

Boosting Cross-lingual Knowledge Linking via **Concept** Annotation Zhichun Wang¹, Juanzi Li², Jie Tang² ¹Beijing Normal University, ²Tsinghua University

Motivation

Cross-lingual knowledge linking is to automatically discover cross-lingual links (CLs) between wikis, which can largely enrich the cross-lingual knowledge and facilitate sharing knowledge across different languages. The seed CLs and the inner link structures are two important factors for finding new CLs. A challenging problem is how to find large scale CLs between wikis (e.g. English Wikipedia and Baidu Baike) when there are insufficient seed **CLs and inner links?**

Proposed Framework

Annotating Concepts Within Each Wiki

Predicting New Cross-lingual Links Between Wikis

Language-independent Features

Regression Model for Predicting New CLs

For each article a in W_1 , the article b^* in W_2 that maximizes the following score function s(a,b*) and satisfies s(a,b*)>0 is predicted as the corresponding article of *a*.

$$s(a,b) = \omega_0 + \vec{\omega} \cdot \vec{f}_{a,b}$$

= $\omega_0 + \omega_1 \times f_1(a,b) + \dots + \omega_6 \times f_6(a,b)$

A regression model is used to learn the weights of features based on a set of known CLs. The optimal weights should satisfies:

> $\forall a_i \in A, \forall b' \in (B - \{b_i\}), s(a_i, b_i) - s(a_i, b') > 0$ $\vec{\omega} \cdot (\vec{f}_{a_i,b_i} - \vec{f}_{a_i,b_i}) > 0$

Therefore, a training data set is generated to feed the linear regression algorithm to learn the weights:

$$D = \{(x_i, y_i)\}_{i=1}^n$$
 where $x_i = (\vec{f}_{a_i, b_i} - \vec{f}_{a_i, b_{j\neq i}})$ $y_i = 1$

Results of incremental linking

Experiments

The datasets of English Wikipedia (4 million articles) and Chinese Wikipedia (499 thousand articles) that are archived in August 2012 has been used to evaluate the proposed approach. There are 239,309 cross-lingual links between two wikis.

		Results of cross-lingual link prediction					
		Before Annotation			After Annotation		
#Seed CLs	Model	Precision	Reccall	F1-measure	Precision	Recall	F1-measure
0.05 Mil. CLs	SVM	92.1	35.0	50.7	78.5	37.2	50.5
	RM	93.3	36.0	52.0	92.4	38.6	54.5
0.10 Mil. CLs	SVM	79.7	35.0	48.6	86.9	50.4	63.8
	RM	84.6	37.4	51.9	96.6	49.3	65.3
0.15 Mil. CLs	SVM	80.9	35.9	49.7	88.1	57.3	69.5
	RM	93.5	38.2	54.2	93.7	56.2	70.2
0.20 Mil. CLs	SVM	84.7	37.3	51.8	88.8	68.1	77.1
	RM	94.5	37.9	54.1	95.9	67.2	79.0

Our regression model (RM) is compared with SVM classification model.

Results of concept annotation