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Motivation
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1. J. Scott. (1991, 2000, 2012). Social network analysis: A handbook. 
2. D. Easley and J. Kleinberg. Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, 2010. 

Challenges
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Problem: partial monitoring
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What is network embedding under partial monitoring?

We can only probe part of the nodes to perceive the 
change of the network!
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Revisit NE: distributional hypothesis of harris

• Words in similar contexts have similar meanings (skip-
gram in word embedding)

• Nodes in similar structural contexts are similar (Deepwalk,
LINE in network embedding)

• Problem: Representation Learning 
– Input: a network ! = ($, ℰ)
– Output: node embeddings ( ∈ ℝ $ ×, , - ≪ $
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Network Embedding

• We define the proximity matrix !, which is an
"×" matrix, and !$,& represents the value of the
corresponding proximity from node '$ to '&.

• Given proximity matrix !, we need to minimize
the objective function , where
( is the embedding table, ) is the embedding table
when the nodes act as context.

• We can perform network embedding with SVD:

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. WSDM’18. The most cited paper in WSDM’18 as of May 2019
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Proximity Matrix

• Given graph ! = ($, &) , any kinds of

proximity can be exploited by network

embedding models, such as:

– Adjacency Proximity

– Jaccard’s Coefficient Proximity

– Katz Proximity

– Adamic-Adar Proximity

– SimRank Proximity

– Preferential Attachment Proximity

– ∙∙∙
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Problem
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If we can only probe part of the nodes to perceive the 
change of the network, how to select the nodes to make 
the embeddings as accurate as possible?
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Problem

• We formally define our problem
In a network, given a time stamps sequence < 0,1, … , & >, the starting
time stamp (say ()), the proximity and the dimension, we need to figure
out a strategy π, to choose at most * < + nodes to probe at each
following time stamp, so that it minimizes the discrepancy between the
approximate distributed representation, denoted as ,-.(0) , and the
potentially best distributed representation -.∗ 0 , as described by the
following objective function.

• The Key point: How to figure out the strategy 
to select the nodes.
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Problem

• It is a sequential decision problem
• Obviously, the best strategy is to capture as 

much “change” as possible with limited 
“probing budget”. 
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Credit Probing Network Embedding

• Based on a kind of reinforcement learning 
problem, namely Multi-armed Bandit (MAB)

• Choose the “productive” nodes according to 
their historical “rewards”. 

• At each time stamp tj , we maintain a “credit” for 
each node vi, which is the consideration for 
selecting the nodes.

• The “credit” should make a trade-off between 
exploitation and exploration.



12

Credit Probing Network Embedding

• The “credit” for each node vi at time stamp tj
can be defined as:

Exploitation

Exploration

Empirical mean of vi’s historical
rewards ||M||F, which refer to the
the change it bring to the
proximity matrix M from the last
time stamp.

Hyperparameter to
make a trade off
between exploration
and exploitation

Times that vi
has been 
probed

Current time 
stamp
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Credit Probing Network Embedding

• How to evaluate the difference between two 
embeddings X and X*?

• Obviously, it makes no sense to measure their 
concrete values with ||X-X*||F.

• So we define two metrics: Magnitude Gap and 
Angle Gap from their geometric meanings.
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Credit Probing Network Embedding

• Magnitude Gap

• Angle Gap
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Credit Probing Network Embedding

• We prove the error bound for loss of 
magnitude gap and angle gap with matrix 
perturbation theory and combinatorial multi-
armed bandit theory:
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Experimental Setting

• Approaching the Potential Optimal Values
– Datasets: AS
– Baselines: Random, Round Robin, Degree 

Centrality, Closeness Centrality 
– Metrics: Magnitude Gap, Angle Gap

• Link Prediction
– Datasets: WeChat
– Baselines: BCGD1 with the four settings
– Metrics: AUC

1. Zhu et al.  Scalable  temporal  latent space  inference  for  link  prediction  in  dynamic  social  networks. TKDE, 28(10):2765–2777, 2016
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Experimental Results

• Approaching the Potential Optimal Values
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Experimental Results

• Link Prediction

K = 500 K = 1000
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Further Consideration

• Trying other reinforcement learning 
algorithms to solve such problems.

• Trying deep models to learning embedding 
values in such a setting.
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CogDL
—A Toolkit for Deep Learning on Graphs

** Code available at https://keg.cs.tsinghua.edu.cn/cogdl/

https://keg.cs.tsinghua.edu.cn/cogdl/
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CogDL
—A Toolkit for Deep Learning on Graphs
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Leaderboards: Link Prediction

http://keg.cs.tsinghua.edu.cn/cogdl/link-prediction.html

http://keg.cs.tsinghua.edu.cn/cogdl/link-prediction.html
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Join us

• Feel free to join us with the three following ways:
üadd your data into the leaderboard
üadd your result into the leaderboard
üadd your algorithm into the toolkit
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Jie Tang, KEG, Tsinghua U                    http://keg.cs.tsinghua.edu.cn/jietang
Download all data & Codes https://keg.cs.tsinghua.edu.cn/cogdl/

Thank you�

http://keg.cs.tsinghua.edu.cn/jietang
https://keg.cs.tsinghua.edu.cn/cogdl/

