
Large Scale Evolving Graphs with Burst Detection
Yifeng Zhao1, Xiangwei Wang2, Hongxia Yang2, Le Song3 and Jie Tang1

1Department of Computer Science and Technology, Tsinghua University
2DAMO Academy, Alibaba Group

3Ant Financial
zhao-yf16@mails.tsinghua.edu.cn, {florian.wxw,yang.yhx}@alibaba-inc.com,

le.song@antfin.com, jietang@tsinghua.edu.cn

Abstract
Analyzing large-scale evolving graphs are crucial
for understanding the dynamic and evolutionary na-
ture of social networks. Most existing works focus
on discovering repeated and consistent temporal pat-
terns, however, such patterns cannot fully explain
the complexity observed in dynamic networks. For
example, in recommendation scenarios, users some-
times purchase products on a whim during a win-
dow shopping. Thus, in this paper, we design and
implement a novel framework called BurstGraph
which can capture both recurrent and consistent pat-
terns, and especially unexpected bursty network
changes. The performance of the proposed algo-
rithm is demonstrated on both a simulated dataset
and a world-leading E-Commerce company dataset,
showing that they are able to discriminate recurrent
events from extremely bursty events in terms of ac-
tion propensity.

1 Introduction
Dynamic networks, where edges and vertices arrive over time,
are ubiquitous in various scenarios, (e.g., social media, se-
curity, public health, computational biology and user-item
purchase behaviors in the E-Commerce platform [Akoglu and
Faloutsos, 2013; Akoglu et al., 2015]), and have attracted sig-
nificant research interests in recent years. An important prob-
lem over dynamic networks is burst detection – finding objects
and relationships that are unlike the normal. There are many
practical applications spanning numerous domains of burst
detection, such as bursty interests of users in E-Commerce
[Parikh and Sundaresan, 2008], cross-community relation-
ships in social networks. Recently, the research community
has focused on network embedding learning. One class of the
network embedding methods represent nodes as single points
in a low-dimensional latent space, which aims to preserve
structural and content information of the network [Perozzi
et al., 2014; Grover and Leskovec, 2016]. Other classes in-
clude edge embedding and subgraph embedding [Dong et al.,
2017]. However, most existing network embedding methods
mainly focus on the network structure, ignoring the bursty
links appearing in the dynamic networks [Perozzi et al., 2014;
Dai et al., 2016; Qiu et al., 2018].

In social network dynamics, users may generate consistent
temporal patterns by buying consumable goods, such as food
and papers, to satisfy their recurrent needs; or purchasing
durable products, such as cell phones and cars, to satisfy their
longtime needs. However, in the real world, bursty links
are very common in network evolution. For instance, in a
social network, people will meet new friends or discover new
interests if they are in a new environment; in an E-Commerce
network, customers often do window shopping when they are
exploring recommendation sections. Figure 1 illustrates the
interest evolution of the young lady during shopping. However,
existing works on modeling dynamic networks mostly focus
on repeated and consistent patterns [Trivedi et al., 2017; Li et
al., 2017; Zhou et al., 2018], and cannot well capture bursty
links due to their sparsity. Such important bursty information
is commonly viewed as noisy data in the general machine
learning algorithms and ignored in modeling [Chandola et al.,
2009]. Furthermore, these bursty dynamics are hidden in other
complex network dynamics, including the addition/removal
of edges and the update of edge weights. It is challenging to
design a framework to account for all these changes.

Figure 1: An illustrative example of the observed interest evolution
of a young lady during shopping. The main interests of the lady are
clothes and shoes, while there also exist burst interests, such as a
mop.

To tackle the aforementioned challenges, we propose a
novel framework with contributions summarized as follows:

• Problem Formulation: we formally define the problem
of evolving graphs with bursty links. The key idea is to
detect bursty links in dynamic graphs during their onset.

• Algorithms: we propose a novel framework for mod-
eling evolving graphs with bursty links, namely Burst-
Graph. BurstGraph divides graph evolution into two
parts: vanilla evolution and bursty links’ occurrences.
For the sparsity of bursty links, a spike-and-slab distribu-
tion [Mitchell and Beauchamp, 1988] is introduced as an
approximation posterior distribution in the variational au-
toencoder (VAE)[Kingma and Welling, 2013] framework,
while vanilla evolution accepts the original framework of
VAE. To fully exploit the dynamic information in graph
evolution, we propose an RNN-based dynamic neural
network by capturing graph structures at each time step.
The cell of RNN maintains information of both vanilla
and bursty evolution, which is updated over time.

The rest of this paper is organized as follows: Section 2
briefly reviews related work. Section 3 introduces the problem
statement of evolving graphs with bursty links and presents the
proposed framework. Experiments on both simulated dataset
and real datasets are presented in Section 4 with discussions.
Finally, Section 5 concludes the paper and visions the future
work.

2 Related Work

Static Network Embedding. Recently, learning representa-
tions for networks has attracted considerable research efforts.
Inspired by Word2Vec [Mikolov et al., 2013], [Perozzi et al.,
2014; Grover and Leskovec, 2016] learn a node representation
with its neighborhood contexts. As an adjacency matrix is
used to represent the topology of a network, representative
works, such as [Qiu et al., 2018], use matrix factorization to
learn low-rank space for the adjacency matrix. Deep learn-
ing methods [Wang et al., 2016] are proposed to introduce
effective non-linear function learning in network embedding.

Dynamic Network Embedding. Actually, inductive static
methods [Perozzi et al., 2014; Hamilton et al., 2017a] can
also handle dynamic networks by making inference of the new
vertices. [Du et al., 2018] extends the skip-gram methods to
update the original vertices’ embedding. [Zhou et al., 2018] fo-
cuses on capturing the triadic structure properties for learning
network embedding. Considering both the network structure
and node attributes, [Li et al., 2017] focuses on updating the
top eigenvectors and eigenvalues for the streaming network.

Burst Detection. Traditionally, burst detection is to detect
an unexpectedly large number of events occurring within some
time duration. There are two typical types of burst detection
approaches, i.e., threshold-based [Heard et al., 2010] and state-
based methods [Kleinberg, 2003]. [Heard et al., 2010] studies
fast algorithms using self-similarity to model bursty time se-
ries. [Kleinberg, 2003] uses infinite-state automaton to model
the burstiness and extract structure from text streams. How-
ever, the link building of evolving graphs is usually sparse and
slow, where unexpected links are rare to occur simultaneously.
Therefore, our definition of a burst is simply an unexpected
behavior within a time duration, which is a straightforward
definition adopted by many applications in the real world.

Notation Description
Gt network snapshot at time step t
At adjacency matrix for network structure in Gt
Av,t adjacency matrix for vanilla evolution in Gt
Avi,t

adjacency vector for vertex vi in the vanilla
evolution in Gt

Ab,t adjacency matrix for bursty evolution in Gt
Abi,t

adjacency vector for vertex vi in the bursty
evolution in Gt

ht hidden variable of RNN-based VAE at t
zt random variable for vanilla evolution
st random variable for bursty evolution

ct, rt,1, rt,2 composition variables of st
λ, β hyperparameters of our method
d dimension of random variables
n total number of nodes in G
T number of time steps

Table 1: Summary of Notation.

3 The Proposed Model
Existing dynamic network embedding methods mainly focus
on the expansion of new vertices and new edges, but usually
ignore the changes of vertices’ attributes through time that lead
to unexpected bursty network changes [Angel et al., 2012].
To tackle this problem, we propose to learn low-dimensional
representations of vertices to capture both vanilla and bursty
evolution. Given a dynamic network {G1, ..., GT }, the dy-
namic network embedding is to learn a series of functions
, where each function fφt maps vertices in network Gt to
low-dimensional vectors: fφt(vi) −→ Rd and φts are corre-
sponding network parameters. We first summarize symbols
and notations in Table 1 and use bold uppercase for matrices
(e.g.,A), bold lowercase for vectors (e.g., a), normal lower-
case for scalars (e.g., a). 1 denotes a vector whose elements
are all 1 and I denotes the identity matrix. The framework of
the proposed model is illustrated in Figure 2. It mainly con-
sists of two components, namely the original VAE for vanilla
evolution and the spike-and-slab model to detect bursty links.

3.1 VAE for Graph Evolution

After detecting the bursty links at each discrete time t, we split
the adjacency matrix of graphAt into two parts: vanilla adja-
cency matrixAv,t and burst adjacency matrixAb,t. To capture
information of these two parts, we extend the framework of
VAE and introduce a spike-and-slab distribution to simulate
the sparsity of burst adjacency matrix. The loss function of
VAE at each time step t is written as:

Lt = ln

n∏
i=1

p(Ai,t|Gi,t) =

n∑
i=1

ln

∫
Z

∫
S

p(Avi,t|zt)

p(Abi,t|st)p(zt|Gi,t)p(st|Gi,t)dztdst,
(1)

whereGi,t denotes the graph structure of vertex vi at time step
t. zt and st are random variables in the VAE-based model for
vanilla and bursty evolution respectively. The evidence lower
bound (ELBO) of VAE [Kingma and Welling, 2013] can be

Figure 2: An illustration of the proposed framework BurstGraph. At time step t, the framework generates vanilla evolution and bursty evolution
based on network structure Gt. Part a is an original VAE for vanilla evolution, where random variable zt follows a Gaussian distribution. Part b
is an extended VAE for bursty evolution, where random variable st follows a spike-and-slab distribution because of the sparsity of bursty links.
The encoder for these two random variables zt and st shares the same GraphSAGE to utilize the information from vertices and their neighbors.

written as:

Lt =Ezt∼qφ(zt|Gi,t)[ln
pθ(Avi,t|zt)p(zt)

qφ(zt|Gi,t)
]

+ λ · Est∼qφ(st|Gi,t)[ln
pθ(Abi,t|st)p(st)

qφ(st|Gi,t)
],

(2)

where importance weight λ is a hyperparameter. θ and φ
are parameters of the encoder and decoder networks respec-
tively. The approximate posterior distribution of random
variable zt follows a Gaussian distribution: qφ(zt|Gi,t) ∼
N (µ0(Gi,t),Σ0(Gi,t)). µ0(·) and Σ0(·) are the encoder net-
works, which can be any highly flexible functions such as
neural networks [Kingma and Welling, 2013]. We use Graph-
SAGE [Hamilton et al., 2017a], a representative framework of
graph convolutional network, to generate representation from
vertex attributes and its neighbours:

ui,t = GraphSAGE(Gi,t)

µ0(Gi,t) = fµ0(ui,t)

Σ0(Gi,t) = fΣ0
(ui,t),

(3)

where µ0(Gi,t) and Σ0(Gi,t) share the same GraphSAGE
network to learn representation from topology structure and
attributes of vertex vi. In our paper, fµ0(·) and fΣ0(·) are both
two fully-connected layers where hidden layers are activated
by RELU function. Similar to the original framework of VAE
[Kingma and Welling, 2013], the prior of random variable zt
follows a standard Gaussian distribution. This is no longer
suitable in the case of rare and discrete bursty links. In our pa-
per, the approximate posterior distribution of random variables
st for bursty links is set to follow a spike-and-slab distribution

Figure 3: An illustration of the RNN structure in BurstGraph, the
hidden variable ht is updated by last hidden variable ht−1, random
variables zt and st. h0 is set to a zero vector. The prior s′

t and
z′
t depend on ht−1. The initial prior s′

0 follows the distribution
p∗(st) mentioned before, while the initial prior z′

t follows a standard
Gaussian distribution.

[Mitchell and Beauchamp, 1988]:

ct|Gi,t
iid∼ Bernoulli(ψ(Gi,t))

rt,1|Gi,t ∼ N (0,
1

β
Σ1(Gi,t))

rt,2|Gi,t ∼ N (µ1(Gi,t), ·Σ1(Gi,t))

st = (1− ct)� rt,1 + ct � rt,2,

(4)

where µ1(·) and Σ1(·) are the encoder networks, with the same
neural network structure settings as µ0(·) and Σ0(·) in Equa-
tion (3), respectively. ψ(·) is also an encoder network which

is two fully-connected layers activated by sigmoid function.
The value for β > 0 is predefined with usual setting β = 100
for more flexbilities [Ishwaran et al., 2005]. Therefore, rt,1
follows a spike distribution while rt,2 is a slab distribution.

For easy implementation, the prior distribution p∗(st) of
st is set to: p∗(st) ∼ (1 − α) · N (0, 1

100I) +α · N (0, I),
where α = {αi} and each αi is drawn from a Bernoulli
distribution: {αi}

iid∼ Bernoulli(1
2). The regularization loss

of spike-and-slab variable st in ELBO can be written as:
−DKL(q(st|Gi,t)||p(st))

=Eq(st|Gi,t)[ln
p(ct)

q(ct|Gi,t)
+ ln

p(rt,1)

q(rt,1|Gi,t)
+ ln

p(rt,2)

q(rt,2|Gi,t)
]

=−DKL(q(ct|Gi,t)||p(ct))−DKL(q(rt,1|Gi,t)||p(rt,1))

−DKL(q(rt,2|Gi,t)||p(rt,2))

=− ln 2− ψ(Gi,t) lnψ(Gi,t)− (1− ψ(Gi,t)) ln(1− ψ(Gi,t))

+
1

2
(1 + ln(Σ1(Gi,t))− Σ1(Gi,t)− β · µ2

1(Gi,t))

+
1

2
(1 + ln Σ1(Gi,t)− Σ1(Gi,t)− µ2

1(Gi,t)),

(5)
By using the reparameterization trick, the random variables

like zt, ct, rt,1 and rt,2 can be rewritten as:

zt = µ0(Gi,t) + γ0 · Σ
1
2
0 (Gi,t)

ct = σ(ln ε− ln (1− ε) + lnψ(Gi,t) + ln (1− ψ(Gi,t)))

rt,1 = γ1 · (
1

β
· Σ1(Gi,t))

1
2

rt,2 = µ1(Gi,t) + γ2 · Σ
1
2
1 (Gi,t),

(6)
where ε follows the uniform distribution ε ∼ U(0,1). γ0,
γ1 and γ2 all follow the standard Gaussian distribution:
γ0,γ1,γ2 ∼ N (0, I). The decoder network fs(st) =
σ(Ws · st) is a transition function to reconstruct the bursty
links Abi,t in time t. For vanilla evolution, the framework
are similar with the original VAE, where the prior of random
variable zt follows a standard Gaussian distribution and the
decoder network fz(zt) is a fully-connected network activated
by sigmoid function to reconstruct the vanilla connectionAvi,t

at time t.

3.2 Learning Representations For Dynamic
Network

In the evolving network settings, the goal is to learn the
evolving changes from a set of sequential graphs G =
{G1, G2, ..., GT }. To take the temporal structure of the se-
quential graphs into account, we introduce an RNN structure
into our framework as shown in Figure 3. The prior of the
latent random variables is not set to follow a standard distribu-
tion, but depends on the last hidden variable ht−1:

zt|ht−1 ∼ N (µ0(ht−1),Σ0(ht−1))

rt,1|ht−1 ∼ N (0,
1

β
· Σ1(ht−1))

rt,2|ht−1 ∼ N (µ1(ht−1),Σ1(ht−1))

ct|ht−1
iid∼ Bernoulli(ψ(ht−1)),

(7)

dataset #vertices #edges #classes #time
Simulate 20,118 527,268 118 6
Alibaba-S 19,091 479,441 213 6
Alibaba-L 25,432 3,745,819 7,419 6

Table 2: Statistics of datasets.

In the similar way, the approximate posterior distribution
of these random variables will depend on both the current
network snapshot Gi,t and the last hidden variable ht−1:

zt|Gi,t,ht−1 ∼ N (µ0(Gi,t,ht−1),Σ0(Gi,t,ht−1))

rt,1|Gi,t,ht−1 ∼ N (0,
1

β
· Σ1(Gi,t,ht−1))

rt,2|Gi,t,ht−1 ∼ N (µ1(Gi,t,ht−1),Σ1(Gi,t,ht−1))

ct|Gi,t,ht−1
iid∼ Bernoulli(ψ(Gi,t,ht−1)),

(8)

In the same way of RNN, the hidden variable ht is up-
dated based on the previous hidden variable ht−1, the random
variables zt and st:

ht = fh(ht−1, zt, st),

where fh(·) is also a fully-connected network to transform the
hidden variables.

Training. We adopt Adam optimizer [Kingma and Ba,
2014] to optimize the objective and also introduce dropout
with weight penalties into our proposed model. As expected,
we penalize L1-norm of weight Ws to induce the sparsity of
the output. It is worth to note that all the parameters of our
proposed model are shared along dynamic graphs over time
interval (1, T). GraphSAGE in encoder network also shares a
random features input for each vertice over time interval (1, T).
The edge evolution is always sparse and unbalanced, which
brings trouble to identify the positive instances to achieve bet-
ter performance. Instead of traditional sigmoid cross entropy
loss function, we use inter-and-intra class balanced loss in our
model:

L =
1

2
(
Lnodpos

nnodpos

+
Lnodneg

nnodneg

)︸ ︷︷ ︸
inter−class loss

+
1

2
(
Lclspos
nclspos

+
Lclsneg
nclsneg

)︸ ︷︷ ︸
intra−class loss

,

where Lpos and Lneg are the cross entropy losses for positive
and negative samples, respectively. Similarly, Lnod and Lcls
are the cross entropy losses for labels in each node and class.
Similar to the setting of loss, npos and nneg define the number
of positive and negative samples, while nnod and ncls define
the number of labels in each node and class, respectively.

4 Experiment
In this section, we evaluate our model in the dynamic setting
from the performance on the multi-class link prediction.

Dataset. We first use the simulated data to verify the effec-
tiveness of the model, then we apply BurstGraph to a real
challenging dataset from a world-leading E-Commerce com-
pany.

Simulated Alibaba-S Alibaba-L
vanilla evolution bursty evolution vanilla evolution bursty evolution vanilla evolution bursty evolutionModel
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

DeepWalk 73.5 71.2 71.7 69.8 79.5 74.7 71.9 70.2 80.7 70.4 68.1 64.6
GraphSAGE 88.3 87.4 70.8 69.2 78.6 74.2 70.8 70.3 76.1 72.8 69.7 68.5

TNE 75.9 74.3 69.1 68.3 77.6 72.1 70.4 69.2 79.9 73.9 69.1 67.2
CTDNE 72.2 69.6 70.9 68.7 79.3 75.0 72.2 70.4 80.5 70.0 67.8 64.3

BurstGraph 91.5 91.4 78.8 78.4 80.0 77.8 77.2 75.2 81.4 77.7 73.3 70.8

Table 3: Results(%) comparison of different embedding methods. We use bold to highlight winners.

• Simulated Dataset: We generate a sequence of synthetic
bipartite graph snapshots of 21K vertices and 527K edges
that share similar characteristics as real data. We assume
that each vertex has two types (vanilla/burst) of repre-
sentations. More specifically, we divide the generation
process into two parts: the first part is to generate hyper-
parameters for each vertex to ensure the independence;
the second part is to generate links by sampling two
representations of vertices from Gaussian distributions
with fixed hyperparameters. First, for each vertex, we
sample the hyperparameters µ0, σ

2
0 from the uniform dis-

tributions µ0 ∼ U(0, 2.5) and σ2
0 ∼ U(0, 0.01) for the

vanilla evolution, and µ1, σ
2
1 from µ1 ∼ U(−2.5, 0) and

σ2
1 ∼ U(0, 1) for the bursty evolution respectively. To

make sure that bursty links are sparse, the variance σ2
1

is set to be bigger than σ2
0 . We then generate the links

in each snapshot as follows: we first determine the link
types of each vertex pair with probability drawn from
Bernoulli(0.1) for bursty links and vanilla links other-
wise. We then generate the links for each vertex pair.
According to their link types, we resample the representa-
tions of these two vertices from corresponding Gaussian
distributions: N (µ0, σ

2
0) or N (µ1, σ

2
1). A fixed weight

W is employed to transform these two representations
into a single value. In all simulated graph snapshots, we
set a threshold to truncate around 4% of vertex pairs as
links. Results are illustrated in Figure 4.
• Alibaba Dataset: We collect this dataset from a world-

leading E-Commerce company Alibaba with two types of
nodes, user and item. The bursty link between user and
item is defined as if the user has no interaction with the
item or similar items in the same category during the last
15 days according to business needs. The other links are
viewed as vanilla links. With dynamic graph setting, we
split the whole graph into a sequence of graph snapshots
with the same time interval (e.g., 1 day). The dataset with
sampled items is denoted as Alibaba-S dataset.

The statistics of the above datasets are shown in Table 2. In
each dataset, graph snapshot Gt consists of all the nodes and
interactions that appear at time step t. In our experimental
setting, we hide a set of edges from the original graph and
train on the remaining graph. The test dataset contains 10%
randomly selected vertices, while the negative links are also
randomly selected with the same number of positive links for
each link type (vanilla/burst).
Baseline Methods We compare our model against the fol-
lowing network embedding algorithms.

�
�	����� � �
�	����� �

�
�	����� � �
�	����� �

�����������������

����

Figure 4: Adjacency matrix heatmap of sub-graphs with four time
stamps of the simulated dataset. Each row represents a user, and each
column represents an item. The red points represent the vanilla links
between users and items, and the black points represent the bursty
links. Compared to the bursty evolution, vanilla evolution is more
regular and consistent over time.

• DeepWalk: DeepWalk1 [Perozzi et al., 2014] is a rep-
resentative embedding method for static network. Deep-
Walk generates truncated random walks and uses Skip-
gram algorithm [Mikolov et al., 2013] to learn latent
representations by treating walks as the equivalent of
sentences.

• GraphSAGE: GraphSAGE2 [Hamilton et al., 2017b] is
a general inductive framework of network embedding,
which leverages topological structure and attribute infor-
mation of vertices to efficiently generate vertex embed-
ding. Besides, GraphSAGE can still maintain a good
performance even with random features input.

• CTDNE: CTDNE [Nguyen et al., 2018] is a continuous-
time dynamic network embedding method. CTDNE gen-
erates temporal random walk as the context information
of each vertex and uses Skip-gram algorithm to learn
latent representations. In this method, the time of each
edge is simply valued according to the number of its
snapshot.

1https://github.com/phanein/deepwalk
2https://github.com/williamleif/GraphSAGE

• TNE: TNE3 [Zhu et al., 2016] is a dynamic network em-
bedding algorithm based on matrix factorization. Besides,
this method holds a temporal smoothness assumption
to ensure the continuity of the embeddings in evolving
graphs.

It is worthy to mention, DeepWalk and GraphSAGE are static
network embedding methods. To facilitate the comparison
between our method and these relevant baselines, these two
methods are trained with the whole graph, which includes all
graph snapshots. In the following, we compare the perfor-
mance of these methods with BurstGraph4 on three datasets
in terms of Micro-F1 and Macro-F1.

Comparison Results. Table 3 shows the overall perfor-
mance of different methods on three datasets. Our model
BurstGraph is able to consistently outperform all sorts of
baselines in various datasets. Next we compare and analyze
results on vanilla evolution and burst links, respectively. For
the vanilla evolution, BurstGraph has a performance gain of
+1.4% in terms of Micro-F1 and +3.5% in terms of Macro-F1
on average. For the bursty evolution, BurstGraph outperforms
other methods +5.5% in terms of Micro-F1 and +5.3% in
terms of Macro-F1 averagely. These results show that split-
ting evolving graphs into vanilla and bursty evolution not only
benefits for the performance of the bursty evolution, but also
benefits for that of the vanilla evolution. Moreover, compared
to other baselines, the performance of BurstGraph is quite
robust over the three datasets. Notice that DeepWalk, CTDNE
and TNE perform poorly on the simulated dataset. One po-
tential reason could be that the simulated generation process
may be easier for message passing algorithms (e.g., Graph-
SAGE) compared to matrix factorization based methods (e.g.,
DeepWalk, CTDNE or TNE).

Parameter Analysis. We investigate the sensitivity of dif-
ferent hyperparameters in BurstGraph including importance
weight λ and random variable dimension d. Figure 5 shows
the performance of BurstGraph on Alibaba-S dataset when
altering the importance weight λ and variable dimension d,
respectively. From part a), we can see that the performance of
vanilla link prediction is stable when changing the importance
weight λ. The performance of burst link prediction rises with
the increase of importance weight λ and converges slowly
when importance weight is larger than 1. From part b), we
can conclude that the performance of BurstGraph is relatively
stable within a large range of variable dimension, and the per-
formance decreases when the variable dimension is either too
small or too large.

Visualization of vertex representations. We visualize the
embedding vectors of sampled vertices in the simulated dataset
and Alibaba-S dataset learned by BurstGraph. We project
the embedding vectors to a 2-dimensional space with t-SNE
method. As shown in Figure 6, embeddings from the vanilla
evolution can be clearly separated from embeddings of the
bursty evolution. More specifically, the embeddings of ver-
texes in the vanilla evolution evenly spread out in the space,
while the embeddings of vertexes in the bursty evolution gather

3https://github.com/linhongseba/Temporal-Network-Embedding
4https://github.com/ericZhao93/BurstGraph

in a relatively small area. The reason could be that the vertex
embedding in the vanilla evolution is highly depended on its
attributes, while the vertex embedding in the bursty evolution
is another way around because of sparsity.

a)	Variable	dimension b)	Importance	weight

Figure 5: The performance of BurstGraph on Alibaba-S dataset with
increasing importance weight λ (left) or variable dimension d (right).

Figure 6: 2D visualization on embeddings (100 randomly selected
vertices) for vanilla evolution and bursty evolution. This visual-
izes the embeddings from vanilla and bursty evolution on Simulated
dataset (left) and Alibaba-S dataset (right). Embeddings from vanilla
evolution are spread out while embeddings from bursty evolution
concentrate in a relatively small area.

5 Conclusion
In this work, we propose a novel approach for evolving graphs
and assume that the evolving of edges in a sequence of graph
snapshots can be split into two parts: vanilla and bursty evo-
lution. In addition, these two parts utilize variational autoen-
coders based on two different prior distributions to reconstruct
the graph evolution, respectively. The vanilla evolution fol-
lows a Gaussian distribution, when the burst evolution follows
a spike-and-slab distribution. Experiment results on real-world
datasets show the benefits of our model on bursty links predic-
tion in evolving graphs. However, there still exist limitations
in our model. First, only bursty links are considered in our
framework. However, there exist other bursty objects, e.g.,
vertices and communities, which should also be taken into
account. We plan to extend our approach to support these
bursty objects in the future. Second, we plan to propose a new
time series model that supports continuous inputs rather than
discretized graph snapshots.

References
[Akoglu and Faloutsos, 2013] Leman Akoglu and Christos

Faloutsos. Anomaly, event, and fraud detection in large
network datasets. In WSDM, pages 773–774. ACM, 2013.

[Akoglu et al., 2015] Leman Akoglu, Hanghang Tong, and
Danai Koutra. Graph based anomaly detection and descrip-
tion: a survey. In Data Mining and Knowledge Discovery
29, volume 3, pages 626–688. ACM, 2015.

[Angel et al., 2012] Albert Angel, Nikos Sarkas, Nick
Koudas, and Divesh Srivastava. Dense subgraph main-
tenance under streaming edge weight updates for real-time
story identification. Proc. VLDB Endow., 5(6):574–585,
2012.

[Chandola et al., 2009] Varun Chandola, Arindam Banerjee,
and Vipin Kumar. Anomaly detection: A survey. ACM
Comput. Surv., 41(3):15:1–15:58, July 2009.

[Dai et al., 2016] Hanjun Dai, Bo Dai, and Le Song. Discrim-
inative embeddings of latent variable models for structured
data. In International conference on machine learning,
pages 2702–2711, 2016.

[Dong et al., 2017] Yuxiao Dong, Nitesh V Chawla, and
Ananthram Swami. metapath2vec: Scalable representation
learning for heterogeneous networks. In Proceedings of the
23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 135–144. ACM, 2017.

[Du et al., 2018] Lun Du, Yun Wang, Guojie Song, Zhicong
Lu, and Junshan Wang. Dynamic network embedding: An
extended approach for skip-gram based network embed-
ding. In IJCAI, pages 2086–2092, 2018.

[Grover and Leskovec, 2016] Aditya Grover and Jure
Leskovec. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 855–864. ACM, 2016.

[Hamilton et al., 2017a] Will Hamilton, Zhitao Ying, and
Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing
Systems, pages 1024–1034, 2017.

[Hamilton et al., 2017b] William L. Hamilton, Rex Ying, and
Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, 2017.

[Heard et al., 2010] Nicholas A Heard, David J Weston, Kiri-
aki Platanioti, David J Hand, et al. Bayesian anomaly de-
tection methods for social networks. The Annals of Applied
Statistics, 4(2):645–662, 2010.

[Ishwaran et al., 2005] Hemant Ishwaran, J Sunil Rao, et al.
Spike and slab variable selection: frequentist and bayesian
strategies. The Annals of Statistics, 33(2):730–773, 2005.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Kingma and Welling, 2013] Diederik P Kingma and Max
Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[Kleinberg, 2003] Jon Kleinberg. Bursty and hierarchical
structure in streams. Data Mining and Knowledge Discov-
ery, 7(4):373–397, 2003.

[Li et al., 2017] Jundong Li, Harsh Dani, Xia Hu, Jiliang
Tang, Yi Chang, and Huan Liu. Attributed network embed-
ding for learning in a dynamic environment. In Proceedings
of the 2017 ACM on Conference on Information and Knowl-
edge Management, pages 387–396. ACM, 2017.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages
3111–3119, 2013.

[Mitchell and Beauchamp, 1988] Toby J Mitchell and John J
Beauchamp. Bayesian variable selection in linear regres-
sion. Journal of the American Statistical Association,
83(404):1023–1032, 1988.

[Nguyen et al., 2018] Giang Hoang Nguyen, John Boaz Lee,
Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network em-
beddings. In Companion of the The Web Conference 2018
on The Web Conference 2018, pages 969–976. International
World Wide Web Conferences Steering Committee, 2018.

[Parikh and Sundaresan, 2008] Nish Parikh and Neel Sun-
daresan. Scalable and near real-time burst detection from
ecommerce queries. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 972–980. ACM, 2008.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: Online learning of social rep-
resentations. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 701–710. ACM, 2014.

[Qiu et al., 2018] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian
Li, Kuansan Wang, and Jie Tang. Network embedding
as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In WSDM, pages 459–467. ACM, 2018.

[Trivedi et al., 2017] Rakshit Trivedi, Hanjun Dai, Yichen
Wang, and Le Song. Know-evolve: Deep temporal rea-
soning for dynamic knowledge graphs. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pages 3462–3471. JMLR. org, 2017.

[Wang et al., 2016] Daixin Wang, Peng Cui, and Wenwu Zhu.
Structural deep network embedding. In KDD, pages 1225–
1234. ACM, 2016.

[Zhou et al., 2018] Lekui Zhou, Yang Yang, Xiang Ren, Fei
Wu, and Yueting Zhuang. Dynamic network embedding by
modeling triadic closure process. 2018.

[Zhu et al., 2016] Linhong Zhu, Dong Guo, Junming Yin,
Greg Ver Steeg, and Aram Galstyan. Scalable temporal
latent space inference for link prediction in dynamic so-
cial networks. IEEE Transactions on Knowledge and Data

Engineering, 28(10):2765–2777, 2016.

