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Abstract
Network embedding has been extensively studied
in recent years. In addition to the works on static
networks, some researchers try to propose new
models for evolving networks. However, some-
times most of these dynamic network embedding
models are still not in line with the actual situ-
ation, since these models have a strong assump-
tion that we can achieve all the changes in the
whole network, while in fact we cannot do this in
some real world networks, such as the web net-
works and some large social networks. So in this
paper, we study a novel and challenging problem,
i.e., network embedding under partial monitoring
for evolving networks. We propose a model on dy-
namic networks in which we cannot perceive all the
changes of the structure. We analyze our model
theoretically, and give a bound to the error between
the results of our model and the potential optimal
cases. We evaluate the performance of our model
from two aspects. The experimental results on real
world datasets show that our model outperforms the
baseline models by a large margin.

1 Introduction
Many things are organized in the form of networks, and we
can get a wealth of information from the structure of net-
works. Due to this fact, network embedding, which can be
regarded as a kind of representation learning specific to net-
works, is attracting more and more attention from researchers
in many fields. The target of network embedding is to embed
the nodes of the networks into a continuous low-dimensional
latent space, i.e., to learn the real-valued low-dimensional
vector representations for the nodes based on the structure
of the networks, and the learned vector representations of the
nodes can be regarded as their features used for many down-
stream tasks, such as link prediction.

Various network embedding models have been developed,
and the key idea of most of them is extracting one or more
kinds of information, or more specifically the proximities
among the nodes, from the network structure to learn the
vector representations of the nodes so that the learned repre-
sentations can preserve the extracted information. For exam-

ple, DeepWalk [Perozzi et al., 2014] and Node2vec [Grover
and Leskovec, 2016] employ random walk to transform the
network structure into sequences of nodes, and borrows the
idea of Word2vec [Mikolov et al., 2013] to learn the node
representations. So the proximities among the nodes in the
same sliding window can be preserved by the same way as
Word2vec. LINE [Tang et al., 2015] defines two kinds of
proximities specifically (1st and 2nd order proximities) and
adopts asynchronous stochastic gradient to learn node repre-
sentations for these two kinds of proximities separately. Dif-
ferent network embedding models focus on different kinds
of proximities and use different methods to learn distributed
representations for the nodes. To some extent, one proxim-
ity results in one network embedding algorithm. Almost all
these classical network embedding algorithms can only be
employed on static networks. However, the real world net-
works are usually not static. They usually have two charac-
teristics. First, they are usually dynamic and evolve all the
time. In addition to this obvious characteristic, we find in
practice that some networks change without notifying us, so
we need to query the nodes to learn about the latest changes
of the network structure. For example, in a web network, we
have to crawl the web pages to discover their outgoing links
and their changes [Bahmani et al., 2012]. In addition, many
large network platforms adopt log systems to record the be-
havior of the nodes. If we want to know whether two nodes
established a relationship, we have to check the behavior logs
of these two nodes. Unfortunately, as pointed by [Anagnos-
topoulos et al., 2012], due to the great cost of the query, it is
often impractical to query all the nodes at every moment. In
other words, we can only probe part of the nodes to update
the image of the network structure.

To perform network embedding on evolving networks,
[Zhu et al., 2016] proposes BCGD, which adopts Adjacency
Proximity, a kind of proximity we will introduce in Section
3.3, to learn the vector representations of the nodes. How-
ever, there are two shortages for BCGD. First, it can only
employ Adjacency Proximity, but not other kinds of prox-
imities. More importantly, it is built on a graph sequence
< Gt0 , Gt1 , · · · >, in which each G represents a structure of
the network at a time stamp, and it assumes that we can get
the true network structure all the time. However, this assump-
tion cannot hold for all the dynamic networks because of the
second characteristic of real world networks we introduced



above. So in this paper, we try to solve this problem, which
is ignored by most network embedding algorithms but very
important in practice. We propose CPNE (Credit Probing
Network Embedding) to learn the vector representations of
the nodes on evolving networks in a partial monitoring mode,
that means we can only probe part of the nodes in a budget to
get the information we need to perform network embedding,
which is more in line with the real situation.

First, we employ a framework based on matrix factoriza-
tion to incorporate network embedding models. On this ba-
sis, we propose our algorithm to perform network embedding
under partial monitoring on evolving networks. We give this
algorithm an error bound by careful theoretical analysis. At
last, we evaluate our model on some real world datasets from
two aspects. First we test the ability of our model to approach
the potential optimal embedding values. Then we test the per-
formance of our model on a practical problem, namely link
prediction. All the experiments show great advantages of our
algorithm over the baseline models.

2 Related Works

There are two lines of research mostly related to our work,
i.e., network embedding and dynamic network computation.

Network embedding. Different network embedding mod-
els focus on different proximities. [Cao et al., 2015] learns
node representations by employing the k-step transition prob-
abilities among the nodes. [Qiu et al., 2017] tries to find the
closed forms for the proximities used in some network em-
bedding models. [Tang and Liu, 2009; Zheng et al., 2016;
Tu et al., 2016; Wang et al., 2017] utilize the proximity
among the nodes belonging to the same community to learn
node embedding. [Song et al., 2009] employs three kinds
of proximities to learn the nodes’ representations separately,
i.e., Katz measure, Rooted Pagerank and Escape probability.
However, all these models ignore the two characteristics of
real world networks, i.e., dynamics and partial observerbility.

Dynamic network computation. Most networks are dy-
namic and we often have to develop new algorithms to
deal with the problems on the evolving networks. [Tong et
al., 2008] studies the author-conference bipartite graphs and
tracks the properties of the nodes as the graphs evolve. [Han
and Tang, 2017] analyzes the users’ probability of joining the
groups in a dynamic network. [Zhou et al., 2018] proposes
a dynamic network embedding algorithm by modeling triadic
closure process. However, these models assume we can ob-
tain all the changes of the network at every moment, which is
not realistic for many real world network. [Anagnostopoulos
et al., 2012] introduces and formalize the problem of dynamic
network computation, and summarizes the essential proper-
ties of many large networks in which the links are evolving
all the time and we can only track these changes by explic-
itly probing the networks. In response to this situation, [Bah-
mani et al., 2012] proposes a convenient algorithm to com-
pute pagerank on evolving networks. However, it chooses
only one node to probe at each moment, while our algorithm
supports choosing a batch of nodes to probe at each moment.

3 Network Embedding Framework
To study network embedding on evolving networks, we need
to first use a unified framework to cover most existing net-
work embedding algorithms.

3.1 Formulation
We use G = (V,A) to denote the structure of a network.
V = (v1, v2, · · · , vN ) is the set of the nodes in the network,
and |V | = N . A is the adjacency matrix, which is an N ×N
matrix. A can be real-valued if G is a weighted network.
Definition 1. Proximity Matrix. For each kind of node prox-
imity in a network, there is a corresponding proximity matrix.
We use M to denote the proximity matrix, which is an N ×N
matrix and Mi,j represents the value of the corresponding
proximity from node vi to vj .

Please note that M may not be Hermitian matrix, because
the values of the proximities are often asymmetrical in di-
rected networks.
Definition 2. Node Vector. Node vectors are the nodes’ dis-
tributed representations. The dimension of the vectors is de-
noted as p. So all the node vectors form an N × p matrix,
denoted as X , whose i-th row is the node vector of vi.

Given graph G, the static network embedding can be for-
mulated as learning a mapping functions , i.e., f : V ⇒ Rp.
Thus, the i-th row of X is actually f(vi).

3.2 Matrix Factorization
First, we incorporate network embedding models with a uni-
fied framework based on matrix factorization. Given one or
more kinds of proximities, the learned distributed represen-
tations of the nodes should reflect the proximities adopted.
We can use dot product to measure the result of network
embedding. Thus we can achieve this goal by minimiz-
ing the objective function ONE = minX,Y ‖M − XY T ‖F ,
in which ‖ · ‖F represents Frobenius norm of the corre-
sponding matrix. Since M is not necessarily a Hermitian
matrix, following the usual practice [Mikolov et al., 2013;
Tang et al., 2015], we introduce a matrix Y . Similar to X ,
Y is also an N × p matrix, in which each line is a vector
corresponding to a node. However, Y is composed of vec-
tors of nodes when they act as contexts [Mikolov et al., 2013;
Tang et al., 2015].

There are many ways to optimize this objective function,
such as stochastic gradient descent often used in recommen-
dation system to factorize a rank matrix which is usually
sparse [Koren et al., 2009]. Here we adopt another popular
tool, i.e., singular value decomposition (SVD), to do it, like
[Levy and Goldberg, 2014]. We compute SVD for M , and
have M = U0Σ0W

T
0 , in which Σ0 = diag(σ1, σ2, · · · , σN )

is a diagonal matrix composed of all its singular values, and
U0 and W0 are matrices containing all its left and right sin-
gular vectors. In practice, we only need to compute its top-
p singular values Σ = diag(σ1, σ2, · · · , σp) and the corre-
sponding singular vectors U and W to compute X and Y ,
which can speed up the computation a lot. Then we set
X = UΣ

1
2 , Y = Σ

1
2WT . According to the property of

SVD, we have M ≈ XY T .



3.3 Proximity Matrix
For most existing network embedding models, each model
adopts a specific proximity among the nodes to learn the node
vectors. In this sense, one kind of node proximity results
in one network embedding model. Computing the proxim-
ity matrix M is the first step to learn the node embedding X .
Any kind of proximity can be used for network embedding.
Here we introduce the computation method of the proximity
matrix M for some kinds of proximities. Some proximities
have been used by the existing network embedding models,
while the others can be exploited to build new network em-
bedding models.

Adjacency Proximity (AP) means that if there is a link
(this link can be weighted) between two nodes, then these two
nodes have some similarity. Obviously, the proximity matrix
is just the adjacency matrix A, i.e., M (AP ) = A.

Jaccard’s Coefficient Proximity (JC) can be used to mea-
sure the similarity between two finite sets [Jaccard, 1912].
Here the proximity matrix for Jaccard’s Coefficient Proxim-
ity can be computed as M (JC)

i,j =
|nbr(vi)∩nbr(vj)|
|nbr(vi)∪nbr(vj)| , where

nbr(·) denotes the neighbors of the corresponding node.
Katz Proximity (KP) is defined by [Katz, 1953] based on a

straightforward intuition that if there are more paths between
two nodes and the paths are shorter, the two nodes are more
similar. The Katz Proximity between vi and vj can be defined
asM (KP )

i,j =
∑∞
l=1 α

l ·|paths(l)
i,j |,where paths(l)

i,j is the set of
all l-hop paths from vi to vj . Thus the Katz Proximity matrix
can be computed asM (KP ) =

∑∞
l=1 α

lAl = (I−αA)−1−I,
where α < 1 is an attenuation factor, I is the identity matrix,
and (·)−1 represents the reverse of the corresponding matrix.

In addition to the proximities listed above, there are many
other proximities, such as Preferential Attachment Proximity
[Barabâsi et al., 2002], Adamic-Adar Proximity [Adamic and
Adar, 2003], SimRank Proximity [Jeh and Widom, 2002],
High Order Proximity [Benson et al., 2016]. Due to the space
limit, we do not list all of them here.

4 Credit Probing Network Embedding
When a network evolves, its proximity matrixM changes ac-
cordingly, thus we need to keep updating the node vectors to
reflect the latest M . However, in many real world networks,
we can only probe part of the nodes to update the proximity
matrix and the node vectors. In this section, on the basis of
the unified network embedding framework, we propose our
algorithm for network embedding under partial monitoring
on evolving networks. Here we take Adjacency Proximity
for an example, so M = A, and it can be generalized to other
proximities just by replacing M with corresponding proxim-
ity matrix.

4.1 Algorithm
Specifically, we can describe our problem as follows. Let
< 0, 1, ..., T > be a sequence of time stamps. First we select
a starting time stamp, for example, t0, and until this moment
we can get the complete information of the network struc-
ture, thus we can get relatively accurate proximity matrixMt0
and the results Xt0 and Yt0 . However, at the following time

stamps, we can only probe part of the nodes, leading to that
we cannot get a global view over the change of the network
structure, and consequently we cannot get accurate proxim-
ity matrix Mti and accurate embedding results Xti and Yti .
The challenge is how to choose the appropriate nodes, whose
number cannot exceed a budget denoted as K, to probe to
make the results as accurate as possible. This problem can be
formulated as follows.

Problem 1. In a network, given a time stamps sequence
< 0, 1, ..., T >, the starting time stamp (for example, t0), the
proximity and the dimension of the embedding, we need to
figure out a strategy, denoted as π, to choose at most K < N
nodes to probe at each following time stamp, so that it min-
imizes the discrepancy between the approximate distributed
representations, denoted as f̂t(V ), and the potentially best
distributed representations f∗t (V ), as described by the fol-
lowing objective function.

O = min
π

T∑
t=1

Discrepancy(f∗t (V ), f̂t(V )). (1)

It is a sequential decision problem. Obviously, the best
strategy is to capture as much “change” as possible with lim-
ited “probing budget”. If we probe a node which has no
change, it is a “waste”. Furthermore, probing a node hav-
ing a big change is better than probing a node having a small
change. In a network, some nodes are more likely to change
than others, so how do we decide which nodes to choose in
the next step?

We propose an algorithm to solve this problem based on a
kind of reinforcement learning problem, namely Multi-armed
Bandit (MAB) [Auer et al., 2002; Garivier and Cappé, 2011;
Chen et al., 2013] problem. We try to choose the “productive”
nodes according to their historical “rewards”. We denote the
reward of each node vi at each time stamp tj as rvi,tj , which
is the change it bring to the proximity matrix M from the last
time stamp, formulated as rvi,tj = ‖∆M‖F . We assume that
the reward of each node vi has a distribution with an expec-
tation µvi . We should choose the nodes from which we have
obtained good rewards, which can be regarded as exploita-
tion. Besides, we should also give a chance to the nodes that
we have never probed or rarely probed because they have not
fully showed themselves, which can be regarded as explo-
ration. To choose the nodes, we must make a trade-off be-
tween exploitation and exploration. To this end, we maintain
a “credit” for each node.

Definition 3. Node Credit. If a node vi has been probed for
Tvi times by time stamp tj , its credit Cvi,tj is defined as

Cvi,tj = µ̂vi,tj + λ

√
ln tj
Tvi

, (2)

in which µ̂vi,tj is the empirical mean of the rewards of vi at
time stamp tj , and can be achieved by calculating the arith-
metic mean of the historical rewards. λ is used to make a
trade-off between exploitation and exploration.

The credit of a node can be determined by three factors, in-
cluding the historical reward, the current time stamp and the



Algorithm 1: Credit Probing Network Embedding
Input: A network G, dimension p, proximity kind, time

stamp < 0, 1, ..., T >, parameter λ, probing
budget K.

Output: approximate node representation matrix Xti at
each time stamp

1 Initialize µ̂vi , Tvi , Cvi for each node.
2 foreach time stamp tj do
3 probe the nodes with the highest credit.
4 update the approximate network structure Ĝtj .
5 compute the approximate proximity matrix M̂tj .
6 compute Xti .
7 foreach node vi do
8 update Tvi
9 update Cvi,tj according to Eq.2.

10 end
11 end

times that it has been probed so far. From this definition we
can see that a higher historical reward and a smaller number
of probe times can lead to a higher credit, which is in line with
our purpose of balancing exploitation and exploration. We
describe our algorithm to perform network embedding un-
der partial monitoring on evolving networks in Algorithm 1,
called Credit Probing Network Embedding (CPNE). At each
time stamp, we select the nodes with the highest credits to
probe. Then we update the structure of the network and the
proximity matrix with the feedback of the probing. Next, we
compute the node vectors based on the image of the network
structure and the proximity matrix. Finally, we update the
credits for all the nodes based on Eq.2. To start this algorithm,
we should first initialize the credits. There are several meth-
ods to implement the initial phase in step 1 in the algorithm.
For example, we can initialize them with the information be-
fore partial monitoring.
4.2 Theoretical Analysis
In this section, we do some theoretical analysis for our algo-
rithm and provide an error bound to the result of our algo-
rithm. First, we should figure out a correct metric to mea-
sure the objective function in Eq.1. It is not trivial, because
when we measure the difference between two sets of embed-
ding values, denoted as X and X∗, it makes no sense to mea-
sure the difference between their entries’ concrete values with
metrics such as ‖X−X∗‖F . Instead, we should treat the em-
bedding matrix as a whole, and solve this problem with the
geometric meaning of the matrix. We can regard matrix X ,
i.e., the vector representations of the nodes, as a subspace of
RN or a linear transformation, which is a stretching of the
length and a rotation of the direction of a vector. Since X is
achieved by U and S, of which U is a unitary matrix and S
is a vector composed of the singular values, the magnitude of
the stretching is determined by S and the angle of the rotation
is determined by U . Let X∗ be the network embedding result
obtained by selecting the optimal node set with the highest
combinatorial reward expectation, and X̂ be the network em-
bedding result obtained by our model. So we can compare the

difference between X∗ and X̂ by their corresponding unitary
matrices U∗ and Û , and the vectors S∗ and Ŝ. For the vec-
tors S∗ and Ŝ, we can measure their difference by L2-norm
of their difference vector called Magnitude Gap or L2-loss,
which is defined as follows.
Definition 4. Magnitude Gap.

MG = ‖S∗ − Ŝ‖2. (3)

For the unitary matrices U∗ and Û , we can measure
their difference by their canonical angles [Afriat, 1957;
Stewart, 1990]. Please note that X is the embedding re-
sult matrix achieved with Y in pairs, which is the vectors
of the nodes acting as contexts. In other words, X is the
node vectors specific to Y which is obtained by W , so when
we compare the difference between U∗ and Û we have to
compare the difference between W ∗ and Ŵ together, which
are also unitary matrices associated with U∗ and Û respec-
tively. Let θ1, θ2, ..., θp be the canonical angles of U∗ and
Û , and φ1, φ2, ..., φp be the canonical angles of W ∗ and
Ŵ . To compare them, we construct two diagonal matrices
Θ = diag(θ1, θ2, ..., θp) and Φ = diag(φ1, φ2, ..., φp). We
use Angle Gap to measure the difference between (U∗,W ∗)

and (Û , Ŵ ), which is defined as follows.
Definition 5. Angle Gap.

AG =
√
‖ sin Θ‖2F + ‖ sin Φ‖2F

=

√
‖PU∗ − PÛ‖2F + ‖PV ∗ − PV̂ ‖2F

2
,

(4)

wherePU∗ is the orthogonal projection operator ofU∗, which
can be achieved by PU∗ = U∗U∗† = U∗(U∗TU∗)−1U∗T , in
which (·)−1 is the inverse of the corresponding matrix and
(·)† is Moore-Penrose pseudoinverse. In the same way, we
can get PÛ , PV ∗ and PV̂ with Û , V ∗ and V̂ respectively.

Obviously, for both of the two metrics Magnitude Gap and
Angle Gap, the smaller their values, the better the algorithm.
To be clear, we add subscript tj to the notation to denote the
value at time stamp tj . For example, MGtj represents Mag-
nitude Gap at tj . We define the accumulative losses of MG

andAG asLMG =
∑T
tj=1MGtj andLAG =

∑T
tj=1MGtj .

Then we will give a theoretical upper bound for each loss.
Let D = (vi1 , vi2 , · · · , vip) be a node set, and D∗ be the

optimal node set which have the highest combinatorial re-
ward expectation among all possible node sets. Please note
that the combinatorial reward of a set is not necessarily the
sum of the individual rewards of the nodes in the set. We
define ∆min

vi = µD∗ − max{µD|D 6= D∗, vi ∈ D}, and
∆max
vi = µD∗ − min{µD|D 6= D∗, vi ∈ D}, in which µD

is the combinatorial reward expectation. Furthermore, we
define ∆max = max ∆max

vi . If we normalize the rewards
to [0, 1], we can get the upper bounds for LMG and LAG.
Specifically, for LMG, we have the following theorem.
Theorem 1.

LMG ≤
∑
vi∈V

4λ2N2 lnT

∆min
vi

+ (1 +

∞∑
d=1

d1−2λ2

)N∆max.



To prove Theorem 1, we need to use an important theory
of matrix perturbation, namely Mirsky theorem. Due to the
space limit, we do not repeat it here. One can refer to [Mirsky,
1960] for details.

Proof. Let ∆M = M∗ − M̂ be the difference matrix be-
tween the optimal proximity matrix and the proximity matrix
obtained by CPNE. Then we can prove the following inequal-
ity by the combinatorial multi-armed bandit theory [Chen et
al., 2013].
T∑

tj=1

‖∆Mtj‖F ≤
∑
vi∈V

4λ2N2 lnT

∆min
vi

+ (1 +

∞∑
d=1

d1−2λ2

)N∆max.

(5)
Then we have

LMG =

T∑
tj=1

MGtj =

T∑
tj=1

‖S∗tj − Ŝtj‖F

=

T∑
tj=1

√√√√ p∑
i=1

(σ∗i,tj − σ̂i,tj )2 ≤
T∑

tj=1

‖∆Mtj‖F .

(6)

The last inequality is derived from Mirsky theorem. We
can get Theorem 1 by combining Formula 5 and Formula 6.

For LAG, we have the following theorem.
Theorem 2.

LAG ≤

√∑
vi∈V

8λ2N2 lnT
∆min

vi

+ 2(1 +
∑∞
d=1 d

1−2λ2)N∆max

δ
,

in which the meaning of δ is explained in the following proof.
To prove Theorem 2, we need to use another important the-

ory of matrix perturbation, namely Wedin theorem. One can
refer to [Wedin, 1972] for details.

Proof. Based on our model we have

(U∗U∗0 )TM∗(W ∗W ∗0 ) =

(
Σ∗ 0
0 Σ∗0

)
,

and

(Û Û0)T M̂(ŴŴ0) =

(
Σ̂ 0

0 Σ̂0

)
,

in which Σ∗0 is the diagonal matrix composed of the rest
(N−p) singular values ofM∗, and U∗0 andW ∗0 are the corre-
sponding left singular vectors and right singular vectors. The
notations in the second equation have similar meanings. We
can find a δ > 0 such that min |σ(Σ̂tj ) − σ(Σ∗0,tj )| ≥ δ and
minσ(Σ̂tj ) ≥ δ. Then applying Wedin theorem, we have

LAG =

T∑
tj=1

AGtj =
T∑

tj=1

‖ sin Θtj‖
2
F + ‖ sin Φtj‖

2
F

≤
T∑

tj=1

√
‖M∗tjŴtj − Ûtj Σ̂tj‖2F + ‖M∗tj Ûtj − Ŵtj Σ̂tj‖2F

δ

≤
T∑

tj=1

√
2‖∆Mtj‖2F

δ
.

(7)

Then we can get Theorem 2 by combining Formula 5 and
Formula 7.

Usually, if we have a larger K, we will have a smaller
∆max and a larger ∆min

vi , so we can get a lower error bound.

5 Experiments
In this section we evaluate the performance of our model on
several real world datasets from two aspects. First, we evalu-
ate our model’s ability to approach the potential optimal val-
ues, which is to minimize Magnitude Gap and Angle Gap.
Then we evaluate the performance of our model for one of
the most important real world problems, namely link predic-
tion. We use the following two datasets to conduct our exper-
iments.
AS. The graph of router comprising Internet is organized
into subgraphs called autonomous systems (AS). An AS ex-
changes traffic flows with its peers, and we can construct a
communication network from the Border Gateway Protocol
logs. AS dataset contains 9 networks, 1 per week between
March 31 2001 and May 26 2001 [Leskovec et al., 2005]. AS
dataset contains 10,900 nodes and 19,318 temporal edges.
Wechat. This dataset is collected from a large social net-
work platform, namely Wechat1. We randomly select a user
with the mean degree of all the WeChat users, and extract its
one-hop and two-hop neighbors to construct a subnetwork,
containing 15,320 nodes. All the information about the users
is erased, and only the topological structure is kept for sci-
entific research. If two users establish a friend relationship
between each other, there will be a temporal edge record in
the data. We collect the temporal edges from 2015-12-31
23:59:59 to 2017-05-31 23:59:59, and set the snapshot of the
WeChat network at the beginning as the initial graph. We set
the time interval as one month, then we get 18 time stamps.
This network contains 226,988 temporal edges.

To save the space, we only show the result of the first exper-
iment on AS, and that of the second experiment on Wechat.

5.1 Approaching the Potential Optimal Values
This experiment is to evaluate the performance for approach-
ing the potential optimal values of network embedding. The
metrics for this experiment are MG and AG. We use Adja-
cency Proximity to conduct the experiments. We compute
S∗, U∗ and W ∗ with the true network structure. We take the
first two time stamps for initialization. We use the following
four baseline models for the first experiment.
Random. We uniformly select nodes from a network to
probe at each time stamp.
Round robin. We cycle through the nodes and probing
them in this order.
Degree centrality. At each time stamp, we choose the
nodes with the highest values of degree centrality in the latest
image of the network structure to probe.
Closeness centrality. This method is similar to Degree
Centrality except that it takes the nodes’ closeness centrality
as the score to choose the nodes.

1http://www.wechat.com
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Figure 1: Metric values on AS. The left sub-figure shows the values
of MG, while the right one shows those of AG. Each curve represents
an algorithm. Since MG and AG are both cumulative error values,
the curves are non-decreasing, and the smaller the metric value, the
better the algorithm.
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Figure 2: Metric values on AS with different K values. The left
sub-figure shows the values of MG, while the right one shows those
of AG. Each curve represents a K value. Usually, the larger the K,
the lower the MG and AG.

Comparison of the Models
We compute all the metric values of our model and the base-
line models at each time stamp on AS. We set K = 128,
λ = 1 and p = 10 for all the models. Then we plot the
values of each metric in one sub-figure in Fig.1, in which
the X axes represent the time stamps while the Y axes rep-
resent the metric values. Then we can see that our model
shows significant superiority over all the baseline models in
both metrics. From Fig.1 we can also find that for the four
baseline models, the performances of Closeness Centrality is
somehow slightly better than the other three baseline models.
This may be because the nodes with higher closeness central-
ity usually change more than other nodes in this network, and
deserve more attention when the network evolves.

Parameter Sensitivity
In this section, we take a look at the sensitivity of the hyper-
parameters K. K is the budget of the number of the nodes
that we can probe at each time stamp. Usually, the larger
the K, the smaller the metric values may be, and the more
accurate the learned node vectors. We set K = 16, 32, 64,
128, 256 sequentially, and run CPNE on AS. We plot the re-
sults in Fig.2. From Fig.1 and Fig.2 we can see that even if
we only choose 16 nodes to probe at each time stamp with
our algorithm, we can still achieve a better performance than
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Figure 3: AUC values at each time stamp on WeChat dataset.

most other algorithms when they choose 128 nodes to probe
at each time stamp.

5.2 Link Prediction
In addition to the experiments of testing our model’s perfor-
mance to approach the potential optimal embedding values,
we also test the performance of our model for a real world
application, i.e., link prediction.

We take BCGD [Zhu et al., 2016] as our baseline. How-
ever, BCGD is based on the assumption that all the changes
of the network can be perceived. To make a valid compari-
son, we set the four node probing strategies mentioned above
for BCGD separately. Thus we get four baseline methods.
We use the node vectors learned by our model and the base-
line models at each time stamp (except the last time stamp)
to predict the new links in the next time interval. We take
the new links emerging in the next time interval as positive
instances, and randomly sample the equal number of node
pairs that never be linked during the next time interval as the
negative instances. We use the dot product of the vectors of
two nodes to measure their probability of being linked. We
adopt AUC (Area Under the receiver operating characteristic
Curve) as our metric. To be fair, we set p = 20 for all the
models. For λ of our model, we set it to be 1. For λ, ζ, and δ
of BCGD, we set them in accordance with the paper present-
ing it.

Experimental Results
We conduct the experiment for K = 500 and 1000, and plot
the experimental results in Fig.3(a) and Fig.3(b) respectively,
in which the X axes represent the time stamps while the Y
axes represent the AUC values. We can see that our model
outperforms all the baseline models significantly. Specifi-
cally, CPNE gets improvements of 36.10% and 39.12% over
the best baseline for K = 500 and 1000 respectively at the
last time stamp for link prediction.

6 Conclusion
In this paper, we study the problem of network embedding
under partial monitoring for evolving networks. There are
still many challenges in network embedding on dynamic net-
works. For the future work, we will try other reinforcement
learning algorithms to solve such problems. In addition, how
to employ deep learning models to learning embedding val-
ues in such a setting is also interesting and meaningful.
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