and C(b) denote

categories of two articles, the category similarity is computed
as

f5(a, b)(=
2 · |�1!2(C(a)) \ C(b)|
|�1!2(C(a))|+ |C(b)| (8)

Here �1!2(·) maps categories from one wiki to another
wiki by using the CLs between categories, which can be ob-
tained from Wikipedia.

Feature 6 Category+ similarity
Given two articles a and b, let C(a) and C(b) be the cat-

egories of a and b respectively. Category+ similarity com-
putes similarities between categories by using CLs between
articles. Let E(c1) and E(c2) be the set of articles belonging
to category c1 and c2 respectively, the similarity between two
categories is computed as

f6(a, b) =
1

nm

nX

i=1

mX

j=1

�(cai , c
b
j) (9)

�(c1, c2) =
2|�1!2(E(c1)) \ E(c2)|
|�1!2(E(c1))|+ |E(c2)|

(10)

where cai 2 C(a), cbj 2 C(b), n = |C(a)|, and m = |C(b)|.

Regression-based Model for Predicting new CLs
The CL predictor in our approach computes the weighted sum
of different similarities between articles, and applies a thresh-
old !0 to decide whether an article pair should have a CL. For
this purpose, a scoring function is defined:

s(a, b) = !0 + ~! · ~fa,b
= !0 + !1 ⇥ f1(a, b) + ...+ !6 ⇥ f6(a, b)

(11)

For each article a in W1, the article b⇤ in W2 that maxi-
mizes the score function s(a, b⇤) and satisfies s(a, b⇤) > 0

is predicted as the corresponding article of a. The idea of
CL prediction is simple and straightforward, but how to ap-
propriately set the weights of different similarity features is a
challenging problem.

Here, we propose a regression-based model to learn the
weights of features based on a set of known CLs. Given a set
of CLs {(ai, bi)}ni=1 as training data, let A = {(ai)}ni=1 and
B = {(bi)}ni=1, our model tries to find the optimal weights to
ensure:

8ai 2 A, 8b
0
2 (B � {bi}), s(ai, bi)� s(ai, b

0
) > 0

which also means

~! · (~fai,bi � ~fai,b‘) > 0

Therefore, we generate a new dataset D = {(xi, yi)}ni=1,
where the input vector xi = (

~fai,bi � ~fai,bj 6=i), the target out-
put yi is always set to 1. Then we train a linear regression
model on the dataset D to get the weights of different fea-
tures. The threshold !0 is set to the value that maximizes the
F1-measure on the training CLs.

Inlink	 similarity

Algorithm 1: Concept annotation algorithm.
Input: A wiki W = (A,E)

Output: Annotated wiki W = (A,E
0
)

for each article a 2 A do
Extract a set of concepts Ca in a;
Get the existing annotations Na in a;
for each ci 2 Ca do

Find the set of candidate articles Tci of ci;
Get b⇤ = argmaxb2Tci

LP (b|ci)⇥ SR(b,Na);
Na = Na [{b⇤};

end
for each bj 2 Na do

if < a, bj >/2 E then
E = E [{< a, bj >}

end
end

end
return Nd

Feature 1: Outlink similarity
Outlinks of an article correspond to a set of other articles

that it links to. The outlink similarity computes the similari-
ties between articles by comparing elements in their outlinks.
Given two articles a 2 W1 and b 2 W2, let O(a) and O(b)
be the outlinks of a and b respectively. The outlink similarity
is computed as

f1(a, b) =
2 · |�1!2(O(a)) \O(b)|
|�1!2(O(a))|+ |O(b)| (4)

where �1!2(·) is a function to maps articles in W1 to their
corresponding articles in W2 if there are CLs between them.

Feature 2: Outlink+ similarity
Given two articles a 2 W1 and b 2 W2, let O+

(a) and
O+

(b) be the outlinks in the abstracts and infoboxes of a and
b respectively. The outlink+ similarity is computed as

f2(a, b) =
2 · |�1!2(O

+
(a)) \O+

(b)|
|�1!2(O+

(a))|+ |O+
(b)| (5)

Feature 3: Inlink similarity
Inlinks of an article correspond to a set of other articles

linking to it, let I(a) and I(b) denote inlinks of two articles,
the inlink similarity is computed as

f3(a, b) =
2 · |�1!2(I(a)) \ I(b)|
|�1!2(I(a))|+ |I(b)| (6)

Feature 4: Inlink+ similarity
Let I+(a) and I+(b) denote two articles’ inlinks that are

from other articles’ abstracts and infoboxes, the inlink+ sim-
ilarity is computed as

f4(a, b) =
2 · |�1!2(I

+
(a)) \ I+(b)|

|�1!2(I+(a))|+ |I+(b)| (7)

Feature 5 Category similarity
Categories are tags attached to articles, which represent the

topics of the articles’ subjects. Let C(a) and C(b) denote

categories of two articles, the category similarity is computed
as

f5(a, b)(=
2 · |�1!2(C(a)) \ C(b)|
|�1!2(C(a))|+ |C(b)| (8)

Here �1!2(·) maps categories from one wiki to another
wiki by using the CLs between categories, which can be ob-
tained from Wikipedia.

Feature 6 Category+ similarity
Given two articles a and b, let C(a) and C(b) be the cat-

egories of a and b respectively. Category+ similarity com-
putes similarities between categories by using CLs between
articles. Let E(c1) and E(c2) be the set of articles belonging
to category c1 and c2 respectively, the similarity between two
categories is computed as

f6(a, b) =
1

nm

nX

i=1

mX

j=1

�(cai , c
b
j) (9)

�(c1, c2) =
2|�1!2(E(c1)) \ E(c2)|
|�1!2(E(c1))|+ |E(c2)|

(10)

where cai 2 C(a), cbj 2 C(b), n = |C(a)|, and m = |C(b)|.

Regression-based Model for Predicting new CLs
The CL predictor in our approach computes the weighted sum
of different similarities between articles, and applies a thresh-
old !0 to decide whether an article pair should have a CL. For
this purpose, a scoring function is defined:

s(a, b) = !0 + ~! · ~fa,b
= !0 + !1 ⇥ f1(a, b) + ...+ !6 ⇥ f6(a, b)

(11)

For each article a in W1, the article b⇤ in W2 that maxi-
mizes the score function s(a, b⇤) and satisfies s(a, b⇤) > 0

is predicted as the corresponding article of a. The idea of
CL prediction is simple and straightforward, but how to ap-
propriately set the weights of different similarity features is a
challenging problem.

Here, we propose a regression-based model to learn the
weights of features based on a set of known CLs. Given a set
of CLs {(ai, bi)}ni=1 as training data, let A = {(ai)}ni=1 and
B = {(bi)}ni=1, our model tries to find the optimal weights to
ensure:

8ai 2 A, 8b
0
2 (B � {bi}), s(ai, bi)� s(ai, b

0
) > 0

which also means

~! · (~fai,bi � ~fai,b‘) > 0

Therefore, we generate a new dataset D = {(xi, yi)}ni=1,
where the input vector xi = (

~fai,bi � ~fai,bj 6=i), the target out-
put yi is always set to 1. Then we train a linear regression
model on the dataset D to get the weights of different fea-
tures. The threshold !0 is set to the value that maximizes the
F1-measure on the training CLs.

Algorithm 1: Concept annotation algorithm.
Input: A wiki W = (A,E)

Output: Annotated wiki W = (A,E
0
)

for each article a 2 A do
Extract a set of concepts Ca in a;
Get the existing annotations Na in a;
for each ci 2 Ca do

Find the set of candidate articles Tci of ci;
Get b⇤ = argmaxb2Tci

LP (b|ci)⇥ SR(b,Na);
Na = Na [{b⇤};

end
for each bj 2 Na do

if < a, bj >/2 E then
E = E [{< a, bj >}

end
end

end
return Nd

Feature 1: Outlink similarity
Outlinks of an article correspond to a set of other articles

that it links to. The outlink similarity computes the similari-
ties between articles by comparing elements in their outlinks.
Given two articles a 2 W1 and b 2 W2, let O(a) and O(b)
be the outlinks of a and b respectively. The outlink similarity
is computed as

f1(a, b) =
2 · |�1!2(O(a)) \O(b)|
|�1!2(O(a))|+ |O(b)| (4)

where �1!2(·) is a function to maps articles in W1 to their
corresponding articles in W2 if there are CLs between them.

Feature 2: Outlink+ similarity
Given two articles a 2 W1 and b 2 W2, let O+

(a) and
O+

(b) be the outlinks in the abstracts and infoboxes of a and
b respectively. The outlink+ similarity is computed as

f2(a, b) =
2 · |�1!2(O

+
(a)) \O+

(b)|
|�1!2(O+

(a))|+ |O+
(b)| (5)

Feature 3: Inlink similarity
Inlinks of an article correspond to a set of other articles

linking to it, let I(a) and I(b) denote inlinks of two articles,
the inlink similarity is computed as

f3(a, b) =
2 · |�1!2(I(a)) \ I(b)|
|�1!2(I(a))|+ |I(b)| (6)

Feature 4: Inlink+ similarity
Let I+(a) and I+(b) denote two articles’ inlinks that are

from other articles’ abstracts and infoboxes, the inlink+ sim-
ilarity is computed as

f4(a, b) =
2 · |�1!2(I

+
(a)) \ I+(b)|

|�1!2(I+(a))|+ |I+(b)| (7)

Feature 5 Category similarity
Categories are tags attached to articles, which represent the

topics of the articles’ subjects. Let C(a) and C(b) denote

categories of two articles, the category similarity is computed
as

f5(a, b)(=
2 · |�1!2(C(a)) \ C(b)|
|�1!2(C(a))|+ |C(b)| (8)

Here �1!2(·) maps categories from one wiki to another
wiki by using the CLs between categories, which can be ob-
tained from Wikipedia.

Feature 6 Category+ similarity
Given two articles a and b, let C(a) and C(b) be the cat-

egories of a and b respectively. Category+ similarity com-
putes similarities between categories by using CLs between
articles. Let E(c1) and E(c2) be the set of articles belonging
to category c1 and c2 respectively, the similarity between two
categories is computed as

f6(a, b) =
1

nm

nX

i=1

mX

j=1

�(cai , c
b
j) (9)

�(c1, c2) =
2|�1!2(E(c1)) \ E(c2)|
|�1!2(E(c1))|+ |E(c2)|

(10)

where cai 2 C(a), cbj 2 C(b), n = |C(a)|, and m = |C(b)|.

Regression-based Model for Predicting new CLs
The CL predictor in our approach computes the weighted sum
of different similarities between articles, and applies a thresh-
old !0 to decide whether an article pair should have a CL. For
this purpose, a scoring function is defined:

s(a, b) = !0 + ~! · ~fa,b
= !0 + !1 ⇥ f1(a, b) + ...+ !6 ⇥ f6(a, b)

(11)

For each article a in W1, the article b⇤ in W2 that maxi-
mizes the score function s(a, b⇤) and satisfies s(a, b⇤) > 0

is predicted as the corresponding article of a. The idea of
CL prediction is simple and straightforward, but how to ap-
propriately set the weights of different similarity features is a
challenging problem.

Here, we propose a regression-based model to learn the
weights of features based on a set of known CLs. Given a set
of CLs {(ai, bi)}ni=1 as training data, let A = {(ai)}ni=1 and
B = {(bi)}ni=1, our model tries to find the optimal weights to
ensure:

8ai 2 A, 8b
0
2 (B � {bi}), s(ai, bi)� s(ai, b

0
) > 0

which also means

~! · (~fai,bi � ~fai,b‘) > 0

Therefore, we generate a new dataset D = {(xi, yi)}ni=1,
where the input vector xi = (

~fai,bi � ~fai,bj 6=i), the target out-
put yi is always set to 1. Then we train a linear regression
model on the dataset D to get the weights of different fea-
tures. The threshold !0 is set to the value that maximizes the
F1-measure on the training CLs.

Category	 similarity

Algorithm 1: Concept annotation algorithm.
Input: A wiki W = (A,E)

Output: Annotated wiki W = (A,E
0
)

for each article a 2 A do
Extract a set of concepts Ca in a;
Get the existing annotations Na in a;
for each ci 2 Ca do

Find the set of candidate articles Tci of ci;
Get b⇤ = argmaxb2Tci

LP (b|ci)⇥ SR(b,Na);
Na = Na [{b⇤};

end
for each bj 2 Na do

if < a, bj >/2 E then
E = E [{< a, bj >}

end
end

end
return Nd

Feature 1: Outlink similarity
Outlinks of an article correspond to a set of other articles

that it links to. The outlink similarity computes the similari-
ties between articles by comparing elements in their outlinks.
Given two articles a 2 W1 and b 2 W2, let O(a) and O(b)
be the outlinks of a and b respectively. The outlink similarity
is computed as

f1(a, b) =
2 · |�1!2(O(a)) \O(b)|
|�1!2(O(a))|+ |O(b)| (4)

where �1!2(·) is a function to maps articles in W1 to their
corresponding articles in W2 if there are CLs between them.

Feature 2: Outlink+ similarity
Given two articles a 2 W1 and b 2 W2, let O+

(a) and
O+

(b) be the outlinks in the abstracts and infoboxes of a and
b respectively. The outlink+ similarity is computed as

f2(a, b) =
2 · |�1!2(O

+
(a)) \O+

(b)|
|�1!2(O+

(a))|+ |O+
(b)| (5)

Feature 3: Inlink similarity
Inlinks of an article correspond to a set of other articles

linking to it, let I(a) and I(b) denote inlinks of two articles,
the inlink similarity is computed as

f3(a, b) =
2 · |�1!2(I(a)) \ I(b)|
|�1!2(I(a))|+ |I(b)| (6)

Feature 4: Inlink+ similarity
Let I+(a) and I+(b) denote two articles’ inlinks that are

from other articles’ abstracts and infoboxes, the inlink+ sim-
ilarity is computed as

f4(a, b) =
2 · |�1!2(I

+
(a)) \ I+(b)|

|�1!2(I+(a))|+ |I+(b)| (7)

Feature 5 Category similarity
Categories are tags attached to articles, which represent the

topics of the articles’ subjects. Let C(a) and C(b) denote

categories of two articles, the category similarity is computed
as

f5(a, b)(=
2 · |�1!2(C(a)) \ C(b)|
|�1!2(C(a))|+ |C(b)| (8)

Here �1!2(·) maps categories from one wiki to another
wiki by using the CLs between categories, which can be ob-
tained from Wikipedia.

Feature 6 Category+ similarity
Given two articles a and b, let C(a) and C(b) be the cat-

egories of a and b respectively. Category+ similarity com-
putes similarities between categories by using CLs between
articles. Let E(c1) and E(c2) be the set of articles belonging
to category c1 and c2 respectively, the similarity between two
categories is computed as

f6(a, b) =
1

nm

nX

i=1

mX

j=1

�(cai , c
b
j) (9)

�(c1, c2) =
2|�1!2(E(c1)) \ E(c2)|
|�1!2(E(c1))|+ |E(c2)|

(10)

where cai 2 C(a), cbj 2 C(b), n = |C(a)|, and m = |C(b)|.

Regression-based Model for Predicting new CLs
The CL predictor in our approach computes the weighted sum
of different similarities between articles, and applies a thresh-
old !0 to decide whether an article pair should have a CL. For
this purpose, a scoring function is defined:

s(a, b) = !0 + ~! · ~fa,b
= !0 + !1 ⇥ f1(a, b) + ...+ !6 ⇥ f6(a, b)

(11)

For each article a in W1, the article b⇤ in W2 that maxi-
mizes the score function s(a, b⇤) and satisfies s(a, b⇤) > 0

is predicted as the corresponding article of a. The idea of
CL prediction is simple and straightforward, but how to ap-
propriately set the weights of different similarity features is a
challenging problem.

Here, we propose a regression-based model to learn the
weights of features based on a set of known CLs. Given a set
of CLs {(ai, bi)}ni=1 as training data, let A = {(ai)}ni=1 and
B = {(bi)}ni=1, our model tries to find the optimal weights to
ensure:

8ai 2 A, 8b
0
2 (B � {bi}), s(ai, bi)� s(ai, b

0
) > 0

which also means

~! · (~fai,bi � ~fai,b‘) > 0

Therefore, we generate a new dataset D = {(xi, yi)}ni=1,
where the input vector xi = (

~fai,bi � ~fai,bj 6=i), the target out-
put yi is always set to 1. Then we train a linear regression
model on the dataset D to get the weights of different fea-
tures. The threshold !0 is set to the value that maximizes the
F1-measure on the training CLs.

Algorithm 1: Concept annotation algorithm.
Input: A wiki W = (A,E)

Output: Annotated wiki W = (A,E
0
)

for each article a 2 A do
Extract a set of concepts Ca in a;
Get the existing annotations Na in a;
for each ci 2 Ca do

Find the set of candidate articles Tci of ci;
Get b⇤ = argmaxb2Tci

LP (b|ci)⇥ SR(b,Na);
Na = Na [{b⇤};

end
for each bj 2 Na do

if < a, bj >/2 E then
E = E [{< a, bj >}

end
end

end
return Nd

Feature 1: Outlink similarity
Outlinks of an article correspond to a set of other articles

that it links to. The outlink similarity computes the similari-
ties between articles by comparing elements in their outlinks.
Given two articles a 2 W1 and b 2 W2, let O(a) and O(b)
be the outlinks of a and b respectively. The outlink similarity
is computed as

f1(a, b) =
2 · |�1!2(O(a)) \O(b)|
|�1!2(O(a))|+ |O(b)| (4)

where �1!2(·) is a function to maps articles in W1 to their
corresponding articles in W2 if there are CLs between them.

Feature 2: Outlink+ similarity
Given two articles a 2 W1 and b 2 W2, let O+

(a) and
O+

(b) be the outlinks in the abstracts and infoboxes of a and
b respectively. The outlink+ similarity is computed as

f2(a, b) =
2 · |�1!2(O

+
(a)) \O+

(b)|
|�1!2(O+

(a))|+ |O+
(b)| (5)

Feature 3: Inlink similarity
Inlinks of an article correspond to a set of other articles

linking to it, let I(a) and I(b) denote inlinks of two articles,
the inlink similarity is computed as

f3(a, b) =
2 · |�1!2(I(a)) \ I(b)|
|�1!2(I(a))|+ |I(b)| (6)

Feature 4: Inlink+ similarity
Let I+(a) and I+(b) denote two articles’ inlinks that are

from other articles’ abstracts and infoboxes, the inlink+ sim-
ilarity is computed as

f4(a, b) =
2 · |�1!2(I

+
(a)) \ I+(b)|

|�1!2(I+(a))|+ |I+(b)| (7)

Feature 5 Category similarity
Categories are tags attached to articles, which represent the

topics of the articles’ subjects. Let C(a) and C(b) denote

categories of two articles, the category similarity is computed
as

f5(a, b)(=
2 · |�1!2(C(a)) \ C(b)|
|�1!2(C(a))|+ |C(b)| (8)

Here �1!2(·) maps categories from one wiki to another
wiki by using the CLs between categories, which can be ob-
tained from Wikipedia.

Feature 6 Category+ similarity
Given two articles a and b, let C(a) and C(b) be the cat-

egories of a and b respectively. Category+ similarity com-
putes similarities between categories by using CLs between
articles. Let E(c1) and E(c2) be the set of articles belonging
to category c1 and c2 respectively, the similarity between two
categories is computed as

f6(a, b) =
1

nm

nX

i=1

mX

j=1

�(cai , c
b
j) (9)

�(c1, c2) =
2|�1!2(E(c1)) \ E(c2)|
|�1!2(E(c1))|+ |E(c2)|

(10)

where cai 2 C(a), cbj 2 C(b), n = |C(a)|, and m = |C(b)|.

Regression-based Model for Predicting new CLs
The CL predictor in our approach computes the weighted sum
of different similarities between articles, and applies a thresh-
old !0 to decide whether an article pair should have a CL. For
this purpose, a scoring function is defined:

s(a, b) = !0 + ~! · ~fa,b
= !0 + !1 ⇥ f1(a, b) + ...+ !6 ⇥ f6(a, b)

(11)

For each article a in W1, the article b⇤ in W2 that maxi-
mizes the score function s(a, b⇤) and satisfies s(a, b⇤) > 0

is predicted as the corresponding article of a. The idea of
CL prediction is simple and straightforward, but how to ap-
propriately set the weights of different similarity features is a
challenging problem.

Here, we propose a regression-based model to learn the
weights of features based on a set of known CLs. Given a set
of CLs {(ai, bi)}ni=1 as training data, let A = {(ai)}ni=1 and
B = {(bi)}ni=1, our model tries to find the optimal weights to
ensure:

8ai 2 A, 8b
0
2 (B � {bi}), s(ai, bi)� s(ai, b

0
) > 0

which also means

~! · (~fai,bi � ~fai,b‘) > 0

Therefore, we generate a new dataset D = {(xi, yi)}ni=1,
where the input vector xi = (

~fai,bi � ~fai,bj 6=i), the target out-
put yi is always set to 1. Then we train a linear regression
model on the dataset D to get the weights of different fea-
tures. The threshold !0 is set to the value that maximizes the
F1-measure on the training CLs.

	 Annota)ng	 Concepts	 Within	 Each	 Wiki	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Predic)ng	 New	 Cross-‐lingual	 Links	 Between	 Wikis

	 Mo)va)on	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Proposed	 Framework

Table 1: Results of cross-lingual link prediction (%).
Before Annotation After Annotation

#Seed CLs Model Precision Reccall F1-measure Precision Recall F1-measure
0.05 Mil. CLs SVM 92.1 35.0 50.7 78.5 37.2 50.5

RM 93.3 36.0 52.0 92.4 38.6 54.5
0.10 Mil. CLs SVM 79.7 35.0 48.6 86.9 50.4 63.8

RM 84.6 37.4 51.9 96.6 49.3 65.3
0.15 Mil. CLs SVM 80.9 35.9 49.7 88.1 57.3 69.5

RM 93.5 38.2 54.2 93.7 56.2 70.2
0.20 Mil. CLs SVM 84.7 37.3 51.8 88.8 68.1 77.1

RM 94.5 37.9 54.1 95.9 67.2 79.0

3 Experiments
The data of English Wikipedia and Chinese Wikipedia
(archived in August 2012) has been used to evaluate our pro-
posed approach. The English Wikipedia contains 4 million
articles, and the Chinese Wikipedia contains 499 thousand
articles, and there are already 239,309 cross-lingual links
between English Wikipedia and Chinese Wikipedia. Using
these data, we first evaluate the effectiveness of concept an-
notation and CL prediction methods separately, and then eval-
uate the final result obtained by the proposed approach.

3.1 Concept Annotation
For the evaluation of the Concept Annotation method, we ran-
domly selected 1000 articles from Chinese Wikipedia. There
are 12,723 manually created inner links in these selected ar-
ticles. 70% of the existing inner links in the selected articles
were randomly chosen as the ground truth for the evaluation,
which were removed from the articles before the articles are
fed to the annotation algorithm. After the annotation, we col-
lected the new discovered inner links, and computed the Pre-
cision, Recall and F1-measure of the new discovered inner
links based on the ground truth links.

One advantage of our concept annotation method is to
leverage the cross-lingual information to enhance the con-
cept annotation. Therefore, we did experiments with differ-
ent number of CLs used in the concept annotation. Figure 3
shows the experimental results of concept annotation. In the
experiments, we respectively used 0, 0.1million and 0.2 mil-
lion CLs, respectively. As shown in Figure 3, our approach
can obtain a precision of 82.1% and a recall of 70.5% without
using any CLs. The performance can be significantly boosted
when using some seed CLs in our approach. For example,
when 0.2 million CLs are used, the obtained precision is in-
creased by 3.5% and the recall is increased by 3.2%. More-
over, a large part of missing inner links can be discovered by
our concept annotation method. The newly discovered CLs
can be again used to improve the quality of the discovered
inner links.

3.2 Cross-lingual Links Prediction
To evaluate the CL prediction method, we randomly selected
3,000 articles having CLs to English articles from Chinese
Wikipedia. The existing CLs between these articles were
used as the ground truth for the evaluation. The seed CLs

!"#$%&%'() *#$+,,) -./0#+&1"#)

2')34&)) 567.8) 9:7;8) 9;7<8)

:7.)=%,7)34&) 5>7?8) 9.7@8) 997:8)

:76)=%,7)34&) 5;7?8) 9>798) 9<768)

:8)

.:8)

6:8)

>:8)

@:8)

;:8)

?:8)

9:8)

5:8)

<:8)

.::8)

Figure 3: Results of concept annotation.

were extracted from the rest of 236,309 existing CLs between
English Wikipedia and Chinese Wikipedia. In the experi-
ments, we aimed to investigate how the CL prediction method
performed before and after the concept annotation, and how
the CL prediction method performed with different numbers
of seeding CLs. Therefore, we did three groups of exper-
iments, with each group using different number of seeding
cross-lingual links. In each group of experiments, we also
compared the performance of our method with the SVM clas-
sification model, which was used in previous knowledge link-
ing approaches. Table 1 shows the experimental results.

In each group of the experiment, our regression-based
learning model (RM) always performed better than the SVM
model in terms of F1-measure. It shows that our RM model
is more suitable for the knowledge linking problems than the
traditional classification model SVM.

Before the concept annotation being performed, the perfor-
mance (e.g., by F1-measure) of our approach does not always
increase with more seed CLs being used. On the other hand,
after the concept annotation process, the F1-score increases
clearly as the number of seed CLs increases. For example,
there is a 24.5% increment of the F1-measure when the num-
ber of seed CLs increases from 0.05 million to 0.20 million.
This might be because the equivalent relations of seed CLs
cannot be propagated to other article pairs when there are few
inner links in wikis. Therefore, enriching the inner links is
important for knowledge linking and can effectively improve

Regression	 Model	 for	 Predicting	 New	 CLs	

Language-‐independent	 Features	

3 Experiments
The data of English Wikipedia and Chinese Wikipedia has
been used to evaluate our proposed approach. We down-
load the English Wikipedia and Chinese Wikipedia dumps
from Wikipedia’s download site. Both of the two dumps
are archived in August 2012, the English Wikipedia contains
4 million articles, and the Chinese Wikipedia contains 499
thousand articles, and there are already 239,309 cross-lingual
links between English Wikipedia and Chinese Wikipedia. Us-
ing these data, we first evaluate the effectiveness of Concept
Annotation and CL prediction methods respectively, and then
evaluate the proposed approach as a whole.

3.1 Concept Annotation

For the evaluation of the Concept Annotation method, we ran-
domly selected 1000 articles from Chinese Wikipedia. There
are 12,723 manually created inner links in these selected arti-
cles. 70% of the existing inner links in the articles were ran-
domly chosen as the ground truth for the evaluation, which
were removed from the articles before the articles are fed
to the annotation algorithm. After the annotation, we col-
lected the new discovered inner links, and computed the Pre-
cision, Recall and F1-measure of the new discovered inner
links based on the ground truth links.

One advantage of our concept annotation method is to
leverage the cross-lingual information to enhance the con-
cept annotation. Therefore, we did experiments with differ-
ent number of CLs used in the concept annotation. Figure
3 shows the experimental results of concept annotation. For
three groups of experiments, we used 0, 0.1million and 0.2
million CLs, respectively. As shown in Figure 3, our ap-
proach can obtain 82.1% precision and 70.5% recall when no
CLs are used. The precision and recall increase as the num-
ber of used CLs increases. When 0.2 million CLs are used,
the precision increased by 3.5% and the recall was increased
by 3.2%. According the results, a large part of missing inner
links can be discovered with an acceptable precision by our
concept annotation method; if there are available CLs, they
can be used to improve the quality of the discovered inner
links.

Precision) Recall) F1/measure)
No)CLs)) 82.1%) 70.5%) 75.9%)
0.1)Mil.)CLs) 83.6%) 71.4%) 77.0%)
0.2)Mil.)CLs) 85.6%) 73.7%) 79.2%)

0%)
10%)
20%)
30%)
40%)
50%)
60%)
70%)
80%)
90%)
100%)

Figure 3: Results of Concept Annotation

3.2 Cross-lingual Links Prediction

In order to evaluate the CL prediction method, we randomly
selected 3,000 articles having CLs to English articles from
Chinese Wikipedia. The existing CLs between these arti-
cles were used as the ground truth for the evaluation. The
seed CLs were extracted from the rest of 236,309 existing
CLs between English Wikipedia and Chinese Wikipedia. In
the experiments, we aimed to investigate how the CL predic-
tion method performed before and after the concept annota-
tion, and how the CL prediction method performed with dif-
ferent number of seeding cross-lingual links. Therefore, we
did three groups of experiments, each group uses different
number of seeding cross-lingual links. In each group of ex-
periments, we also compared the performance of our method
with the SVM classification model, which was used in previ-
ous knowledge linking approaches. Table 1 shows the exper-
imental results.

In each group of the experiment, our regression-based
learning model (RM) always performed better than SVM
model in terms of F1-measure; it shows that our RM model
is more suitable for the knowledge linking problems than the
traditional classification model SVM.

Before concept annotation being performed, the F1-
measure of our approach does not always increase when more
seed CLs are used. However, the F1-measure increases obvi-
ously as the number of seed CLs increases after concept an-
notation; there is a 24.5% increment of the F1-measure when
the number of seed CLs increases from 0.05 million to 0.20
million. This is might because the equivalent relations of seed
CLs cannot effectively be propagated to other article pairs
when there are few inner links in wikis. Therefore, enriching
the inner links is important for knowledge linking and can
effectively improve the performance of CL prediction.

3.3 Incrementally Knowledge Linking

At last, we evaluated our approach as a whole. Since the
proposed approach aims to discover CLs with a small set of
seeding links, we did not use all the available CLs as seed
links; instead, we randomly select 50 thousand of them as the
seed links. We also randomly removed 70% inner links in
the Chinese Wikipedia (for both articles having cross-lingual
links and having no cross-lingual links). We fed the seed links
and two wikis to our approach, let it run iteratively to incre-
mentally find new CLs. Figure 4 shows the number of new
discovered CLs in each run. Blue bars corresponding to the
results without concept annotation, and red bars show the re-
sults when the concept annotation was performed.

According to the results, new CLs can be discovered in
each run no matter the concept annotation was performed or
not. However, there were more CLs discovered when con-
cept annotation was done. In the fourth run, more CLs were
discovered than in the third run when using concept annota-
tion; but less CLs were found in the fourth run than in the
third run without concept annotation. In summary, 171,393
more CLs were discovered when the concept annotation were
performed.

Table 1: Results of Cross-lingual Link Prediction
Before Annotation After Annotation

#Seed CLs Model Precision Recall F1-measure Precision Recall F1-measure
0.05 Mil. CLs SVM 92.1% 35.0% 50.7% 78.5% 37.2% 50.5%

RM 93.3% 36.0% 52.0% 92.4% 38.6% 54.5%
0.10 Mil. CLs SVM 79.7% 35.0% 48.6% 86.9% 50.4% 63.8%

RM 84.6% 37.4% 51.9% 96.6% 49.3% 65.3%
0.15 Mil. CLs SVM 80.9% 35.9% 49.7% 88.1% 57.3% 69.5%

RM 93.5% 38.2% 54.2% 93.7% 56.2% 70.2%
0.20 Mil. CLs SVM 84.7% 37.3% 51.8% 88.8% 68.1% 77.1%

RM 94.5% 37.9% 54.1% 95.9% 67.2% 79.0%

1" 2" 3" 4"
No"Annota,on" 34,876" 57,128" 76,932" 67,440"
Annota,on" 45,002" 78,334" 132,210" 152,223"

0"

20,000"

40,000"

60,000"

80,000"

100,000"

120,000"

140,000"

160,000"

N
um

be
r'o

f'd
is
co
ve
re
d'
CL
s�

Figure 4: Results of Incrementally Knowledge Linking

4 Related Work
4.1 Concept Annotation
Recently, several approaches have been proposed to link doc-
uments to Wikipedia. Wikify! [Mihalcea and Csomai, 2007]
is a system which is able to automatically perform the an-
notation task following the Wikipedia guidelines. Wikify!
first extracts keywords in documents, then find the links from
these keywords to their corresponding articles by combin-
ing both knowledge-based approach and data-driven method.
Milne et al. [Milne and Witten, 2008] proposed a learning
based approach for linking entities in text to Wikipedia. A
classification algorithm is also used in the candidate link de-
tection. Shen et al. [Shen et al., 2012] proposed a sys-
tem LINDEN, which also explores semantic information in
YAGO ontology to predict correct links from documents to
Wikipedia. Kaulkarni et al. [Kulkarni et al., 2009] and Han
et al. [Han et al., 2011] proposed collective approaches that
aim to take the relations between annotation results into ac-
count. Differing from these approaches, our concept anno-
tation method uses the cross-lingual links to improve the an-
notation results. Only two measures, the link probability and
semantic relatedness, are used to decide the links from con-
cepts to their corresponding wiki articles, which guarantees
the efficiency of annotation process.

4.2 Cross-lingual Knowledge Linking
There have been several approaches for cross-lingual knowl-
edge linking. Sorg and Cimiano [Sorg and Cimiano, 2008]

proposed a method to find missing cross-lingual links be-
tween English and German. Their method makes use of
the link structure of articles to find candidates of missing
links. And then a classifier is trained based on several graph-
based features and text-based features to predict the miss-
ing links. Oh et al. [Oh et al., 2008] proposed a method
for discovering missing cross-lingual links between English
and Japanese. Their method first selects candidates of miss-
ing links based on cross-lingual similarities between English
and Japanese Wikipedia articles, and then trains a classifier
to predict whether a given candidate of missing links is cor-
rect or not. Wang et al. [Wang et al., 2012] employed a
factor graph model which only used link-based features to
find CLs between a Chinese wiki and English Wikipedia. In
our approach, inner links appear in different parts of articles
are used separately in different similarity features, which is
different from the existing approaches. And our approach
uses a regression-based learning model to learn weights to
aggregate similarities, instead of using classification models.
Cross-lingual ontology matching is another related problem
to cross-lingual knowledge linking; but existing approaches
such as [Spohr et al., 2011; Antoniou et al., 2011] mainly
use the machine translation tools to bridge the gap between
languages; but in our approach, all the defined features are
language-independent.

5 Conclusions and Future Work
In this paper, we propose an approach that boosts cross-
lingual knowledge linking by concept annotation. New inner
links are first found in wikis by a concept annotation method,
which are then used for predicting new CLs. The concept an-
notation and the CL prediction are designed to mutually rein-
force each other, which allows new CLs to be incrementally
discovered. Experiments show that the concept annotation
can effectively improve the results of CL prediction; and the
proposed approach can effectively find new CLs based on a
small set of seed CLs and inner links.

Due to the high computation cost, we only let our approach
run in four iterations. In our future work, we will investigate
how the number of discovered CLs will change when much
more runs are executed. Here, we only evaluate our approach
on the Wikipedia data. As for the future work, we will use
our approach to solve real problems, such as finding new CLs
between Wikipedia and external wikis (e.g., Baidu Baike).

Cnocept Ar)cles
c1 a11,a12,…,a1p
c2 a21,a22,…,a2q
c3 a31,a32,…,a3h
… …

cm am1,am2,…,amk

Extract	 Concept-‐Ar)cle	
vocabulary	

w
iki	 ar)cle	

N-‐grams	 matching	

Beijing

China

Tsinghua	
University

Jinlong	 Guo

北京

中国

清华大学

郭金龙

Forbidden	 City
故宫

	 EN ZH

北京

中国

清华大学

郭金龙 故宫

	 Integrated	 Concept	 Network

China
Tsinghua	
University

Beijing

Forbidden	 City Jinlong	 Guo

Annota)on	 predic)on	

Integrate	 networks	

	 Results	 of	 cross-‐lingual	 link	 prediction

Annota)on	
Criteria

Concept	
Extrac)on

Annota)on
Training

Predic)ng

Cross-‐lingual	 Links

Concept	 Annotator	

CL	 Predictor	

Wiki	 1

Wiki	 2

Input	 Wikis	

Incremental	
Linking	

Our	 regression	 model	 (RM)	 is	 compared	 with	 SVM	 classifica)on	 model.	

where	

The	 datasets	 of	 English	 Wikipedia	 (4	 million	 ar)cles)	 and	 Chinese	 Wikipedia	 (499	 thousand	 ar)cles)	 that	 are	 archived	 in	 August	 2012	 has	 been	 used	 to	 evaluate	 the	 proposed	
approach.	 There	 are	 239,309	 cross-‐lingual	 links	 between	 two	 wikis.	

SR(a,c)	 is	 computed	 based	 on	 the	 links	 in	 the	 Integrated	 Concept	 Network	

Algorithm 1: Concept Annotation Algorithm
Input: A wiki W = (A,E)
Output: Annotated wiki W = (A,E

0
)

for each article a 2 A do
Extract a set of concepts Ca in a; Get the existing
annotations Na in a; for each ci 2 Ca do

Find the set of candidate articles Tci of ci;
Get b⇤ = argmaxb2Tci

LP (b|ci)⇥ SR(b, ci);
Na = Na [{b⇤};

end
for each bj 2 Na do

if < a, bj >/2 E then
E = E [{< a, bj >}

end
end

end
return Nd

Feature Definition
Six features are defined to assess the similarities between ar-
ticles by using different kinds of information, all of these
features are based on the link structures and therefore are
language-independent.

Feature 1: Outlink similarity
Outlinks of an article is a set of other articles that it links to.

The outlink similarity computes the similarities between arti-
cles by comparing elements in their outlinks. Given two arti-
cles a 2 W1 and b 2 W2, let O(a) and O(b) be the outlinks
of a and b respectively. The outlink similarity is computed as

f1(a, b) =
2 · |�1!2(O(a)) \O(b)|
|�1!2(O(a))|+ |O(b)| (4)

where �1!2(·) is a function that maps a sets of articles in W1

to their corresponding articles in W2 if there are CLs between
them.

Feature 2: Outlink+ similarity
Given two articles a 2 W1 and b 2 W2, let O+(a) and

O+(b) be the outlinks in the abstracts and infoboxes of a and
b respectively. The outlink+ similarity is computed as

f2(a, b) =
2 · |�1!2(O+(a)) \O+(b)|
|�1!2(O+(a))|+ |O+(b)| (5)

Feature 3: Inlink similarity
Inlinks of an article is a set of other articles linking to it,

let I(a) and I(b) denote inlinks of two articles, the inlink
similarity is computed as

f3(a, b) =
2 · |�1!2(I(a)) \ I(b)|
|�1!2(I(a))|+ |I(b)| (6)

Feature 4: Inlink+ similarity
Let I+(a) and I+(b) denote two articles’ inlinks that are

from other articles’ abstracts and infoboxes, the inlink+ sim-
ilarity is computed as

f4(a, b) =
2 · |�1!2(I+(a)) \ I+(b)|
|�1!2(I+(a))|+ |I+(b)| (7)

Feature 5 Category similarity
Categories are tags attach to articles, which represent the

topics of the articles’ subjects. Let C(a) and C(b) denote
categories of two entities, the category similarity is computed
as

f5(a, b)(=
2 · |�1!2(C(a)) \ C(b)|
|�1!2(C(a))|+ |C(b)| (8)

Here �1!2(·) maps categories from one wiki to another wiki
by using the CLs between categories, which can be obtained
from Wikipedia.

Feature 6 Category+ similarity
Given two articles a and b, let C(a) and C(b) be the cat-

egories of a and b respectively. Category+ similarity com-
putes similarities between categories by using LCs between
articles. Let E(c1) and E(c2) be the set of articles belonging
to category c1 and c2 respectively, the similarity between two
categories is computed as

f6(a, b) =
1

nm

nX

i=1

mX

j=1

�(cai , c
b
j) (9)

�(c1, c2) =
2|�1!2(E(c1)) \ E(c2)|
|�1!2(E(c1))|+ |E(c2)|

(10)

where cai 2 C(a), cbj 2 C(b), n = |C(a)| and m = |C(b)|.

Regression-based Learning Model for Predicting CLs
The CL predictor in our approach computes the weighted sum
of different similarities between articles, and apply a thresh-
old !0 to decide whether an article pair should have a CL. For
this purpose, a scoring function is defined:

s(a, b) = !0 + ~! · ~fa,b
= !0 + !1 ⇥ f1(a, b) + ...+ !6 ⇥ f6(a, b)

(11)

For each article a in W1, the article b⇤ in W2 that maxi-
mizes the score function s(a, b⇤) and satisfies s(a, b⇤) > 0 is
predicted as the corresponding article of a. The idea of CL
prediction is simple and straight, but how to appropriately set
the weights of different similarity features is a challenging
problem, which highly influences the final results.

Here, we propose a regression-based model to learn the
weights of features based on a set of known CLs. Given a set
of CLs {(ai, bi)}ni=1 as training data, let A = {(ai)}ni=1 and
B = {(bi)}ni=1, our model tries to find the optimal weights to
ensure:

8ai 2 A, 8b
0
2 B/{bi}, s(ai, bi)� s(ai, b

0
) > 0

which also means

~! · (~fai,bi � ~fai,b‘) > 0

Therefore, we generate a new dataset D = {(xi, yi)}ni=1,
where the input vector xi = (~fai,bi � ~fai,bj 6=i), the target out-
put yi is always set to 1. Then we train a linear regression
model to on the dataset D to get the weights of different fea-
tures. The threshold !0 is set to the value that maximizes the
F1-measure on the training CLs.

