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Abstract

We argue that the present setting of semi-
supervised learning on graphs may result in un-
fair comparisons, due to its potential risk of over-
tuning hyper-parameters for models. In this pa-
per, we highlight the significant influence of tuning
hyper-parameters, which leverages the label infor-
mation in the validation set to improve the perfor-
mance. To explore the limit of over-tuning hyper-
parameters, we propose ValidUtil, an approach to
fully utilize the label information in the validation
set through an extra group of hyper-parameters.
With ValidUtil, even GCN can easily get high ac-
curacy of 85.8% on Cora.

To avoid over-tuning, we merge the training set
and the validation set and construct an i.i.d. graph
benchmark (IGB) consisting of 4 datasets. Each
dataset contains 100 i.i.d. graphs sampled from
a large graph to reduce the evaluation variance.
Our experiments suggest that IGB is a more sta-
ble benchmark than previous datasets for semi-
supervised learning on graphs. Our code and data
are released at https://github.com/THUDM/IGBY/.

1 Introduction

Graph Neural Networks (GNNs) [Gori er al., 2005; Kipf
and Welling, 2016] have emerged as a heated field in ma-
chine learning in recent years. Among the widely known
GNN models [Kipf and Welling, 2016; Hamilton et al., 2017;
Velickovic et al., 2018; Feng et al., 2020; Chen et al., 20201,
which one is the best? Most GNN papers demonstrate
their performance on the task of semi-supervised learning on
graphs following GCN, where a widely-used benchmark in-
cludes Cora, CiteSeer, and PubMed [Sen et al., 2008].

This benchmark is competitive but unstable. For example,
the accuracy of GCNII [Chen et al., 2020] (SOTA method) on
Cora is 85.5% with a dropout rate of 0.6, but it will drop to
79.0% if we slightly increase the dropout rate to 0.75. In con-
trast, the reported accuracy of GCN is about 81.5%.! Previ-

*indicates equal contribution.
!The experiments can be reproduced using the CogDL pack-
age [Cen er al., 2021].

ous researchers attributed this kind of instability to the small
size of the graphs and put forward larger benchmarks, e.g.,
OGB [Hu et al., 2020] and HGB [Lv et al., 2021]. However,
to the best of our knowledge, few works challenge the setting
of semi-supervised learning on graphs.

A similar predicament of the unstable performance also ex-
ists in few-shot natural language understanding, where Zheng
et al. [2021] recently found that models were over-fitting the
validation set via hyper-parameters. Since the labels in the
validation set are even more than those in the training set,
the searched value of hyper-parameters becomes vitally im-
portant. Inspired by this finding, we hypothesize that the
same reason could also, to some extent, account for the in-
stability of semi-supervised learning on graphs, since the size
of the validation set is also usually much larger than that of
the training set (e.g., 140 training samples vs. 500 valida-
tion samples in Cora) [Yang et al., 2016]. Meanwhile, re-
cent GNNs show a trend of owning more hyper-parameters.
While GCN has very few hyper-parameters, GAT needs the
accuracy on the validation set to determine its structures (e.g.,
the number of attention heads and the existence of a resid-
ual connection). PPNP [Klicpera et al., 2019a] further re-
quires a global diffusion radius and a teleport probability a.
GDC [Klicpera er al., 2019b] searches a diffusion radius and
a threshold for sparsification as hyper-parameters on the val-
idation set, which is improved in ADC [Zhao et al., 2021]
by replacing the grid-search with gradient-based optimization
for layerwise and channel-wise diffusion radii. This evolving
path of GNNs suggests that GNN models utilize the valida-
tion set to a greater and greater extent and that the more ex-
plicit utilization improves and stabilizes the training. This
benchmark leads to an unfair comparison favoring models
with larger sizes of hyper-parameters.

The same phenomenon still exists in OGB [Hu et al.,
20201, even though its percentage of validation set is much
smaller than that of Cora. The participants [Wang et al.,
2021] find that directly merging validation set into the train-
ing set can significantly increase the performance, which is
then only allowed on the collab dataset according to the up-
dated OGB rules. Moreover, C&S [Huang et al., 2020] in-
corporates the labels in the validation set during label propa-
gation and obtains a great improvement. All of them indicate
that simply reducing the validation set ratio or to increase the
graphs’ size is not a satisfying solution to the problem.
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The findings urge us to rethink the setting of the semi-
supervised learning on graphs and the meaning of validation
set. On the one hand, the original motivation of introduc-
ing validation set is to optimize the hyper-parameters, which
cannot be directly optimized by usual methods, e.g., stochas-
tic gradient descent (SGD). On the other hand, we have only
two kinds of samples in real-world applications, labeled and
unlabeled. We have to split out a part of the labeled data
as the validation set to search for the best hyper-parameters.
This means it is a disadvantage instead of a merit to own a
large set of hyper-parameters because they use a great quan-
tity of labeled data as a validation set and result in a smaller
training set providing real-world information. However, un-
der the current setting, the extra and informative validation
set encourages the model to equip itself with more hyper-
parameters to fully utilize the labels in the validation set,
which deviates from the real-world scenarios. In this work,
we name the problem of “using hyper-parameters to fit vali-
dation labels” as over-tuning.

Present work. In this paper, we analyze the influence of
the size of validation set and propose ValidUtil, a method to
make any GNN fully utilize the label information in the vali-
dation set. ValidUtil explores the limit of over-tuning hyper-
parameters. To avoid meaningless optimization towards the
utilization of validation set and increase the stability of GNN
benchmarks, we construct the i.i.d. graph benchmark (IGB)
with the following two improvements:

* Unify the training and validation set. In IGB, the graphs
have no pre-defined ratio of training and validation set
but only labeled data and unlabeled data. Different mod-
els can freely split the labeled data into training and val-
idation set based on the number of hyper-parameters. In
this way, the over-tuning of hyper-parameters is discour-
aged.

L]

Multiple i.i.d. graphs and diverse domains. We have 4
datasets consisting of a co-authorship network, a social
network, a knowledge graph, and a photo sharing net-
work. In each dataset, we sample 100 subgraphs using
a modified Random-Walk method. The sampled graphs
are approximately i.i.d, while each gives a reliable eval-
vation of GNN performance. Therefore, we can ob-
tain more stable metrics by averaging performances over
them.

2 The Risk of Over-tuning of Semi-supervised
Learning on Graphs

2.1 Semi-Supervised Learning on Graphs

Definition.  Given an undirected graph G = (V, E), where
the node set V' contains n nodes {vy,...,v,} and E is the
edge set. Each node v; is associated with a feature vector x;
and a class label y;. We denote the set of node labels as Y.
In the task of semi-supervised node classification on graphs
(transductive), only a small part of node labels Y~ C Y are
given, and the rest label set YU = Y — Y’ needs to be
predicted. Usually |[Y1| < |[YY].

Here, we briefly introduce three widely used citation net-
works (i.e., Cora, CiteSeer, PubMed) for the analysis in this

section. In these datasets, node features are bag-of-words rep-
resentations of documents. Each dataset is a connected graph
constructed based on the citation links between documents.
Each dataset uses 20 training samples per class as labeled data
in the semi-supervised setting. Table 1 shows the statistics of
the three datasets.

Dataset | Nodes Edges Split Classes Features
Cora 2,708 5,429 140/500/ 1,000 7 1,433
CiteSeer | 3,327 4,732 120/500/ 1,000 6 3,703
PubMed | 19,717 44,338 60/500/ 1,000 3 500

Table 1: Statistics of Cora / CiteSeer / PubMed datasets.

2.2 An Analysis of Over-tuning in Current GNNs

In this section, we will investigate the over-tuning phe-
nomenon in current GNNs. As discussed above, the hyper-
parameters act as a tool to utilize the labels in the validation
set. Therefore, the models’ performance should improve as
we increase the size of the validation set. We select five repre-
sentative GNNs, GCN, GAT, APPNP, GDC-GCN, and ADC,
and exhibit their accuracy on Cora with different sizes of vali-
dation set. The search scope of the hyper-parameters includes
learning rate, hidden size, early stopping iteration, number of
layers, the dropout rate, the diffusion radius of APPNP and
GDC, the sparsification threshold of GDC, etc. We use grid
search to find the best hyper-parameters for each model. De-
tails about the search scopes are shown in the released codes.

We run the experiments on the public split [Yang e al.,
2016] of Cora, ranging the size of validation set from 10
to 500 by hiding a part of the labels. For each validation
size, we report the accuarcy on the test set after training the
model with the best searched hyper-parameters. The results
are demonstrated in Figure 1.
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Figure 1: The accuracy of models with different size of the valida-

tion set on Cora. The test accuracy is the average of 20 runs with
different random seeds.

Figure 1 shows that the GNN models have a clear trend
that the performance is usually better with a larger validation
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Figure 2: The test accuracy of ValidUtil plus GCN, GAT, MixHop and PPNP on Cora, Citeseer, and PubMed. The horizontal axis means the
number of new hyper-parameters from ValidUtil, where O is equivalent to the original GNN without ValidUtil.

set. Since the validation set can only affect the model via the
hyper-parameters, we can conclude that the model benefits
from the validation labels with the help of hyper-parameters.
The accuracy improvement is up to 1% ~ 3% if we increase
the size of validation set from 100 to 500, which is significant
enough to suggest that the over-tuning already exists.

2.3 ValidUtil: Exploring the Limits of Over-tuning

Although the analysis above shows that over-tuning influ-
ences GNN models’ performance, we wonder to what extent
the influence could achieve. If the importance of validation
labels is much smaller than that of model structures, the previ-
ous benchmarks will still be a proper choice for GNN bench-
marks. If not, we should rethink and re-design the evaluation
pipeline and datasets for semi-supervised learning on graphs.

The most intuitive method to fully utilize the validation la-
bels is to merge the validation set into the training set. How-
ever, this operation is universally acknowledged as invalid
and is forbidden since it is a kind of data leakage. In this
section, we put forward ValidUtil, a technique to mimic this
operation via searching hyper-parameters. ValidUtil is not re-
ally a method to improve GNNs, but more like a “reduction to
absurdity”. The full pipeline of ValidUtil is defined as follows
and in Algorithm 1:

1. Add hyper-parameters. For any given model, we add ¢
extra hyper-parameters Y7 = {1, ..., §: }, which refers
to “pseudo-labels of the ¢ nodes in the validation set”.
These hyper-parameters affect the model training in a
way that they act as a known label for the corresponding
validation node; that is to say, the model will be trained
on an augmented training set Y~ U YZ. And since the
labels of the validation set given to the model are not
ground-truth labels, this is not a data leakage process.

2. Alternately optimize hyper-parameters. The most
common search method for hyper-parameters is grid
search, but it is time-consuming when there are many
hyper-parameters. Thus, we alternately search the best
value of each ¢; individually. In the beginning, each g; is
initialized as the predicted label y} of the GNN without
ValidUtil. We will search and fix the best ¢; one by one,
following the method described in the next paragraph.

Algorithm 1 ValidUtil
Input Graph G with nodes in training/validation/test set. We
denote their labels as YL /Y, q1ia/ Yiest. There are k classes.
Output Accuracy of the GNN model on test set.

1: Train a GNN model M with Y~

2: Predict the labels of validation set with M as Y =

A

3: Add t extra hyper-parameters Y7 = {§;, ..., 9 }.
4: Initialize YT = Y,
5: for i from 1 to ¢t do
6: for [ from 1 to k do
7 v = 1.
8: Train a GNN M with YZ U YT,
9: Acc; = the accuracy of M on validation set.
10: end for
11: Imaz = arg max Acc.
1e{1,....,k}
12: if Accy,,,,, > Accy, then
13: gz = lma:r
14 else
15: i =y
16: end if
17: end for

18: Train a new GNN M with YZ U YT,
19: return the accuracy of M on test set.

We set the dropout rate as 0 when searching for the best
pseudo-labels.

3. Search the best pseudo-label for each validation
node. To search for the best value of y;, we enumerate
all possible values of 7; while keeping the other hyper-
parameters unchanged. For each possible value, we train
a GNN model using labels Y* U YT and select the
best value according to the accuracy of the validation
set. This is the standard process of searching a hyper-
parameter.

4. Train the final model based on the best pseudo-labels.
After the pseudo-labels are determined, we can train on
YZ U YT, and use ordinary grid search to determine
other hyper-parameters, including the dropout rate, and



report the results on the test set.

Analysis of Effectiveness. The key reason for the effective-
ness of ValidUtil is that in most cases, we can obtain the true
label y; for validation node v; in step 3, which makes the final
training equivalent to the training on the union of training and
validation set. If the model is over-parameterized, it is pow-
erful enough to overfit the predicted label of v; as the true
label y; after sufficient training 2. Then in most cases, the
highest accuracy is reached if and only if g; = y;. We find
that most GNNs models are powerful enough to overfit the
pseudo-labels on Cora, Citeseer, and PubMed in practice.

Cora Citeseer PubMed
GCNII (sota Cora) 85.5 734 80.3
GRAND (sota Citeseer) 85.4 75.4 82.7
SAIL (sota PubMed) 84.6 74.2 83.8
GCN + ValidUtil 85.8 76.0 83.8
MixHop + ValidUtil 84.9 75.5 84.2
PPNP + ValidUtil 85.8 77.3 84.7

Table 2: Comparison between ValidUtil and the sota methods on
Cora, Citeseer, and PubMed.

We demonstrate the performance of ValidUtil plus three
GNN models, GCN, PPNP, and MixHop, in Figure 2. We find
that even only 20 ~ 60 hyper-parameters from ValidUtil can
bring about a leap in performance for some models. When we
add hyper-parameters for all the 500 nodes in the validation
set, PPNP can achieve an accuracy much better than that of
the sota methods in Table 2.

Remark. Although ValidUtil works purely by utilizing the
validation labels, it is totally valid under the current setting. If
we treat the GNN+ValidUtil as a black-box model, the train-
ing process is quite normal. ValidUtil actually utilizes the
labels with low efficiency, because each hyper-parameter can
only learn the information of one node — but this is enough
to verify our hypothesis. The current setting cannot pre-
vent the validation labels from ‘leaking” during hyper-
parameters tuning. We believe that there exist some more
efficient ways to define influential hyper-parameters. These
hyper-parameters could be entangled with the features or
model structures, and they can acquire information from mul-
tiple validation labels. According to Figure 1, such influen-
tial hyper-parameters might already exist in some models and
cannot be easily detected. Therefore, it is urgent to construct
a new benchmark for semi-supervised learning on graphs to
avoid over-tuning and fairly and robustly compare GNN mod-
els.

2Some weak GNNis, e.g. vanilla GCN and GAT on CiteSeer,
cannot well distinguish nodes in a strongly connected graph, and
therefore cannot overfit the given labels. We add an additional self-
loop for each node for GCN to solve the problem. This trick is
already implemented in PyG [Fey and Lenssen, 2019] by passing
improved=True for GCNs.

3 IGB: An Independent and Identically
Distributed Graph Benchmark

3.1 Overview

Our new benchmark has two aims: avoiding over-tuning and
being more robust.

To avoid over-tuning, we propose a new setting where there
are only two sets of nodes, labeled and unlabeled. The model
can use the labeled set in any way to train the best model and
evaluate its performance on the unlabeled (test) set. If we
need to search hyper-parameters, we can split out a part of
the labeled nodes as the validation set. The over-tuning prob-
lem is eliminated because the validation labels are already
exposed. This setting is closer to real-world scenarios and
enables fair comparison between models with different sizes
of hyper-parameters. To easily migrate the GNNs to this new
setting, we will introduce a simple and powerful method to
create validation set in section 3.2.

To construct a more robust benchmark, we expect models’
performances to be stable for different random seeds. One of
the most common methods in machine learning to reduce the
variance of evaluation results is to test repeatedly and report
the average performance. To achieve that, we expect to test a
model’s performance on multiple i.i.d graphs. However, how
can we get multiple i.i.d. Cora-like graphs to evaluate the
results?

If we think about the construction of the citation networks
such as Cora and Citeseer, we will find that the papers are
crawled down by spiders from the Internet, which means
these networks can be seen as sampled from the large real-
world citation network. A similar assumption is already used
in previous works [Yang et al., 2020] that the real-world
graph data are sampled from a large underlying graph. To
acquire i.i.d. graphs, we could sample “again” from an estab-
lished graph. With appropriate sampling strategies, we can
construct a group of i.i.d. graphs. The details about sampling
are introduced in section 3.4.

3.2 The Pipeline of Evaluation

To solve the over-tuning problem, we have to update the
pipeline of the task of semi-supervised learning on graphs.
Following the real-world scenarios, we only split the nodes
in a graph into two sets, labeled and unlabeled (with a ratio
of 1:4 by default in IGB). The model can use the labeled set
in any way to train the best model, and evaluate its perfor-
mance on the unlabeled (test) set. A recommended method is
as follows:

1. Divide the labeled set into training and validation sets.?

2. Find the best hyper-parameters using grid search on the
training and validation sets from the first step.

3. Train the model with the best hyper-parameters on the
full labeled nodes.

4. Test the performance of the model from the third step on
the unlabeled (test) sets.

3The best ratio may differ from model to model. In practice, we
find that 1:1 is an appropriate ratio for most models.



5. Repeat the above steps on each graph in a dataset and
report the average accuracy.

The first two steps aims to find the best hyper-parameters for
the GNN model. We believe that this approach is suitable
for many GNN models to get satisfying hyper-parameters. If
there are other reasonable methods to decide the best hyper-
parameters with the labeled set, they will also be encouraged
to replace the first two steps in this pipeline. In this way,
we can avoid over-tuning by directly exposing all the label
information in the validation set later in the third step.

3.3 Datasets

IGB consists of four datasets: AMiner [Tang et al., 2008],
Facebook [Rozemberczki et al., 2019], NELL [Yang er al.,
20161, and Flickr [Zeng et al., 2019]. Each dataset contains
100 undirected connected graphs, sampled from the original
large graph according to the random walk method in sec-
tion 3.4. We also report the average node overlap rate, the
ratio of common nodes to the total size of nodes for a pair
of sampled graphs. The coverage rate is defined as the ratio
of the union of the 100 sampled graph to the original large
graph. Lower overlap rate and higher coverage rate are pre-
ferred. The statistics of the datasets are reported in Table 3.

AMiner Facebook NELL Flickr
Average Nodes 4,485 +26 3475+71 3,540+68 4,452+ 31
Edges 5,000 5,000 5,000 5,000
Features 3,883 128 10,000 500
Classes 8 4 164 7
Original Size 236,017 22,470 63,910 89,250
Overlap Rate 0.083 0.339 0.146 0.119
Coverage Rate 0.550 0.958 0.956 0.969

Table 3: Statistics of the datasets in IGB.

AMiner. The AMiner dataset is a co-authorship graph ex-
tracted from the AMiner system [Tang er al., 2008]. Nodes
represent authors, while edges mean co-authorship in at least
one paper. Node features indicate the venues in which the au-
thor has publications. Specifically, each feature has 3,883 di-
mensions, and each dimension is O or 1, representing whether
or not an author has had publications in the corresponding
venue. Node labels represent the authors’ main research
fields.

Facebook. The Facebook dataset is the Facebook Page-
Page dataset from the paper [Rozemberczki et al., 2019]. It is
a graph of official Facebook pages. Nodes are official Face-
book pages, while edges are mutual likes between the pages.
Node features are extracted from the page descriptions. Node
labels are one of the following 4 categories defined by Face-
book: politician, governmental organization, television show,
and company.

NELL. The NELL dataset is a knowledge graph dataset
generated from the NELL knowledge graph [Carlson er al.,
2010]. Nodes represent entities, and edges represent relation-
ships between two entities. Each node initially has a 61,278-
dimension feature, a binary bag-of-words representation of
entity descriptions. We only reserve the features of the most
frequent 10,000 words for efficiency.

Flickr. The Flickr dataset is a graph of photos uploaded to
the Flickr website. Each node represents a photo, and an
edge means two photos share some properties in common,
such as from the same location or the same gallery. 500-
dimension node features are bag-of-words representations of
photos. The labels are one of 7 classes developed by Zeng et
al. from 81 original tags.

3.4 Sampling Algorithm

The simplest way to make the subgraph’s node label distribu-
tion similar to that of the original graph is vertex sampling.
However, it does not meet our expectations because it gener-
ates unconnected subgraphs. To obtain nearly i.i.d. subgraphs
for our benchmark, we must carefully design the sampling
strategy and principles. Specifically, we expect the sampling
strategy to have the following properties:

1. The sampled subgraph is a connected graph.

2. The distribution of the subgraph’s node labels is close to
that of the original graph.

3. The distribution of the subgraph’s edge categories (edge
category is defined by the combination of its two end-
points’ labels) is close to that of the original graph.

The first property can be well satisfied by the Random-
Walk (RW) algorithm. When performing RW on an undi-
rected graph G = (V,E), we start sampling from node
u = nyg, and the following nodes can be selected by the tran-
sition possibility:

“YT1 0, otherwise,

where P, , is the transition possibility from node u to v, and
d,, 1s the degree of node u.

We retreat to reject sampling-like methods to guarantee
the second and third properties. Here we introduce the Kull-
back-Leibler divergence (KL divergence) as a metric to mea-
sure the difference between two different distributions. Aim-
ing to get 100 subgraphs with relatively low KL divergence
of node labels’ distribution (“Node KL.”) and edge categories’
distribution (“Edge KL), we set a pre-defined threshold to
decide whether to accept a sampled subgraph or not. The
comparison of the results before and after adding the thresh-
old is shown in Table 4.

AMiner Facebook NELL Flickr
Node KL 0.0186 4+ 0.0107  0.1306 £ 0.0427  0.4393 £ 0.1008  0.0060 £ 0.0025
Edge KL 0.0189 +0.0149  0.0284 £+ 0.0121  0.2796 + 0.0678  0.0046 + 0.0015
+Thresholds
Node KL 0.0123 +0.0024  0.0326 £+ 0.0064 0.3184 +0.0243  0.0041 £ 0.0006
Edge KL 0.0062 4 0.0008  0.0243 +0.0120  0.2068 £ 0.0179  0.0021 £ 0.0003

Table 4: KL divergence of the sampling results.

3.5 Benchmarking Results

We evaluate 7 representative GNNs on IGB: Grand [Feng
et al., 2020], GCNII [Chen er al., 2020], APPNP [Klicpera
et al., 2019al, GAT [Velickovic et al., 2018], GCN [Kipf
and Welling, 2016], GraphSAGE [Hamilton et al., 2017] and



AMiner  Facebook NELL Flickr Avg
Grand 82.5£0.8 889+1.0 844+1.1 443+0.8 75.0
GCN 76.5£1.1 87.94+1.0 93.9+0.7 419+13 75.1
GAT 78.8+1.0 88.3+1.2 91.1+1.2 43.1£13 753
GraphSAGE ~ 81.6+0.8 87.2t1.1 94.9+0.6 43.4+09 76.8
APPNP 87.0£1.0 88.0£1.3 93.0+0.8 44.6+£0.9 78.2
MixHop 86.1£1.1 89.1£0.9 94.7+0.7 43.5+12 784
GCNII 88.4+0.6 89.5+0.9 91.5+1.0 44.7£0.8 785

Table 5: Evaluation Results of GNNs on IGB.

MixHop [Abu-El-Haija et al., 2019]. The results are shown
in Table 5.

To evaluate the GNN model, we first define a search scope
for each hyper-parameter. The scope is carefully chosen in
order to include the best values on all the datasets. For each
model, the best hyper-parameters in its original paper and the
best hyper-parameters reported by CogDL [Cen et al., 2021]
are usually included in the search scopes. After that, we use
our IGB benchmark to evaluate each model under the setting
introduced in the section 3.2.

3.6 The Stability of IGB

We verify the stability of IGB in two ways. Firstly, we verify
its stability when evaluating models on different graphs, as
each IGB dataset contains 100 nearly i.i.d. graphs. Specif-
ically, we compare the variances of the accuracies on 100
AMiner’s subgraphs (IGB style) and on 100 Cora’s random
data splits (Cora style). The result shown in Figure 3 strongly
suggests that the evaluation on IGB is more stable than Cora
style, even though each AMiner graph uses random data split.

GNNs on AMiner GNNs on Cora
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Figure 3: Accuracy of GNNs on AMiner and Cora. The blue area is
the fluctuation range of the test accuracy. The results are based on
100 runs on AMiner’s subgraphs or Cora’s random splits.

Secondly, we focus on IGB’s stability when evaluating
models with different random seeds. In a stable benchmark,
the ranks of different models should not easily change when
changing the random seed. To verify this, we use the “inver-
sion number” # of the ranking as a metric. Specifically, we
evaluate the seven models using ten different random seeds,
providing ten ranking sequences S;(i € [1,10]). On each
ranking sequence, we sort models according to their accuracy.
The ranking sequence of the first seed is used as a reference
sequence S7 = {my, ma...m7}, where m; is a GNN model.
We call m; > my, if and only if m; ranks higher than m;
on S;. For another sequence S;,¢ # 1, if m; > my, but

“The definition of “inversion number” can be seen in Wikipedia.

m; ranks lower than mj, on S;, we call (j, k) an inversion
pair in S;. “Inversion number” is the number of inversion
pairs in all sequences S;,7 # 1. Therefore, a high “inver-
sion number” indicates a high instability of evaluation with
different seeds. The result is reported in Table 6. IGB has
a significantly smaller inversion number than Cora, CiteSeer,
and PubMed, demonstrating its strong stability.

PubMed AMiner Facebook NELL Flickr
67 45 107 0 9 0 5

Cora CiteSeer

Table 6: The inversion numbers of the ranking sequences using 10
different random seeds. Smaller inversion number indicates better
stability.

4 Discussion

Is limiting the number of hyper-parameters a good
way to solve the over-tuning problems? In sec-
tion 2, we illustrate the power of over-tuning, where the
improvements basically correlate with the number of hyper-
parameters. However, if we set a hard limit for the number
of hyper-parameters, complicated optimizers with many
hyper-parameters, e.g. Adam [Kingma and Ba, 2014], will
not be encouraged due to this limit. The models will also be
encouraged to investigate more influential hyper-parameters
to utilize the labels in the validation set under the limited
budget of hyper-parameters. Therefore, the most fundamen-
tal solution is to change the evaluation setting as IGB.

What is the best GNN?  In the results of IGB, GCNII per-
forms the best. However, the performance differs in different
datasets. For example, the sota method on Citeseer, GRAND,
performs badly on NELL and thus gets a low average score,
because NELL is a knowledge graph, whose distribution is
quite different from that of citation networks. Will a GNN be
good at all kinds of graphs, or do we need to design different
GNN:ss for different categories of graphs?

5 Conclusion

In this paper, we revisit the setting of semi-supervised learn-
ing on graphs, identify the over-tuning problem, and prove
its significance via the experiments of ValidUtil. To solve it,
we propose a new benchmark, IGB, with a more reasonable
evaluation pipeline. To further increase evaluation stability,
we propose a sampling algorithm based on RW. GNNs are
evaluated on the new benchmark, and the results demonstrate
a stable performance rank. We expect that IGB can benefit the
graph learning community by stabilizing the evolving path of
GNN:ss in the future.


https://en.wikipedia.org/wiki/Inversion_(discrete_mathematics)
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